JPH06246548A - Manufacture of high contact-fatigue strength gear - Google Patents

Manufacture of high contact-fatigue strength gear

Info

Publication number
JPH06246548A
JPH06246548A JP3582793A JP3582793A JPH06246548A JP H06246548 A JPH06246548 A JP H06246548A JP 3582793 A JP3582793 A JP 3582793A JP 3582793 A JP3582793 A JP 3582793A JP H06246548 A JPH06246548 A JP H06246548A
Authority
JP
Japan
Prior art keywords
fatigue strength
gear
cutting
tooth surface
contact fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3582793A
Other languages
Japanese (ja)
Inventor
Hidehiko Fusada
秀彦 房田
Michiaki Tateyama
道昭 館山
Akira Katayama
昌 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3582793A priority Critical patent/JPH06246548A/en
Publication of JPH06246548A publication Critical patent/JPH06246548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Processing (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To improve the contact-fatigue strength of a gear used for a driving transmission system such as the transmission of an automobile. CONSTITUTION:In this method of manufacturing a high contact fatigue strength gear, gear cutting is applied to mechanical structure steel, and after surface hardening by carburizing and/or nitriding and quenching-tempering, the tooth surface is barrel-polished into 0.3mum to 2mum in roughness (Rmax). The contact- fatigue strength is thereby improved by several hundred percents.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は接触疲労強度の高い歯車
の製造方法に係わり、特に自動車のトランスミッション
等の駆動伝達系に使用される表面硬化処理した鋼製歯車
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gear having high contact fatigue strength, and more particularly to a method for manufacturing a surface-hardened steel gear used in a drive transmission system of an automobile transmission or the like.

【0002】[0002]

【従来の技術】自動車の駆動系に使用される歯車の一般
的な製造工程は、鍛造、焼きならし、歯切り加工後に浸
炭及び/または窒化処理+焼入焼戻処理(以後表面硬化
処理とする。)である。しかし、最近、車両重量の軽量
化のために歯車寸法の小型化及びエンジンの高出力化に
伴って歯車に負荷される応力が大きくなり、歯元の曲げ
疲労強度、及び歯面のピッチング疲労強度、とりわけ歯
面の接触疲労強度の一層の向上が要求されるようになっ
てきた。
2. Description of the Related Art A general manufacturing process for gears used in automobile drive systems is forging, normalizing and gear cutting, followed by carburizing and / or nitriding treatment + quenching and tempering treatment (hereinafter referred to as surface hardening treatment). Yes.) However, recently, due to the reduction of the size of gears and the increase of engine output to reduce the weight of vehicles, the stress applied to the gears has increased, and the bending fatigue strength of the tooth roots and the pitching fatigue strength of the tooth surfaces have increased. In particular, there has been a demand for further improvement in contact fatigue strength of tooth surfaces.

【0003】歯元の曲げ疲労強度については、圧縮残留
応力の最大値、または残留応力の深さ方向積分値が疲労
強度と強い相関関係にあることが報告されており(例え
ば、自動車技術会、学術講演会前刷集891,1989-5,p163
、同902,1990-10,p1301 )、特開昭62−20007
1及び特開平3−2319号公報に見られるように、工
業的に有効な新しい製造工程、即ち、歯切り加工→浸炭
及び/または窒化処理→焼入焼戻処理→ショットピーニ
ング加工が提案され既に実績をあげている。また、鋼材
の側からの対策として、例えば特開平3−10050号
公報に見られるように粒界酸化を抑制して歯元の曲げ疲
労強度を向上させた新しい鋼が提案されている。
Regarding the bending fatigue strength of the tooth root, it has been reported that the maximum value of the compressive residual stress or the integrated value of the residual stress in the depth direction has a strong correlation with the fatigue strength (for example, the Society of Automotive Engineers of Japan, Preprints for Academic Lectures 891,1989-5, p163
902, 1990-10, p1301), JP-A-62-20007.
1 and Japanese Patent Application Laid-Open No. 3-23319, a new industrially effective manufacturing process, namely, gear cutting, carburizing and / or nitriding, quenching and tempering, and shot peening has already been proposed. Has a track record. In addition, as a measure from the steel material side, a new steel has been proposed, for example, as disclosed in Japanese Patent Laid-Open No. 3-10050, which suppresses intergranular oxidation and improves bending fatigue strength at the root of a tooth.

【0004】また、歯面の接触疲労強度に関しては、接
触疲労の原因は歯面に発生するピッチングであることが
知られている。ピッチングが発生する原因に関しては、
歯車内部のせん断応力説と歯面の引張応力説が提示され
ているが定説にはなっていない。これらの説にもとづい
て、歯車の圧力角を大きくすること、片当りを緩和する
ためのクラウニング法、歯面カタサ及び硬化深さを大き
くすること、界面潤滑法などが提案(内藤武志著:浸炭
焼入れの実際、P229−233、日刊工業新聞社)さ
れている。
Regarding the contact fatigue strength of the tooth surface, it is known that the cause of the contact fatigue is pitching occurring on the tooth surface. Regarding the cause of pitching,
The theory of shear stress inside the gear and the theory of tensile stress on the tooth surface are presented, but they are not established. Based on these theories, it is proposed to increase the pressure angle of the gear, the crowning method for mitigating one-sided contact, the tooth surface roughness and the hardening depth, and the interfacial lubrication method (Takeshi Naito: Carburizing). The actual quenching is P229-233, Nikkan Kogyo Shimbun).

【0005】一方、接触疲労強度を向上させるための工
業的な技術としては、歯面の接触疲労強度に関しては特
開昭62−88869号公報にみられるように、歯切り
加工→表面硬化処理→ラッピング加工→浸硫処理して歯
面に潤滑層を形成させる方法、また特開平1−2647
27号公報に見られるように歯切り加工→表面硬化処理
→ショットピーニング後さらに立方晶窒化ホウ素ホイー
ルで研削することにより歯車の最表面に圧縮残留応力の
最大値をもたらす方法、等が提案されている。
On the other hand, as an industrial technique for improving the contact fatigue strength, regarding the contact fatigue strength of the tooth surface, as shown in JP-A-62-88869, gear cutting → surface hardening treatment → A method of forming a lubricating layer on the tooth surface by lapping → vulcanization, and JP-A-1-2647.
As disclosed in Japanese Unexamined Patent Publication No. 27-27, a method of bringing the maximum value of the compressive residual stress to the outermost surface of a gear by gear cutting, surface hardening, shot peening, and further grinding with a cubic boron nitride wheel has been proposed. There is.

【0006】[0006]

【発明が解決しようとする課題】しかし、これらの方法
は現行の製作工程よりも煩雑でコストが嵩むにもかかわ
らず大きな効果が得られない。例えば特開昭62−88
869号公報のような浸硫処理により形成された潤滑層
は、摩耗し易く潤滑効果は接触の初期しか期待できな
い。また、特開平1−264727号公報のように表面
硬化処理またはショットピーニング後に歯面を研削する
と、その研削痕からクラックが生じ易くかえって接触疲
労強度を劣化させるとされている。すなわち歯面の接触
疲労強度に関して高強度化のための有効な知見及び工業
的に有益な技術ともに未だ見いだされていないのが現状
である。
However, although these methods are more complicated and costly than the current manufacturing process, they are not effective. For example, JP-A-62-88
The lubricating layer formed by the sulfurizing treatment as disclosed in Japanese Patent No. 869 is easily worn and the lubricating effect can be expected only at the initial stage of contact. Further, when the tooth surface is ground after surface hardening treatment or shot peening as in JP-A-1-264727, it is said that cracks are likely to occur from the grinding marks and the contact fatigue strength is deteriorated. That is, at present, neither effective knowledge for increasing the contact fatigue strength of the tooth surface nor industrially useful technology has been found yet.

【0007】本発明はかかる実状に鑑み、自動車のトラ
ンスミッション等の駆動伝達系に使用される表面硬化処
理した接触疲労強度に優れる良好な鋼製歯車の製造方法
を提供せんとするものである。
In view of the above situation, the present invention is to provide a method for producing a good steel gear which has been subjected to a surface hardening treatment and is excellent in contact fatigue strength used in a drive transmission system of an automobile transmission or the like.

【0008】[0008]

【課題を解決するための手段】本発明者等は種々検討を
重ねた結果、従来の加工法と異なり、歯切りまたは歯切
り+シェービング加工された機械構造用鋼歯車の歯面を
バレル研磨加工してその歯面粗さ(Rmax )を0.3μ
m以上2μm以下にする新しい製造方法を採用すれば、
歯面の接触疲労強度が著しく向上することを見出すこと
により本発明を完成したものである。
As a result of various investigations, the inventors of the present invention, as a result of various studies, barrel-polish the tooth surface of a gear for machine structural steel gear that is gear-cut or gear-shaving + shaving, unlike the conventional processing method. And its tooth surface roughness (R max ) is 0.3 μm.
If you adopt a new manufacturing method that is more than m and less than 2 μm,
The present invention has been completed by finding that the contact fatigue strength of the tooth surface is significantly improved.

【0009】即ち、本発明の要旨とするところは、機械
構造用鋼を歯切りまたは歯切り+シェービング加工し、
浸炭処理および/または窒化処理と焼入・焼戻処理によ
り表面硬化した後、歯面を粗さ(Rmax )0.3μm以
上2μm以下にバレル研磨加工するか、もしくは、歯切
りまたは歯切り+シェービング加工後に、歯面を粗さ
(Rmax )0.3μm以上2μm以下にバレル研磨加工
し、次いで浸炭処理あるいは窒化処理もしくは浸炭窒化
処理のいずれかの方法と焼入・焼戻処理により表面硬化
することを特徴とする高接触疲労強度歯車の製造方法に
ある。
That is, the gist of the present invention is that the steel for machine structure is subjected to gear cutting or gear cutting + shaving,
After the surface is hardened by carburizing and / or nitriding and quenching / tempering, the tooth surface is barrel-polished to a roughness (R max ) of 0.3 μm or more and 2 μm or less, or gear cutting or gear cutting + After shaving, the tooth surface is barrel-polished to a roughness (R max ) of 0.3 μm or more and 2 μm or less, and then the surface is hardened by carburizing, nitriding or carbonitriding, and quenching / tempering. And a method for manufacturing a high contact fatigue strength gear.

【0010】[0010]

【作用】まず、本発明による高接触疲労強度歯車の製造
方法は、切削加工+表面硬化処理後に、または切削加工
+表面硬化処理+ショットピーニング処理後に、バレル
研磨加工することが必要である。それは切削加工時の表
面欠陥、即ち送りマーク、構成刃先の脱落物、介在物の
抜け落ち跡などを極力除去するためである。歯面の粗さ
max を2μm以下に限定したのは、切削加工時の表面
欠陥がピッチングの原因とならないだけ十分小さくする
ためである。また、歯面の粗さRmax を0.3μm以上
と限定したのは、これ以下にするためには加工コストが
著しく大きくなる割に疲労寿命の向上が期待できないか
らである。費用対効果の点から0.3μm以上と限定し
た。
First, in the method of manufacturing a high contact fatigue strength gear according to the present invention, it is necessary to carry out barrel polishing after cutting + surface hardening or after cutting + surface hardening + shot peening. This is to remove surface defects at the time of cutting, that is, feed marks, fallen objects of constituent blades, traces of inclusions coming off, etc. as much as possible. The reason why the roughness R max of the tooth surface is limited to 2 μm or less is to sufficiently reduce the surface defects during cutting so as not to cause pitching. Further, the reason why the roughness R max of the tooth surface is limited to 0.3 μm or more is that if it is less than this, the fatigue life cannot be expected to be improved although the machining cost is significantly increased. It was limited to 0.3 μm or more in terms of cost efficiency.

【0011】また、本発明による高接触疲労強度歯車の
製造方法においては、加工の順序としてバレル研磨加工
後に表面硬化処理することも含むものである。それは表
面硬化処理時に発生する、歯面からほぼ15μm程度の
厚みを持つ粒界酸化層及び軟化層の生成を極力抑制する
ためである。この粒界酸化層は、例えば昭和54年8月
30日日刊工業新聞社発行「浸炭焼入の実際」180〜
188頁に見られるように、浸炭ガス中の微量のH2
やCO2 が粒界のCrやMn等の合金元素と反応して酸
化物を形成するために生成し、軟化層は粒内のCr、M
nが粒界に拡散するために焼入性が低下するために生じ
る。この場合、バレル研磨加工後の歯面の粗さRmax
2μm以下に限定したのは、この値を超えると歯面への
酸素の吸着が著しくなり粒界酸化の程度が大きくなり、
その結果、これを起点に疲労クラックが発生してピッチ
ングに成長し接触疲労強度が低下するためである。歯面
の粗さが2μm以下であれば疲労クラックは全く発生し
ない。またバレル研磨加工後の歯面の粗さRmax を0.
3μm以上と限定したのは、この値よりも小さいと接触
面への潤滑油の浸入が困難となるために、亀裂発生を促
してかえって接触疲労強度を劣化させるためである。
Further, in the method of manufacturing a high contact fatigue strength gear according to the present invention, surface hardening treatment is performed after barrel polishing as a processing sequence. This is because the generation of a grain boundary oxide layer and a softening layer having a thickness of about 15 μm from the tooth surface, which occurs during the surface hardening treatment, is suppressed as much as possible. This grain boundary oxide layer is, for example, "Actual Carburizing and Quenching" 180-issued by Nikkan Kogyo Shimbun on August 30, 1979.
As can be seen on page 188, traces of H 2 O in the carburizing gas
And CO 2 are generated to react with alloy elements such as Cr and Mn at grain boundaries to form oxides, and the softening layer is formed of Cr and M in the grains.
It occurs because n is diffused into the grain boundaries, which deteriorates the hardenability. In this case, the reason why the roughness R max of the tooth surface after barrel polishing is limited to 2 μm or less is that when the value exceeds this value, the adsorption of oxygen on the tooth surface becomes remarkable and the degree of grain boundary oxidation increases,
As a result, fatigue cracks are generated starting from this, which grows into pitching and the contact fatigue strength decreases. If the roughness of the tooth surface is 2 μm or less, no fatigue crack will occur. Further, the roughness R max of the tooth surface after barrel polishing is set to 0.
The reason why the thickness is limited to 3 μm or more is that if it is smaller than this value, it becomes difficult to infiltrate the lubricating oil into the contact surface, so that cracking is promoted and the contact fatigue strength is deteriorated.

【0012】なお、本発明に於いてバレル研磨加工方法
自体は特に限定するものではないが、アルミナ質焼結体
の微粉、界面活性材及び水の混合物を研磨材として2〜
8時間加工することが望まれる。また本発明による高接
触疲労強度歯車の製造方法において、前記で限定した加
工順序およびバレル研磨加工による面の仕上げ状態以外
の、浸炭や窒化といった表面硬化方法等は特に限定する
ものではなく、現状の歯車製作における方法をそのまま
利用することができる。ただし、表面硬化処理自体は歯
面部の耐接触疲労特性を向上させるために必須であり、
経済的な観点から考えれば、浸炭:930℃×8時間
(カーボンポテンシャルC.P.=0.85)→油焼入
(120℃)および焼戻し:180℃×1時間→空冷の
条件等が適当である。
In the present invention, the barrel polishing method itself is not particularly limited, but a mixture of alumina fine powder, a surfactant and water is used as an abrasive.
Processing for 8 hours is desired. Further, in the method for producing a high contact fatigue strength gear according to the present invention, the surface hardening method such as carburizing and nitriding is not particularly limited, except for the finishing order of the surface and the finishing state of the surface by the barrel polishing, which are limited in the above. The method of gear manufacturing can be used as it is. However, the surface hardening treatment itself is essential for improving the contact fatigue resistance of the tooth surface,
From an economical point of view, carburizing: 930 ° C. × 8 hours (carbon potential CP = 0.85) → oil quenching (120 ° C.) and tempering: 180 ° C. × 1 hour → air cooling conditions are appropriate Is.

【0013】[0013]

【実施例】次に実施例により本発明の効果をさらに具体
的に示す。 (実施例1)本発明の加工方法は以下の通りである。J
IS SCM415H肌焼鋼を切削加工し、浸炭:93
0℃×8hr(C.P.=0.85)油焼入(120
℃)、焼戻:180℃×1hr空冷の条件で表面硬化処理
した後、バレル研磨加工により歯面の表面粗さをRmax
0.3〜2.0μmとした。
EXAMPLES Next, the effects of the present invention will be more specifically illustrated by the following examples. (Example 1) The processing method of the present invention is as follows. J
IS SCM415H case hardening steel is cut and carburized: 93
0 ° C x 8hr (CP = 0.85) Oil quenching (120
℃), tempering: 180 ° C. × 1 hr, after surface hardening under the condition of air cooling, the surface roughness of the tooth surface is R max by barrel polishing.
It was set to 0.3 to 2.0 μm.

【0014】比較のための加工方法は現在の歯車の加工
方法に準拠して以下の通りとした。(その1)切削加工
−表面硬化処理、(その2)切削加工−表面硬化処理−
研削加工、(その3)切削加工−表面硬化処理−ショッ
トピーニング、(その4)切削加工−表面硬化処理−シ
ョットピーニング−研削。
The processing method for comparison is as follows in accordance with the current method of processing gears. (Part 1) Cutting-surface hardening treatment, (Part 2) Cutting-surface hardening treatment-
Grinding, (3) Cutting-Surface Hardening-Shot Peening, (4) Cutting-Surface Hardening-Shot Peening-Grinding.

【0015】切削は超硬工具で旋削した。切削仕上げ面
粗さはRmax :5〜8μmである。表面硬化処理条件は
浸炭:930℃×8hr(C.P.=0.85)油焼入
(120℃)、焼戻:180℃×1hr空冷、である。研
削加工はWAの80番の砥石を用い、粗さRmax は1〜
2.0μmである。ショットピーニング条件は、ショッ
ト球:0.6〜1.2mmφでHV600の鋳鉄球、ショ
ット速度:60m/s 、ショット時間:5min である。バ
レル研磨加工条件は次の通りである。まず、直径5〜1
2mmのアルミナ質焼結体、界面活性材及び水の混合物を
研磨材として2〜4時間、粗加工し、次いで直径1〜3
mmのアルミナ質焼結体、界面活性材及び水の混合物を研
磨材として2〜4時間仕上げ加工した。
The cutting was carried out by turning with a cemented carbide tool. The surface roughness after cutting is R max : 5 to 8 μm. The conditions for surface hardening treatment are carburizing: 930 ° C. × 8 hr (CP = 0.85) oil quenching (120 ° C.), tempering: 180 ° C. × 1 hr air cooling. For the grinding process, a WA No. 80 grindstone is used, and the roughness R max is 1 to
It is 2.0 μm. The shot peening conditions are as follows: shot ball: 0.6 to 1.2 mmφ, cast iron ball of HV600, shot speed: 60 m / s, shot time: 5 min. Barrel polishing conditions are as follows. First, diameter 5 to 1
A mixture of 2 mm alumina sintered body, a surfactant and water is used as an abrasive for 2 to 4 hours for rough processing, then a diameter of 1 to 3
A mixture of mm-mm alumina sintered body, surfactant and water was used as an abrasive and finished for 2 to 4 hours.

【0016】また、ローラピッチング試験条件は次のと
おりである。 ヘルツ応力 Pmax :280kgf/mm2 及び310kgf/mm
2 周速度 :82m/min(小歯車−試験片) 1
14m/min(大歯車) 滑り率 :40% 寿命判定基準 :ピッチング損傷の寸法が0.5φ
mmに到達するまでの回転数。回転数が107 に到達した
場合は試験を中止し、寿命は107 以上とした。 表1から明らかなように本発明例の接触疲労寿命はいず
れのヘルツ応力の場合にも比較例の疲労寿命と比較して
著しく高い。
The roller pitching test conditions are as follows. Hertz stress P max : 280 kgf / mm 2 and 310 kgf / mm
2 orbital speed: 82m / min (small gear-test piece) 1
14m / min (Large gear) Sliding ratio: 40% Life criterion: Pitching damage dimension is 0.5φ
The number of rotations to reach mm. When the number of rotations reached 10 7 , the test was stopped and the life was set to 10 7 or more. As is clear from Table 1, the contact fatigue life of the present invention example is remarkably higher than that of the comparative example at any Hertz stress.

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例2)本発明の加工方法は以下の通
りである。JIS SCM415H肌焼鋼を切削加工し
た後、バレル研磨加工により歯面の表面粗さをR
max 0.3〜3.0μmとした。次いで、浸炭:930
℃×8hr(C.P.=0.85)油焼入(120℃)、
焼戻:180℃×1hr空冷の条件で表面硬化処理した。
なお、比較例の加工方法は実施例1と同一である。
(Embodiment 2) The processing method of the present invention is as follows. After cutting JIS SCM415H case-hardening steel, barrel surface polishing is performed to obtain the surface roughness of the tooth surface.
The maximum was 0.3 to 3.0 μm. Then carburizing: 930
℃ × 8hr (CP = 0.85) oil quenching (120 ℃),
Tempering: Surface hardening was performed under the condition of 180 ° C. × 1 hr air cooling.
The processing method of the comparative example is the same as that of the first embodiment.

【0019】切削仕上げ面粗さをRmax :7〜11μm
とした以外の表面硬化処理条件、切削条件、ショットピ
ーニング条件は、実施例1と全て同一である。また、ロ
ーラピッチング試験条件も、ヘルツ応力 Pmax :30
0kgf/mm2 及び330kgf/mm2 とした以外は実施例1と
同じである。表2から明らかなように本発明例の接触疲
労寿命はいずれのヘルツ応力の場合にも比較例の疲労寿
命と比較して著しく高い。
The finished surface roughness R max : 7 to 11 μm
The surface hardening treatment conditions, cutting conditions, and shot peening conditions other than the above are all the same as in Example 1. In addition, the roller pitching test conditions are also Hertz stress P max : 30
Except that the 0 kgf / mm 2 and 330kgf / mm 2 is the same as in Example 1. As is clear from Table 2, the contact fatigue life of the present invention example is remarkably higher than that of the comparative example at any Hertzian stress.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上の実施例からも明らかなごとく本発
明の製造法によれば、歯面の接触疲労強度を向上させる
ことができ、車両等のトランスミッション等の駆動伝達
系に用いるに最適なものである。
As is apparent from the above embodiments, according to the manufacturing method of the present invention, it is possible to improve the contact fatigue strength of the tooth surface, and it is suitable for use in a drive transmission system of a transmission of a vehicle or the like. It is a thing.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 機械構造用鋼を歯切り加工、次いで浸炭
処理および/または窒化処理と焼入・焼戻処理により表
面硬化した後、歯面を粗さ(Rmax )0.3μm以上、
2μm以下にバレル研磨加工することを特徴とする高接
触疲労強度歯車の製造方法。
1. A surface of a machine structure steel is hardened by gear cutting, then carburizing and / or nitriding and quenching / tempering, and then the tooth surface has a roughness (R max ) of 0.3 μm or more,
A method for producing a high-contact fatigue strength gear, which comprises barrel-polishing to 2 μm or less.
【請求項2】 機械構造用鋼を歯切り加工、次いで浸炭
処理および/または窒化処理と焼入・焼戻処理により表
面硬化して、ショットピーニング処理した後、歯面を粗
さ(Rmax )0.3μm以上、2μm以下にバレル研磨
加工することを特徴とする高接触疲労強度歯車の製造方
法。
2. A machine structure steel is subjected to gear cutting, followed by carburizing and / or nitriding and quenching / tempering to harden the surface, and after shot peening, the tooth surface is roughened (R max ). A method for producing a high contact fatigue strength gear, characterized by barrel-polishing to a size of 0.3 μm or more and 2 μm or less.
【請求項3】 機械構造用鋼を歯切り加工後に、歯面を
粗さ(Rmax )0.3μm以上2μm以下にバレル研磨
加工し、次いで浸炭処理および/または窒化処理と焼入
・焼戻処理により表面硬化することを特徴とする高接触
疲労強度歯車の製造方法。
3. After machine cutting steel for machine structure, the tooth surface is barrel polished to a roughness (R max ) of 0.3 μm or more and 2 μm or less, and then carburizing and / or nitriding and quenching / tempering. A method for producing a high-contact fatigue strength gear characterized in that the surface is hardened by treatment.
【請求項4】 機械構造用鋼を歯切り加工後、シェービ
ング加工を施すことを特徴とする請求項1〜3のいずれ
か1記載の高接触疲労強度歯車の製造方法。
4. The method for producing a high contact fatigue strength gear according to claim 1, wherein the steel for machine structure is subjected to gear cutting and then shaving.
JP3582793A 1993-02-24 1993-02-24 Manufacture of high contact-fatigue strength gear Pending JPH06246548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3582793A JPH06246548A (en) 1993-02-24 1993-02-24 Manufacture of high contact-fatigue strength gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3582793A JPH06246548A (en) 1993-02-24 1993-02-24 Manufacture of high contact-fatigue strength gear

Publications (1)

Publication Number Publication Date
JPH06246548A true JPH06246548A (en) 1994-09-06

Family

ID=12452795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3582793A Pending JPH06246548A (en) 1993-02-24 1993-02-24 Manufacture of high contact-fatigue strength gear

Country Status (1)

Country Link
JP (1) JPH06246548A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315646B1 (en) 1998-10-23 2001-11-13 Saga University Processing system for increasing the quality of a gear and a barreling apparatus usable in the same
KR20010100133A (en) * 2001-10-10 2001-11-14 주식회사 삼락열처리 A manufacturing method of annulus gear
JP2007516096A (en) * 2003-05-30 2007-06-21 アール・イー・エム・テクノロジーズ・インコーポレーテツド Super-finished large planetary gear system
JP2010255540A (en) * 2009-04-27 2010-11-11 Hitachi Automotive Systems Ltd High pressure fuel pump
JP2013542858A (en) * 2010-08-19 2013-11-28 フェストアルピネ シュタール ゲーエムベーハー Surface finishing method for hardened and corrosion-resistant steel plate members
CN103909391A (en) * 2014-03-12 2014-07-09 苏州锻压厂有限责任公司 Method for fabricating high-speed rail train gear
CN108747233A (en) * 2018-05-04 2018-11-06 宁波市鄞州兴韩机械实业有限公司 A kind of processing technology of mechanical main shaft
CN115556005A (en) * 2022-10-21 2023-01-03 重庆大学 Gear high-surface integrity creation method based on novel composite process

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315646B1 (en) 1998-10-23 2001-11-13 Saga University Processing system for increasing the quality of a gear and a barreling apparatus usable in the same
KR20010100133A (en) * 2001-10-10 2001-11-14 주식회사 삼락열처리 A manufacturing method of annulus gear
JP2007516096A (en) * 2003-05-30 2007-06-21 アール・イー・エム・テクノロジーズ・インコーポレーテツド Super-finished large planetary gear system
US8109854B2 (en) 2003-05-30 2012-02-07 Rem Technologies, Inc. Superfinishing large planetary gear systems
US8171637B2 (en) 2003-05-30 2012-05-08 Rem Technologies, Inc. Superfinishing large planetary gear systems
US8858734B2 (en) 2003-05-30 2014-10-14 Rem Technologies, Inc. Superfinishing large planetary gear systems
JP2010255540A (en) * 2009-04-27 2010-11-11 Hitachi Automotive Systems Ltd High pressure fuel pump
JP2013542858A (en) * 2010-08-19 2013-11-28 フェストアルピネ シュタール ゲーエムベーハー Surface finishing method for hardened and corrosion-resistant steel plate members
CN103909391A (en) * 2014-03-12 2014-07-09 苏州锻压厂有限责任公司 Method for fabricating high-speed rail train gear
CN108747233A (en) * 2018-05-04 2018-11-06 宁波市鄞州兴韩机械实业有限公司 A kind of processing technology of mechanical main shaft
CN108747233B (en) * 2018-05-04 2019-11-08 宁波市鄞州兴韩机械实业有限公司 A kind of processing technology of mechanical main shaft
CN115556005A (en) * 2022-10-21 2023-01-03 重庆大学 Gear high-surface integrity creation method based on novel composite process

Similar Documents

Publication Publication Date Title
TWI399441B (en) Induction hardening steel component or parts with pre-carbonitriding treatment
KR100216877B1 (en) Rolling bearing
JPH06246548A (en) Manufacture of high contact-fatigue strength gear
JPH10231908A (en) Roller for troidal type continuously variable transmission and its manufacture
CN113646126B (en) Manufacturing method of hyperboloid gear
JP4956027B2 (en) Pulley for belt type CVT
JP3119732B2 (en) Manufacturing method of high contact fatigue strength gear
JPS62200071A (en) Manufacture of high-strength gear
JP5313042B2 (en) Nitriding sliding member, steel for sliding member, and method for manufacturing sliding member
JPH0691440A (en) Manufacture of high contact fatigue strength gear
JP6160054B2 (en) High surface pressure resistant parts
JPH01264727A (en) Manufacture of high strength gear
JPH1148036A (en) Manufacture for gear of super high quality
JP2946653B2 (en) Manufacturing method of high strength gear
JPS61117014A (en) Manufacturing method of highly strengthened gear
JP4371481B2 (en) Gear having excellent contact fatigue life strength and manufacturing method thereof
JP3537357B2 (en) Gears with excellent contact fatigue life strength
JP2001011572A (en) Gear excellent in contact fatigue life strength
JPH08174340A (en) Part for machine structure having excellent surface fatigue strength and manufacture thereof
JPH10158743A (en) Surface hardening treatment and gear
JP2002327237A (en) Gear with long dedendum life and contact fatigue life, and manufacturing method therefor
JPH0634018A (en) Toothed wheel having high fatigue strength
JP2022099521A (en) Surface hardened steel component and production method thereof
JP3028688B2 (en) Metal rolling element for toroidal-type continuously variable transmission and method of manufacturing the same
JP2002121644A (en) Gear having excellent dedendum fatigue life and contact fatigue life

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990622