JPH06245525A - Power converter - Google Patents

Power converter

Info

Publication number
JPH06245525A
JPH06245525A JP5023893A JP2389393A JPH06245525A JP H06245525 A JPH06245525 A JP H06245525A JP 5023893 A JP5023893 A JP 5023893A JP 2389393 A JP2389393 A JP 2389393A JP H06245525 A JPH06245525 A JP H06245525A
Authority
JP
Japan
Prior art keywords
converter
inverter
self
exciting
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5023893A
Other languages
Japanese (ja)
Inventor
Koichi Kaneko
宏一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5023893A priority Critical patent/JPH06245525A/en
Publication of JPH06245525A publication Critical patent/JPH06245525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To arrange an automatic type converter and an inverter optimally, and to attain miniaturization and the saving of space by housing the converter and the inverter in the same box body and cooling the converter and the inverter by a common cooling fan. CONSTITUTION:A converter and an inverter are housed in the same box body, a semiconductor stack 6 for the inverter is disposed to the lower section of a semiconductor stack 3 for the converter, cooling air 10 is taken in from a suction hole 11 formed to the lower section of a device by a cooling fan 9, and air is flowed through a heat sink 8 cooling semiconductor elements 7 for the inverter, thus cooling the semiconductor stack 6 for the inverter. Cooling air 10 passed through the heat sink 8 is flowed through a heat sink 5 for the converter in semiconductor elements 4 for the converter, thus cooling the semiconductor stack 3 for the converter. Accordingly, the power converter can be miniaturized, space saved and cost reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、同一箱体内に収納さ
れ、コンバ―タ及びインバ―タで構成される電力変換装
置に係り、特に小形化、省スペ―ス化、低価格化を図っ
た電力変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power conversion device which is housed in the same box body and is composed of a converter and an inverter, and is particularly aimed at downsizing, space saving, and cost reduction. Power converter.

【0002】[0002]

【従来の技術】半導体素子を使用した電力変換装置は、
高性能半導体素子の開発、PWM制御技術の発展に伴な
い益々多く利用されて来ている。
2. Description of the Related Art A power converter using a semiconductor element is
With the development of high-performance semiconductor devices and the development of PWM control technology, they are being used more and more.

【0003】電力変換装置は、無停電電源装置に代表さ
れるよう図5の如く商用電源1の交流を直流に変換する
コンバ―タ22と、直流を交流に変換するインバ―タ2
3を合せ持つ構成の装置が一般的であり、近年の技術進
歩により、インバ―タ部分のPWM化に加えてコンバ―
タ部分もPWM化の自励式コンバ―タで構成されること
が多くなってきている。
The power converter is represented by an uninterruptible power supply, as shown in FIG. 5, a converter 22 for converting AC of the commercial power supply 1 into DC and an inverter 2 for converting DC into AC.
A device having a combination of 3 is generally used. Due to the recent technological progress, in addition to the PWM conversion of the inverter part,
It is becoming more and more common for the data section to also consist of a PWM type self-exciting converter.

【0004】ここで、自励式コンバ―タを使用すること
の利点について簡単に説明すれば、一般のサイリスタ整
流器とは異り有効電力、無効電力を各々独立に制御で
き、入力力率1に制御すれば、電力変換装置としての必
要入力容量を最小限に抑えることが可能であり、又、自
励式コンバ―タを構成する半導体素子を所定のパルス幅
を持つパルス列とすれば、交流入力側に発生する高調波
電流を抑えることが可能となる点である。
Here, the advantage of using the self-exciting converter will be briefly described. Unlike a general thyristor rectifier, active power and reactive power can be independently controlled, and the input power factor is controlled to 1. By doing so, it is possible to minimize the required input capacity as a power conversion device. Also, if the semiconductor elements that compose the self-exciting converter have a pulse train with a predetermined pulse width, they can be connected to the AC input side. This is the point that it is possible to suppress the harmonic current that is generated.

【0005】又、欠点としては、コンバ―タに使用する
半導体素子を高調波でスイッチングさせる必要があるた
め、半導体素子から発生する損失が比較的大きく、損失
による発生熱を排出、冷却する必要がある点である。次
に、コンバ―タ、インバ―タで構成される従来の電力変
換装置の盤内構成を図4を用いて説明する。
As a drawback, since it is necessary to switch the semiconductor element used for the converter with higher harmonics, the loss generated from the semiconductor element is relatively large, and it is necessary to discharge and cool the heat generated by the loss. There is a point. Next, referring to FIG. 4, description will be given of an in-panel configuration of a conventional power conversion device including a converter and an inverter.

【0006】同図において、1Aは半導体素子で構成さ
れ、交流電力を直流に変換する自励式コンバ―タを収納
する第1の収納箱体、1Bは半導体素子で構成され、直
流電力を交流に変換する自励式インバ―タを収納する第
2の収納箱体、2は自励式コンバ―タと自励式インバ―
タを合せ持つ電力変換装置である。又、3はコンバ―タ
用半導体スタック、6はインバ―タ用半導体スタックで
ある。インバ―タ用半導体スタック6を例にその冷却に
ついて説明する。
In the figure, 1A is a semiconductor element, a first housing box for accommodating a self-exciting converter for converting AC power into DC, and 1B is a semiconductor element for converting DC power into AC. A second storage box for accommodating the self-excited inverter to be converted, 2 is a self-excited converter and a self-excited inverter
It is a power conversion device that also has a power supply. Further, 3 is a semiconductor stack for converters, and 6 is a semiconductor stack for inverters. The cooling of the semiconductor stack 6 for inverter will be described as an example.

【0007】インバ―タ用半導体スタック6は、逆変換
を行なう半導体素子7が発生する熱損失を冷却する風冷
式ヒ―トシンク8から成り、装置上部に冷却ファン9B
が取付けられており、冷却風10は吸気孔11から吸気
し、ヒ―トシンク8、冷却ファン9Bを経由して電力変
換装置排気孔12Bから排気される。
The semiconductor stack 6 for inverter is composed of an air-cooled heat sink 8 for cooling the heat loss generated by the semiconductor element 7 for reverse conversion, and a cooling fan 9B is provided on the upper part of the device.
The cooling air 10 is taken in through the intake hole 11 and is exhausted from the power converter exhaust hole 12B via the heat sink 8 and the cooling fan 9B.

【0008】同様にコンバ―タ用半導体スタック3も第
1の収納箱体1Aに収納され、別の冷却ファン9Aを用
いて冷却する以外はインバ―タ用半導体スタック6と同
じように冷却される。
Similarly, the converter semiconductor stack 3 is also housed in the first housing box 1A and is cooled in the same manner as the inverter semiconductor stack 6 except that it is cooled by using another cooling fan 9A. .

【0009】ここで、PWMコンバ―タ、インバ―タの
回路構成を図2を用いて説明する。コンバ―タ、インバ
―タはトランジスタ等のスイッチング可能な半導体素子
101〜104とこれらの半導体素子101〜104に
それぞれ逆並列接続されるダオ―ド105〜108から
成る回路をブリッジ接続して、その交流側は交流リアク
トル109を介して図示しない交流電源に接続され、直
流側には大容量の電解コンデンサ110が接続されて構
成される電圧形の自励式コンバ―タ又はインバ―タであ
る。
The circuit configuration of the PWM converter and the inverter will be described with reference to FIG. The converters and inverters are formed by bridge-connecting a circuit composed of switchable semiconductor elements 101 to 104 such as transistors and diodes 105 to 108 which are respectively connected to these semiconductor elements 101 to 104 in antiparallel. The AC side is a voltage-type self-exciting converter or inverter, which is connected to an AC power source (not shown) via an AC reactor 109 and a large-capacity electrolytic capacitor 110 is connected to the DC side.

【0010】即ち、コンバ―タとインバ―タの回路構成
はほとんど同じであるため、その容量が同じであればコ
ンバ―タとインバ―タは同一部品で構成されることが多
く、半導体スタックの構成としては同一のものとする方
か、スタックの構成の種類を増やさないなどの標準化の
観点において有利となる。
That is, since the converter and the inverter have almost the same circuit configuration, if the capacity is the same, the converter and the inverter are often composed of the same parts, and the semiconductor stack It is advantageous from the viewpoint of standardization that the configurations are the same or that the number of types of stack configurations is not increased.

【0011】従って、コンバ―タとインバ―タの半導体
スタック3,6が同一の構造であれば、それを収納する
第1,第2の収納箱体1A,1B、冷却ファン9A,9
Bも同一のものとして第1の収納箱体1Aと第2の収納
箱体1Bを同一構造とする方が有利である。さてここ
て、同一容量のコンバ―タ、インバ―タ回路で発生する
損失について考えるために、半導体に流れる電流を説明
する。
Therefore, if the semiconductor stacks 3 and 6 of the converter and the inverter have the same structure, the first and second storage boxes 1A and 1B for storing them and the cooling fans 9A and 9 are stored.
It is advantageous that the first storage box body 1A and the second storage box body 1B have the same structure, with B being the same. Now, in order to consider the loss generated in the converter and inverter circuits having the same capacity, the current flowing through the semiconductor will be described.

【0012】図2をコンバ―タ回路と考えて、1ア―ム
に流れる電流をICON とすると、1サイクル当りの通電
電流は図3の如く表される。(但し、ここでは理解し易
くするためにPWM周波数を極端に低周波として表し
た)
Considering FIG. 2 as a converter circuit, and letting the current flowing through one arm be ICON, the energizing current per cycle is expressed as shown in FIG. (However, in order to make it easier to understand, the PWM frequency is shown as an extremely low frequency here.)

【0013】図3の波形は、正側の電流がダイオ―ド1
05を流れる電流であり、負側の電流がトランジスタ1
01に流れる電流であり、制御量で異るが、通常のコン
バ―タ選定によれば、ダイオ―ド側に流れる電流がトラ
ンジスタに流れる電流より2倍程度大きいことが一般的
である。
In the waveform of FIG. 3, the current on the positive side is diode 1
05, the current on the negative side is the transistor 1
Although it is a current flowing through the transistor 01, which differs depending on the control amount, according to the usual selection of the converter, the current flowing to the diode side is generally about twice as large as the current flowing to the transistor.

【0014】半導体の損失は通電電流と半導体の電圧降
下の積で表されるが、ダイオ―ドの電圧降下は、トラン
ジスタ等のスイッチング素子と比較して低く、例えばス
イッチング素子が定格電流で3v程度の電圧降下に対し
て、ダイオ―ドでは1.5v程度と約1/2である。
The loss of the semiconductor is represented by the product of the current flowing and the voltage drop of the semiconductor. The voltage drop of the diode is lower than that of a switching element such as a transistor. For example, the switching element has a rated current of about 3v. The voltage drop is about 1.5 V, which is about 1/2 of the voltage drop.

【0015】次に、図2をインバ―タ回路と考えて、1
ア―ムに流れる電流をIINV とすると、1サイクル当り
の通電電流はコンバ―タと同様に図3となるが、今度
は、正側の電流がトランジスタ101に流れる電流であ
り、負側の電流がダイオ―ド105に流れる電流とな
り、コンバ―タとは逆になり、制御量と負荷力率で異る
が、通常のインバ―タ選定によれば、今度はトランジス
タ側に流れる電流がダイオ―ド側に流れる電流より2倍
程度大きいことが一般的である。
Next, considering FIG. 2 as an inverter circuit,
Letting IINV be the current flowing through the arm, the conduction current per cycle is as shown in FIG. 3 like the converter, but this time, the positive side current is the current flowing through the transistor 101, and the negative side current. Becomes the current flowing in the diode 105, which is the opposite of the converter, and differs depending on the control amount and the load power factor. However, according to the usual inverter selection, the current flowing to the transistor side is now the diode. It is generally about twice as large as the current flowing to the gate side.

【0016】従って、コンバ―タとインバ―タには同じ
大きさの通電電流を流していることに拘らず、各々の発
生損失は異ることになる。つまり、コンバ―タでは、ダ
イオ―ド側に流る電流が多く、インバ―タではトランジ
スタ側に流れる電流が多くなるため、発生損失もコンバ
―タ側よりもインバ―タ側が2〜4割多くなる。
Therefore, regardless of the fact that the same amount of energizing current is applied to the converter and the inverter, the respective generated losses are different. In other words, the converter has a large amount of current flowing to the diode side, and the inverter has a large amount of current flowing to the transistor side. Therefore, the generated loss is 20 to 40% more on the inverter side than on the converter side. Become.

【0017】[0017]

【発明が解決しようとする課題】さて、このような構成
から成る電力変換装置において、コンバ―タ、インバ―
タの構成と、その冷却方法をまとめると、同一電流定格
のコンバ―タとインバ―タを合せ持つ電力変換装置の構
造としては、コンバ―タ又はインバ―タを構成する部品
はほぼ同じとなるため、そのハ―ド構成も同一となる
が、その冷却設計に関しては、発生損失の大きいインバ
―タに代表されて行われる。つまり、コンバ―タとイン
バ―タを同一構成とし、同一箱体に収納して冷却する場
合、コンバ―タ側の冷却には発生損失がインバ―タより
少ないので余裕のあるものとなまり、そのため電力変換
装置の小形化、設置面積、及び価格の点で不利な結果を
招いている。
Now, in the power converter having such a structure, a converter and an inverter are provided.
Summarizing the configuration of the inverter and the cooling method, the components of the converter or the inverter are almost the same as the structure of the power converter having both the converter and the inverter with the same current rating. Therefore, the hard structure is the same, but the cooling design is typified by an inverter with a large loss generated. In other words, when the converter and the inverter have the same configuration and are stored in the same box for cooling, the cooling on the converter side has less loss than the inverter, so there is a margin. The power converter is disadvantageous in terms of downsizing, footprint, and price.

【0018】本発明の目的は、前述の点に鑑みなされた
ものであり、コンバ―タ及びインバ―タで構成される電
力変換装置において、コンバ―タとインバ―タの構成要
素が同一又は非常に近い構成である場合、コンバ―タと
インバ―タの発生損失の違いを考慮して、コンバ―タと
インバ―タの収納箱内配置を最適にして小形化、省スペ
―ス化を図った電力変換装置を提供することにある。
The object of the present invention has been made in view of the above-mentioned points, and in a power conversion device composed of a converter and an inverter, the components of the converter and the inverter are the same or not. If the configuration is close to the above, considering the difference in the loss generated by the converter and the inverter, the layout of the converter and the inverter in the storage box is optimized to reduce the size and save the space. Another object is to provide a power converter.

【0019】[0019]

【課題を解決するための手段】上記の目的を達成すため
に、本発明の請求項1の電力変換装置は、自励式コンバ
―タの直流を交流に変換する自励式インバ―タから成る
電力変換装置において、前記自励式コンバ―タ及び自励
式インバ―タを同一箱体内に収納し且つ前記収納箱体外
より吸気した冷却風が前記自励式インバ―タを冷却した
後で前記自励式コンバ―タを冷却して前記収納箱体外へ
排出するように共通の冷却ファンで冷却するようにした
ことを特徴とするものである。
In order to achieve the above object, a power converter according to a first aspect of the present invention comprises a self-exciting inverter for converting direct current of a self-exciting converter into alternating current. In the conversion device, the self-exciting converter and the self-exciting inverter are housed in the same box, and the self-exciting converter is cooled by cooling air sucked from the outside of the housing box. -A common cooling fan is used to cool the printer and discharge it to the outside of the storage box.

【0020】又、本発明の請求項2の電力変換装置は、
自励式コンバ―タの直流を交流に変換する自励式インバ
―タから成る電力変換装置において、前記自励式コンバ
―タを構成するコンバ―タ用半導体スタック及び前記自
励式インバ―タを構成するインバ―タ用半導体スタック
にぞれぞれヒ―トシンクを取付け、これらを同一箱体内
に収納し且つ前記収納箱体外より吸気した冷却風が前記
インバ―タ用ヒ―トシンクを冷却した後で前記コンバ―
タ用ヒ―トシンクを冷却して前記収納箱体外へ排出する
ように共通の冷却ファンで冷却するようにしたことを特
徴としたものである。
Further, the power converter of claim 2 of the present invention comprises:
In a power converter comprising a self-excited inverter for converting direct current of a self-excited converter into alternating current, a semiconductor stack for a converter that constitutes the self-excited converter and an inverter that constitutes the self-excited inverter. -A heat sink is attached to each of the semiconductor stacks for data, the heat sinks are housed in the same box, and the cooling air sucked from the outside of the storage box cools the heat sink for the inverter. Convert
It is characterized in that a common cooling fan is used so as to cool the heat sink for data and discharge it to the outside of the storage box.

【0021】又、本発明の請求項3の電力変換装置は、
自励式コンバ―タの直流を交流に変換する自励式インバ
―タから成る電力変換装置において、前記自励式コンバ
―タと前記自励式インバ―タのハ―ド構成を同一とし、
前記自励式コンバ―タを箱体上部に、前記自励式インバ
―タを前記箱体下部に配置し、冷却風を前記箱体の側面
下部より取入れ、前記自励式インバ―タ、自励式コンバ
―タの順に冷却し、前記箱体上部に取付けられた共通の
冷却ファンを通して排気することを特徴としたのであ
る。
The power converter according to claim 3 of the present invention is
In a power converter comprising a self-exciting inverter that converts direct current of a self-exciting converter into alternating current, the self-exciting converter and the self-exciting inverter have the same hard configuration,
The self-exciting converter is arranged in the upper part of the box body, the self-exciting inverter is arranged in the lower part of the box body, and cooling air is taken in from the lower part of the side surface of the box body, the self-exciting inverter and the self-exciting converter. It is characterized in that the air is cooled in the order of the air conditioners and exhausted through a common cooling fan attached to the upper part of the box.

【0022】[0022]

【作用】請求項1、請求項2及び請求項3に係る発明に
おいては、同一電流定格の自励式コンバ―タと自励式イ
ンバ―タを同一箱体に収納し、自励式インバ―タを先に
冷却し、その後で自励式コンバ―タを冷却しても、自励
式コンバ―タの方が自励式インバ―タよりも熱損失が少
ないため、共通の冷却ファンで、その冷却能力を自励式
コンバ―タと自励式インバ―タの総発生損失に合せて必
要且つ最小限の容量で構成することが可能であり、電力
変換装置の小形化、低価格化を図ることができる。
In the inventions according to claims 1, 2 and 3, the self-exciting converter and the self-exciting inverter having the same current rating are housed in the same box, and the self-exciting inverter is first. Even if the self-exciting converter is cooled after cooling to the above, the heat loss of the self-exciting converter is smaller than that of the self-exciting inverter, so that the cooling capacity is self-excited by the common cooling fan. It is possible to configure the converter and the self-excited inverter with the required and minimum capacity in accordance with the total loss generated, and it is possible to reduce the size and cost of the power conversion device.

【0023】[0023]

【実施例】以下本発明の一実施例を図1を参照して説明
する。図1において、従来技術の実施例である図4と異
る点は、コンバ―タとインバ―タを同一箱体に収納し、
コンバ―タ用半導体スタック3の下部にインバ―タ用半
導体スタック6を配置させ、冷却ファン9にて装置下部
に取付けられた吸気孔11より冷却風10を取入れ、イ
ンバ―タ用半導体素子7を冷却するヒ―トシンク8を通
して流すことによってインバ―タ用半導体スタック6を
冷却する。又、コンバ―タ用半導体素子4は、ヒ―トシ
ンク8を通った冷却風10をコンバ―タ用ヒ―トシンク
5を通して流れるようにすることによってコンバ―タ用
半導体スタック3を冷却するように構成した点である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 is different from FIG. 4 which is an embodiment of the prior art in that the converter and the inverter are housed in the same box,
The semiconductor stack 6 for inverter is arranged under the semiconductor stack 3 for converter, and the cooling air 10 is taken in from the intake hole 11 attached to the lower part of the device by the cooling fan 9 to attach the semiconductor element 7 for inverter. The semiconductor stack 6 for inverter is cooled by flowing it through the cooling heat sink 8. Further, the converter semiconductor element 4 is configured to cool the converter semiconductor stack 3 by allowing the cooling air 10 passing through the heat sink 8 to flow through the converter heat sink 5. That is the point.

【0024】上記のように構成することにより、冷却フ
ァン9による冷却風10は吸気孔11より取込み、イン
バ―タ用ヒ―トシンク8を冷却し、更に、コンバ―タ用
ヒ―トシンク5を介して冷却ファン9、排気孔12を通
り、盤外に排出される。このようにインバ―タ用ヒ―ト
シンク8を冷却した冷却風は、暖かくなるが、従来技術
で説明した通り、コンバ―タとインバ―タが同一定格で
動作していても、その発生損失は、通電電流がトランジ
スタ側かダイオ―ド側かに主として流れているかで異
り、つまりコンバ―タがインバ―タに対して発生損失が
少ないため、インバ―タの冷却で暖かくなった冷却風で
冷却してもコンバ―タは十分冷却することが可能とな
る。
With the above-described structure, the cooling air 10 from the cooling fan 9 is taken in through the intake hole 11, cools the heat sink 8 for the inverter, and further passes through the heat sink 5 for the converter. And passes through the cooling fan 9 and the exhaust hole 12 to be discharged to the outside of the panel. In this way, the cooling air that has cooled the heat sink 8 for the inverter becomes warm, but as explained in the prior art, even if the converter and the inverter operate at the same rating, the generated loss is , It depends on whether the energizing current is flowing mainly on the transistor side or the diode side, that is, since the converter produces less loss with respect to the inverter, the cooling air that has been warmed by the cooling of the inverter Even if cooled, the converter can be cooled sufficiently.

【0025】尚、前述実施例では、コンバ―タを上部
へ、インバ―タを下部へ配置し、冷却風を下部全面から
装置上部へ抜ける例で説明したが、本発明の意図するこ
とろは、インバ―タを冷却した冷却風を利用してコンバ
―タを冷却することにある。例えばコンバ―タを下部、
インバ―タを上部として冷却風を上部から下部へ抜ける
構成としも同様な効果が得られ、本発明の意図するとこ
ろには変りない。
In the above embodiment, the converter is arranged in the upper part and the inverter is arranged in the lower part, and the cooling air is discharged from the entire lower part to the upper part of the apparatus. However, the intention of the present invention is not limited to this. The purpose is to cool the converter by using the cooling air that has cooled the inverter. For example, the converter at the bottom,
The same effect can be obtained even if the cooling air is blown from the upper part to the lower part with the invertor as the upper part, which is not intended by the present invention.

【0026】又、前述説明は、コンバ―タとインバ―タ
を冷却するために、コンバ―タ用半導体スタック3及び
インバ―タ用半導体スタック6に、それぞれコンバ―タ
用ヒ―トシンク5及びインバ―タ用ヒ―トシンク8を取
付けた構成としているが、この冷却の構造を特に限定す
るものではない。
Further, in the above description, in order to cool the converter and the inverter, the converter semiconductor stack 3 and the inverter semiconductor stack 6 are respectively provided with the converter heat sink 5 and the inverter. The heat sink 8 for the motor is attached, but the cooling structure is not particularly limited.

【0027】更に、前述の実施例では、コンバ―、イン
バ―の回路構成にトランジスタを用いた場合を説明して
いるが、自励式の変換器であれば同様の効果が得られ、
半導体素子の種類を特に限定するものではない。
Further, in the above-mentioned embodiment, the case where the transistor is used for the circuit configuration of the converter and the inverter is explained, but the same effect can be obtained by the self-excited converter.
The type of semiconductor element is not particularly limited.

【0028】[0028]

【発明の効果】以上説明のように、請求項1、請求項2
及び請求項3の発明によれば、同一電流定格のコンバ―
タとインバ―タを冷却する際に、コンバ―タとインバ―
タの発生損失の違いにより、インバ―タで冷却した冷却
風をコンバ―タの冷却に利用できるように構成したの
で、同一箱体にコンバ―タとインバ―タを収納し、コン
バ―タとインバ―タの冷却ファンを同一のものとするこ
とができ、電力変換装置の小形化、省スペ―ス化、低価
格化を図ることができる。
As described above, claim 1 and claim 2
According to the invention of claim 3 and the converter of the same current rating.
When cooling the converter and the inverter, the converter and the inverter
Due to the difference in the generation loss of the inverter, the cooling air cooled by the inverter can be used for cooling the converter, so that the converter and the inverter are stored in the same box, and The cooling fan of the inverter can be the same, and the power converter can be downsized, the space can be saved, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電力変換装置の一実施例を示す構成図
で、(a)は正面図、(b)は側面図。
FIG. 1 is a configuration diagram showing an embodiment of a power conversion device of the present invention, in which (a) is a front view and (b) is a side view.

【図2】コンバ―タとインバ―タの回路構成図。FIG. 2 is a circuit configuration diagram of a converter and an inverter.

【図3】コンバ―タとインバ―タの各ア―ムに流れる電
流波形図。
FIG. 3 is a waveform diagram of a current flowing through each arm of the converter and the inverter.

【図4】従来の電力変換装置の構成図で、(a)は正面
図、(b)は側面図。
FIG. 4 is a configuration diagram of a conventional power conversion device, in which (a) is a front view and (b) is a side view.

【図5】電力変換装置の接続関係を示すブロック図。FIG. 5 is a block diagram showing a connection relationship of power conversion devices.

【符号の説明】[Explanation of symbols]

1A,1B …収納箱体 2 …電力変換装置 3 …コンバ―タ用半導体スタック 4 …コンバ―タ用半導体素子 5 …コンバ―タ用ヒ―トシンク 6 …インバ―タ用半導体スタック 7 …インバ―タ用半導体素子 8 …インバ―タ用ヒ―トシンク 9,9A,9B …冷却ファン 10 …冷却風 11 …吸気孔 12,12A,12B…排気孔 109 …交流リアクトル 101〜104 …トランジスタ 105〜108 …ダイオ―ド 110 …電解コンデンサ 1A, 1B ... Storage box 2 ... Power converter 3 ... Converter semiconductor stack 4 ... Converter semiconductor element 5 ... Converter heat sink 6 ... Inverter semiconductor stack 7 ... Inverter Semiconductor element 8 ... Inverter heat sink 9, 9A, 9B ... Cooling fan 10 ... Cooling air 11 ... Intake holes 12, 12A, 12B ... Exhaust hole 109 ... AC reactors 101-104 ... Transistors 105-108 ... Dio -Do 110 ... Electrolytic capacitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自励式コンバ―タの直流を交流に変換
する自励式インバ―タから成る電力変換装置において、
前記自励式コンバ―タ及び自励式インバ―タを同一箱体
内に収納し且つ前記収納箱体外より吸気した冷却風が前
記自励式インバ―タを冷却した後で前記自励式コンバ―
タを冷却して前記収納箱体外へ排出するように共通の冷
却ファンで冷却するようにしたことを特徴とする電力変
換装置。
1. A power conversion device comprising a self-excited inverter for converting direct current of a self-excited converter into alternating current,
The self-exciting converter and the self-exciting inverter are housed in the same box body, and the self-exciting converter is cooled after the cooling air sucked from outside the housing box cools the self-exciting inverter.
An electric power conversion device characterized in that a common cooling fan cools the battery and discharges it outside the storage box.
【請求項2】 自励式コンバ―タの直流を交流に変換
する自励式インバ―タから成る電力変換装置において、
前記自励式コンバ―タを構成するコンバ―タ用半導体ス
タック及び前記自励式インバ―タを構成するインバ―タ
用半導体スタックにぞれぞれヒ―トシンクを取付け、こ
れらを同一箱体内に収納し且つ前記収納箱体外より吸気
した冷却風が前記インバ―タ用ヒ―トシンクを冷却した
後で前記コンバ―タ用ヒ―トシンクを冷却して前記収納
箱体外へ排出するように共通の冷却ファンで冷却するよ
うにしたことを特徴とする電力変換装置。
2. A power converter comprising a self-excited inverter for converting direct current of a self-excited converter into alternating current,
A heat sink is attached to each of the semiconductor stack for converters forming the self-exciting converter and the semiconductor stack for inverters forming the self-exciting inverter, and the heat sinks are housed in the same box. In addition, common cooling is performed so that the cooling air sucked from the outside of the storage box cools the heat sink for the inverter and then cools the heat sink for the converter and discharges it to the outside of the storage box. A power conversion device characterized by being cooled by a fan.
【請求項3】 自励式コンバ―タの直流を交流に変換
する自励式インバ―タから成る電力変換装置において、
前記自励式コンバ―タと前記自励式インバ―タのハ―ド
構成を同一とし、前記自励式コンバ―タを箱体上部に、
前記自励式インバ―タを前記箱体下部に配置し、冷却風
を前記箱体の側面下部より取入れ、前記自励式インバ―
タ、自励式コンバ―タの順に冷却し、前記箱体上部に取
付けられた共通の冷却ファンを通して排気することを特
徴とした電力変換装置。
3. A power converter comprising a self-exciting inverter for converting direct current of a self-exciting converter into alternating current,
The hard configuration of the self-exciting converter and the self-exciting inverter are the same, and the self-exciting converter is on the top of the box.
The self-exciting inverter is arranged in the lower part of the box body, and cooling air is taken in from the lower part of the side surface of the box body.
A power conversion device characterized in that a cooling fan and a self-exciting converter are cooled in this order and exhausted through a common cooling fan mounted on the upper part of the box body.
JP5023893A 1993-02-12 1993-02-12 Power converter Pending JPH06245525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5023893A JPH06245525A (en) 1993-02-12 1993-02-12 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5023893A JPH06245525A (en) 1993-02-12 1993-02-12 Power converter

Publications (1)

Publication Number Publication Date
JPH06245525A true JPH06245525A (en) 1994-09-02

Family

ID=12123137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5023893A Pending JPH06245525A (en) 1993-02-12 1993-02-12 Power converter

Country Status (1)

Country Link
JP (1) JPH06245525A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000060669A (en) * 1999-03-18 2000-10-16 이종훈 Arrangement and configuration of heatsinks for cooling power semiconductors
JP2006187083A (en) * 2004-12-27 2006-07-13 Daikin Ind Ltd Inverter device, module for converter, and air conditioner
JP2006262623A (en) * 2005-03-17 2006-09-28 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion unit and power conversion device
KR100629891B1 (en) * 2003-11-27 2006-09-29 산요덴키가부시키가이샤 Air conditioning equipment
CN110352633A (en) * 2017-03-03 2019-10-18 Ls产电株式会社 DC-to-AC converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000060669A (en) * 1999-03-18 2000-10-16 이종훈 Arrangement and configuration of heatsinks for cooling power semiconductors
KR100629891B1 (en) * 2003-11-27 2006-09-29 산요덴키가부시키가이샤 Air conditioning equipment
JP2006187083A (en) * 2004-12-27 2006-07-13 Daikin Ind Ltd Inverter device, module for converter, and air conditioner
JP2006262623A (en) * 2005-03-17 2006-09-28 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion unit and power conversion device
CN110352633A (en) * 2017-03-03 2019-10-18 Ls产电株式会社 DC-to-AC converter
US10798853B2 (en) 2017-03-03 2020-10-06 Lsis Co., Ltd. Inverter device to achieve improved heat dissipation efficiency
CN110352633B (en) * 2017-03-03 2020-11-20 Ls产电株式会社 Inverter device

Similar Documents

Publication Publication Date Title
JP3314256B2 (en) Electric vehicle power converter
JP6886076B2 (en) Power converter
JP2009044920A (en) Power conversion unit
JP5653458B2 (en) Power converter
JP2004087711A (en) Forced air-cooled power conversion apparatus
US7902774B2 (en) Power electronic circuit arrangement for a rotating field machine
JP2000116120A (en) Power converter
JP2002034268A (en) Power converter
JP3729117B2 (en) Power converter
JPH06245525A (en) Power converter
JP2003259657A (en) Power converter
CN210123942U (en) DC-DC converter
JP4296960B2 (en) Power converter
JP6943212B2 (en) Power converter
JP2003259658A (en) Power converter
JP4567405B2 (en) Power converter
JPH11285274A (en) Inverter apparatus
JP2005117783A (en) Stack structure of power converter
JPH0614562A (en) Snubber circuit
US20200335423A1 (en) Semiconductor device
JP4298036B2 (en) DC / DC converter device
JP2006345647A (en) Uninterruptible power supply
JP2001286160A (en) Power converter
JP6970045B2 (en) Power converter
US20230382237A1 (en) Railway-vehicle power conversion apparatus