JP2006345647A - Uninterruptible power supply - Google Patents

Uninterruptible power supply Download PDF

Info

Publication number
JP2006345647A
JP2006345647A JP2005169351A JP2005169351A JP2006345647A JP 2006345647 A JP2006345647 A JP 2006345647A JP 2005169351 A JP2005169351 A JP 2005169351A JP 2005169351 A JP2005169351 A JP 2005169351A JP 2006345647 A JP2006345647 A JP 2006345647A
Authority
JP
Japan
Prior art keywords
converter
power
power supply
operation mode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005169351A
Other languages
Japanese (ja)
Inventor
Makoto Tanitsu
誠 谷津
Mamoru Hieta
守 日永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005169351A priority Critical patent/JP2006345647A/en
Publication of JP2006345647A publication Critical patent/JP2006345647A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an uninterruptible power supply that has less loss and is compact in size, highly efficient, and cost effective. <P>SOLUTION: This invention deals with the uninterruptible power supply that, when an input power source voltage except a power failure fluctuates, adjusts a voltage of a secondary winding of a transformer by the power conversion operation of a first DC-AC converter to stabilize an AC output voltage and applies and receives DC electric power converted by the first DC-AC converter between a second DC-AC converter and an AC bus line as a first operation mode, and during a power failure of an input power source, that converts the DC electric power of an electricity storing means into AC electric power by the second DC-AC converter to supply stable AC electric power to a load as a second operation mode. A switch 10 is connected between an AC terminal of the first DC-AC converter 24 and that of the second DC-AC converter. In a first operation mode where the input power source is sound, the switch 10 is opened. In a second operation mode of the power failure, the switch 10 is closed to operate the first and second DC-AC converters 24, 25 in parallel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、入力商用電源が変動した場合でも負荷に安定した交流電力を供給する無停電電源装置に関し、詳しくは、直列電圧補償式無停電電源装置を小形・低価格化、高効率化するための技術に関する。   The present invention relates to an uninterruptible power supply that supplies stable AC power to a load even when the input commercial power supply fluctuates. More specifically, to reduce the size, cost, and efficiency of a series voltage compensated uninterruptible power supply. Related to technology.

図3は、従来の直列電圧補償式無停電電源装置の回路構成を示す図である。
図3において、交流入力端子uと交流出力端子Uとの間の交流母線31には、サイリスタ式交流スイッチ4とトランス1の二次巻線1bとが直列に接続され、このトランス1の一次巻線1aには、半導体ブリッジ20,21からなる第1のDC/AC変換器24の交流端子がリアクトル9を介して接続されている。なお、7はフィルタコンデンサである。
FIG. 3 is a diagram showing a circuit configuration of a conventional series voltage compensated uninterruptible power supply.
In FIG. 3, a thyristor type AC switch 4 and a secondary winding 1b of a transformer 1 are connected in series to an AC bus 31 between an AC input terminal u and an AC output terminal U. An AC terminal of a first DC / AC converter 24 composed of semiconductor bridges 20 and 21 is connected to the line 1 a via a reactor 9. Reference numeral 7 denotes a filter capacitor.

また、第1のDC/AC変換器24と直流部を共通とする、半導体ブリッジ22,23からなる第2のDC/AC変換器25の交流端子は、リアクトル6を介して交流出力端子U,Vに接続されていると共に、交流出力端子U,Vの間には、フィルタコンデンサ8が接続されている。また、DC/AC変換器24,25の直流部には、電力貯蔵手段としての蓄電池3が接続されている。なお、32は交流入出力端子v,Vの間の交流母線を示す。
ここで、半導体ブリッジ20〜23は、IGBT等の半導体スイッチング素子に還流ダイオードを逆並列接続したものを2個直列に接続して構成されている。
Further, the AC terminal of the second DC / AC converter 25 composed of the semiconductor bridges 22 and 23, which has a direct current unit in common with the first DC / AC converter 24, is connected to the AC output terminals U and U via the reactor 6. In addition to being connected to V, a filter capacitor 8 is connected between the AC output terminals U and V. In addition, a storage battery 3 as a power storage unit is connected to the direct current portions of the DC / AC converters 24 and 25. Reference numeral 32 denotes an AC bus between the AC input / output terminals v and V.
Here, the semiconductor bridges 20 to 23 are configured by connecting in series two semiconductor switching elements such as IGBTs, each having a reverse diode connected in reverse parallel.

上記構成において、交流入力端子u,vに接続される入力電源(商用電源)の電源電圧が停電と判定されない範囲で変動している場合には、第1の運転モードとして、第1のDC/AC変換器24を動作させてトランス1の一次側電圧を制御することにより、その二次側電圧を調節することが可能である。すなわち、入力電源電圧の変動分をトランス1の二次巻線1bの電圧によって直列的に補償することにより、交流出力端子U,Vを介して負荷に安定した電圧を供給することが可能になる。   In the above configuration, when the power supply voltage of the input power supply (commercial power supply) connected to the AC input terminals u and v fluctuates within a range that is not determined as a power failure, the first DC / The secondary voltage can be adjusted by operating the AC converter 24 to control the primary voltage of the transformer 1. That is, by compensating the fluctuation of the input power supply voltage in series with the voltage of the secondary winding 1b of the transformer 1, a stable voltage can be supplied to the load via the AC output terminals U and V. .

ここで、入力電源電圧の変動が電圧低下であれば、その電圧低下を補償するためにトランス1は電圧加算を行う。その状態で交流母線31,32に負荷電流が流れると、第1のDC/AC変換器24からトランス1を介して交流母線31,32側に電力を注入することになる。
その際に必要となるエネルギーは、直流部を共通とした第2のDC/AC変換器25をコンバータ動作(整流器動作)させることで交流母線31,32から供給される。
Here, if the fluctuation of the input power supply voltage is a voltage drop, the transformer 1 performs voltage addition to compensate for the voltage drop. When a load current flows through the AC buses 31 and 32 in this state, power is injected from the first DC / AC converter 24 to the AC buses 31 and 32 via the transformer 1.
The energy required at that time is supplied from the AC buses 31 and 32 by performing the converter operation (rectifier operation) of the second DC / AC converter 25 having a common DC section.

逆に、入力電源電圧の変動が電圧上昇であれば、その電圧上昇を補償するために、トランス1が電圧減算を行う。その状態で交流母線31,32に負荷電流が流れると、トランス1を介して第1のDC/AC変換器24が直流電力を吸収することになる。この直流電力(エネルギー)は、直流部を共通とした第2のDC/AC変換器25をインバータ動作させることで交流母線31,32側に回生される。   On the contrary, if the fluctuation of the input power supply voltage is a voltage increase, the transformer 1 performs voltage subtraction to compensate for the voltage increase. When a load current flows through the AC buses 31 and 32 in this state, the first DC / AC converter 24 absorbs DC power via the transformer 1. This direct current power (energy) is regenerated to the alternating current buses 31 and 32 side by causing the second DC / AC converter 25 having a common direct current section to operate as an inverter.

図4は、入力電源電圧の正常期間、低下期間、上昇期間のそれぞれについて、電源電圧、トランス1の二次側電圧、無停電電源装置の出力電圧を示したものである。
図4から明らかなように、入力電圧の低下期間、上昇期間の何れにおいても、正常期間と同様に一定の電圧を無停電電源装置から出力させることが可能になっている。
FIG. 4 shows the power supply voltage, the secondary voltage of the transformer 1, and the output voltage of the uninterruptible power supply for each of the normal period, the decrease period, and the increase period of the input power supply voltage.
As is clear from FIG. 4, it is possible to output a constant voltage from the uninterruptible power supply device in both the decrease period and the increase period of the input voltage as in the normal period.

なお、入力電源が停電した場合には、第2の運転モードとして、図3におけるサイリスタ式ACスイッチ4を開放して電源を交流母線31,32から切り離し、蓄電池3の直流電力を第2のDC/AC変換器25により交流電力に変換して負荷に安定した電力を供給することができる。
このような直列電圧補償式無停電電源装置の詳細な動作については、特許文献1,2に開示されている。
When the input power supply fails, as a second operation mode, the thyristor AC switch 4 in FIG. The AC / AC converter 25 can convert to AC power and supply stable power to the load.
The detailed operation of such a series voltage compensated uninterruptible power supply is disclosed in Patent Documents 1 and 2.

米国特許第4651265号明細書(FIG.6A等)US Pat. No. 4,651,265 (FIG. 6A, etc.) 特許第3390007号公報(図1等)Japanese Patent No. 3390007 (FIG. 1 etc.)

さて、無停電電源装置では、装置効率の向上と小形・低価格化が大きな課題となっている。
従来技術においては、図3に示す無停電電源装置の定格を100%とした場合、第2のDC/AC変換器25及びリアクトル6の容量は、入力電源が停電した場合のために、装置定格と同じ100%の容量が必要になる。また、第1のDC/AC変換器24及びリアクトル9の容量は、入力電源が停電する前の電圧変動補償範囲を一般的な無停電電源装置に要求されている範囲である15%以上を想定して20%と設定すると、各々装置定格の20%が必要となる。
よって、従来技術では、第1,第2の電力変換器24,25の合計容量として装置定格の120%が必要であり、同様にリアクトル6,9の合計容量も装置定格の120%必要になっている。
Now, in the uninterruptible power supply, improvement of device efficiency and reduction in size and price are major issues.
In the prior art, when the rating of the uninterruptible power supply shown in FIG. 3 is 100%, the capacities of the second DC / AC converter 25 and the reactor 6 are the device ratings for the case where the input power supply fails. The same 100% capacity is required. Moreover, the capacity | capacitance of the 1st DC / AC converter 24 and the reactor 9 assumes 15% or more which is the range requested | required of the general uninterruptible power supply device for the voltage fluctuation compensation range before the input power supply fails. If 20% is set, 20% of the device rating is required.
Therefore, in the prior art, the total capacity of the first and second power converters 24 and 25 requires 120% of the apparatus rating, and similarly, the total capacity of the reactors 6 and 9 also needs 120% of the apparatus rating. ing.

また、従来の無停電電源装置の発生損失のうち、最も多くの時間を占める、入力電源が停電とならない範囲での発生損失は、20%の容量を持つ、DC/AC変換器24とリアクトル9の動作損失と、100%の容量を持ちつつ待機運転状態にある、DC/AC変換器25とリアクトル6の無負荷損失との合計値となる。
ここで、一般的なDC/AC変換器の動作損をその変動容量の3%、無負荷損を0.5%と仮定し、同様にリアクトルの動作損をリアクトルの容量の1%、無負荷損を0.5%と仮定すると共に、サイリスタ式交流スイッチ4やトランス1など、その他の損失を1%とすると、図3に示す無停電電源装置の効率は、
100%−{20%×(3%+1%)+100%×(0.5%+0.5%)+1}≒97.2%となる。
In addition, among the loss generated in the conventional uninterruptible power supply, the loss occurring in the range where the input power source does not become blackout occupies the most time, and the DC / AC converter 24 and the reactor 9 have a capacity of 20%. And the no-load loss of the DC / AC converter 25 and the reactor 6 that are in the standby operation state with a capacity of 100%.
Here, it is assumed that the operating loss of a general DC / AC converter is 3% of its variable capacity and the no-load loss is 0.5%. Similarly, the operating loss of the reactor is 1% of the reactor capacity, no load Assuming that the loss is 0.5% and other losses such as thyristor type AC switch 4 and transformer 1 are 1%, the efficiency of the uninterruptible power supply shown in FIG.
100% − {20% × (3% + 1%) + 100% × (0.5% + 0.5%) + 1} ≈97.2%.

以上述べたように、図3に示した従来技術では装置効率が約97.2%程度であり、その回路構成本来の特性から、一層の高効率化は困難である。
そこで本発明の解決課題は、従来技術よりも更に損失が少なく、しかも小形・高効率・低価格の無停電電源装置を提供することにある。
As described above, in the prior art shown in FIG. 3, the apparatus efficiency is about 97.2%, and it is difficult to further increase the efficiency because of the inherent characteristics of the circuit configuration.
SUMMARY OF THE INVENTION Accordingly, the problem to be solved by the present invention is to provide an uninterruptible power supply device that is smaller, more efficient, and less expensive than the prior art.

上記課題を解決するため、請求項1に記載した発明は、交流入出力端子間の交流母線に二次巻線が直列に接続されたトランスと、このトランスの一次巻線に交流端子が接続された第1のDC/AC変換器と、第1のDC/AC変換器との間で電力を授受するための直流部を共通にし、かつ、交流端子が交流出力端子に接続された第2のDC/AC変換器と、前記直流部に接続された電力貯蔵手段と、を備えた無停電電源装置であって、
停電を除く入力電源電圧の変動時には、第1の運転モードとして、第1のDC/AC変換器の電力変換動作により前記二次巻線の電圧を調整して交流出力電圧を安定化させると共に、第1のDC/AC変換器にて変換される直流電力を第2のDC/AC変換器を介して前記交流母線との間で授受し、入力電源の停電時には、第2の運転モードとして、前記電力貯蔵手段の直流電力を第2のDC/AC変換器により交流電力に変換して負荷に安定した交流電力を供給する無停電電源装置において、
第1のDC/AC変換器の交流端子と第2のDC/AC変換器の交流端子との間に開閉手段を接続し、
入力電源が健全な第1の運転モードでは前記開閉手段を開放し、入力電源が停電した第2の運転モードでは、前記開閉手段を閉じて第1,第2のDC/AC変換器を並列運転させるものである。
In order to solve the above-mentioned problem, the invention described in claim 1 includes a transformer in which a secondary winding is connected in series to an AC bus between AC input and output terminals, and an AC terminal is connected to the primary winding of the transformer. A second direct current section for sharing power between the first DC / AC converter and the first DC / AC converter, and the alternating current terminal is connected to the alternating current output terminal. An uninterruptible power supply comprising a DC / AC converter and power storage means connected to the direct current section,
At the time of fluctuation of the input power supply voltage excluding power failure, as a first operation mode, the voltage of the secondary winding is adjusted by the power conversion operation of the first DC / AC converter to stabilize the AC output voltage, Direct current power converted by the first DC / AC converter is exchanged with the alternating current bus via the second DC / AC converter, and at the time of power failure of the input power source, as a second operation mode, In the uninterruptible power supply that converts the DC power of the power storage means into AC power by a second DC / AC converter and supplies stable AC power to the load,
An opening / closing means is connected between the AC terminal of the first DC / AC converter and the AC terminal of the second DC / AC converter;
In the first operation mode in which the input power is sound, the opening / closing means is opened, and in the second operation mode in which the input power is interrupted, the opening / closing means is closed and the first and second DC / AC converters are operated in parallel. It is something to be made.

本発明によれば、入力電源が停電した第2の運転モードにおいて、開閉手段により第1,第2のDC/AC変換器の交流端子を接続して両者を並列運転し、負荷に電力を供給することで、第2のDC/AC変換器に要求される容量を従来よりも小さくすることができる。これにより、無停電電源装置全体の小形化、低価格化が可能となる。
また、第2のDC/AC変換器の容量を小さくできることで、入力電源の健全時における第2のDC/AC変換器の無負荷損失も小さくなり、無停電電源装置全体の効率も向上する。
According to the present invention, in the second operation mode in which the input power supply is interrupted, the AC terminals of the first and second DC / AC converters are connected by the switching means to operate both in parallel and supply power to the load. By doing so, the capacity required for the second DC / AC converter can be made smaller than in the conventional case. As a result, the entire uninterruptible power supply can be reduced in size and price.
Further, since the capacity of the second DC / AC converter can be reduced, the no-load loss of the second DC / AC converter when the input power supply is healthy is reduced, and the efficiency of the entire uninterruptible power supply is improved.

以下、図に沿って本発明の実施形態を説明する。
図1はこの実施形態の回路構成図であり、図3と同一の構成要素には同一の参照符号を付して説明を省略し、以下では異なる部分を中心に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram of this embodiment. The same components as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, different portions will be mainly described.

図1において、トランス1の一次巻線1aの両端と交流出力端子U,Vとの間(第1,第2のDC/AC変換器24,25の交流端子相互間)には、開閉器10が接続されており、この開閉器10を閉じてDC/AC変換器24,25を並列運転することにより、第1のDC/AC変換器24の出力を第2のDC/AC変換器25の出力と共に交流出力端子U,Vから負荷に供給可能となっている。   In FIG. 1, a switch 10 is provided between both ends of the primary winding 1a of the transformer 1 and the AC output terminals U and V (between the AC terminals of the first and second DC / AC converters 24 and 25). Are connected, and the DC / AC converters 24 and 25 are operated in parallel by closing the switch 10, whereby the output of the first DC / AC converter 24 is changed to that of the second DC / AC converter 25. Along with the output, the load can be supplied from the AC output terminals U and V.

上述した回路構成において、入力電源の健全時であって停電を除く入力電源電圧の変動時には、サイリスタ式交流スイッチ4をオンし、第1の運転モードにより従来と同様の動作を行って出力電圧を安定化させる。その際、開閉器10は開状態となっている。   In the circuit configuration described above, when the input power supply is healthy and the input power supply voltage varies except for a power failure, the thyristor AC switch 4 is turned on and the same operation as in the prior art is performed in the first operation mode to output the output voltage. Stabilize. At that time, the switch 10 is open.

次に、入力電源が停電した第2の運転モードでは、サイリスタ式交流スイッチ4をオフし、かつ開閉器10を閉じて第1,第2のDC/AC変換器24,25を並列運転する。これにより、蓄電池3の直流電力を第1,第2のDC/AC変換器24,25の双方により交流電力に変換し、その和を交流出力端子U,Vから負荷に供給する。このため、電源健全時と同様に安定した交流電力を負荷に供給することができる。   Next, in the second operation mode in which the input power supply has failed, the thyristor type AC switch 4 is turned off, the switch 10 is closed, and the first and second DC / AC converters 24 and 25 are operated in parallel. Thus, the DC power of the storage battery 3 is converted into AC power by both the first and second DC / AC converters 24 and 25, and the sum is supplied from the AC output terminals U and V to the load. For this reason, stable AC power can be supplied to the load in the same manner as when the power supply is healthy.

この時、第2のDC/AC変換器25と第1のDC/AC変換器24との電流分担比率は、おおよそ、各々に接続されているリアクトル6とリアクトル9の容量に比例(インピーダンスに反比例)することになる。従って、第1のDC/AC変換器24と第2のDC/AC変換器25との合計容量を装置定格と同じ100%に設定し、リアクトル9とリアクトル6との合計容量も、同様の比率で装置定格と同じ100%に設定すればよいことになる。   At this time, the current sharing ratio between the second DC / AC converter 25 and the first DC / AC converter 24 is approximately proportional to the capacity of the reactor 6 and the reactor 9 connected to each of them (inversely proportional to the impedance). ). Therefore, the total capacity of the first DC / AC converter 24 and the second DC / AC converter 25 is set to 100%, which is the same as the device rating, and the total capacity of the reactor 9 and the reactor 6 is the same ratio. Therefore, it may be set to 100% which is the same as the device rating.

この時の各電流及び容量の関係の一例を、図2に示す。図2に示すように、入力電源30の停電時に開閉器10を閉じて第1,第2のDC/AC変換器24,25を並列運転することにより、例えば装置定格の80%の容量を有する第2のDC/AC変換器25及びリアクトル6側から装置定格の80%の電流が負荷40に供給され、装置定格の不足分である20%の電流が、装置定格の20%の容量を有する第1のDC/AC変換器24及びリアクトル9側から供給されることになる。   An example of the relationship between each current and capacity at this time is shown in FIG. As shown in FIG. 2, by closing the switch 10 and operating the first and second DC / AC converters 24 and 25 in parallel at the time of a power failure of the input power supply 30, the capacity is, for example, 80% of the device rating. A current of 80% of the device rating is supplied to the load 40 from the second DC / AC converter 25 and the reactor 6 side, and a current of 20%, which is a shortage of the device rating, has a capacity of 20% of the device rating. It is supplied from the first DC / AC converter 24 and the reactor 9 side.

従来の装置では、入力電源が停電とならない通常範囲での電圧補償範囲を15%とし、余裕をもって第1のDC/AC変換器24及びリアクトル9の容量をそれぞれ装置定格の20%に設定した場合、DC/AC変換器24,25の合計容量、及びリアクトル6,9の合計容量が各々120%必要であったのに対し、本実施形態によれば何れも100%で足りることになり、装置全体としての小形化、低価格化が可能となる。   In the conventional device, the voltage compensation range in the normal range where the input power supply does not cause a power failure is 15%, and the capacity of the first DC / AC converter 24 and the reactor 9 is set to 20% of the device rating with a margin. , The total capacity of the DC / AC converters 24 and 25 and the total capacity of the reactors 6 and 9 are 120%, respectively, but according to the present embodiment, 100% is sufficient for both. As a whole, downsizing and price reduction are possible.

また、本実施形態では、前述したように第1のDC/AC変換器24及びリアクトル9の容量を各々装置定格の20%に設定した場合、第2のDC/AC変換器25とリアクトル6は各々装置定格の80%となり、従来では各々100%必要であった場合に比べて第2のDC/AC変換器25及びリアクトル6の小形化、低価格化を図ることができる。   In the present embodiment, as described above, when the capacities of the first DC / AC converter 24 and the reactor 9 are set to 20% of the device rating, the second DC / AC converter 25 and the reactor 6 are Each of them is 80% of the device rating, and the second DC / AC converter 25 and the reactor 6 can be reduced in size and cost compared to the case where 100% of each is conventionally required.

ここで、一般的な、DC/AC変換器の動作損をその変換器容量の3%、無負荷損を0.5%と仮定し、同様にリアクトルの動作損をリアクトル容量の1%、無負荷損を0.5%とし、更に、サイリスタ式交流スイッチ4やトランス1等のその他の損失を1%とすると、本実施形態に係る無停電電源装置の効率は、
100%−{20%×(3%+1%)+80%×(0.5%+0.5%)+1}=97.4%となり、図3に示した従来技術よりも高効率化が可能となる。
Here, it is assumed that the operation loss of a general DC / AC converter is 3% of the converter capacity and the no-load loss is 0.5%. Similarly, the operation loss of the reactor is 1% of the reactor capacity and no load loss. When the load loss is 0.5% and the other losses of the thyristor AC switch 4 and the transformer 1 are 1%, the efficiency of the uninterruptible power supply according to this embodiment is
100% − {20% × (3% + 1%) + 80% × (0.5% + 0.5%) + 1} = 97.4%, which can be more efficient than the prior art shown in FIG. Become.

なお、上記実施形態では、図1に示したように単相の装置につき説明したが、本発明は三相など多相の無停電電源装置においても同様の効果が得られることが明らかである。   In the above embodiment, the single-phase device has been described as shown in FIG. 1, but it is apparent that the present invention can achieve the same effect even in a multi-phase uninterruptible power supply such as a three-phase.

本発明の実施形態を示す回路構成図である。It is a circuit block diagram which shows embodiment of this invention. 本発明の実施形態における各部容量と電流分担の関係を示す図である。It is a figure which shows the relationship between each part capacity | capacitance and electric current sharing in embodiment of this invention. 従来の直列電圧補償式無停電電源装置の回路構成図である。It is a circuit block diagram of the conventional series voltage compensation type | formula uninterruptible power supply. 図3の動作を示す波形図である。It is a wave form diagram which shows the operation | movement of FIG.

符号の説明Explanation of symbols

1:トランス
1a:一次巻線
1b:二次巻線
3:蓄電池
4:サイリスタ式交流スイッチ
6,9:リアクトル
7,8:フィルタコンデンサ
10:開閉器
20,21,22,23:半導体ブリッジ
24,25:DC/AC変換器
30:入力商用電源
31,32:交流母線
40:負荷
u,v:交流入力端子
U,V:交流出力端子
1: Transformer 1a: Primary winding 1b: Secondary winding
3: Storage battery 4: Thyristor type AC switch 6, 9: Reactor 7, 8: Filter capacitor 10: Switch 20, 21, 22, 23: Semiconductor bridge 24, 25: DC / AC converter 30: Input commercial power supply 31, 32: AC bus 40: Load u, v: AC input terminal U, V: AC output terminal

Claims (1)

交流入出力端子間の交流母線に二次巻線が直列に接続されたトランスと、このトランスの一次巻線に交流端子が接続された第1のDC/AC変換器と、第1のDC/AC変換器との間で電力を授受するための直流部を共通にし、かつ、交流端子が交流出力端子に接続された第2のDC/AC変換器と、前記直流部に接続された電力貯蔵手段と、を備えた無停電電源装置であって、
停電を除く入力電源電圧の変動時には、第1の運転モードとして、第1のDC/AC変換器の電力変換動作により前記二次巻線の電圧を調整して交流出力電圧を安定化させると共に、第1のDC/AC変換器にて変換される直流電力を第2のDC/AC変換器を介して前記交流母線との間で授受し、入力電源の停電時には、第2の運転モードとして、前記電力貯蔵手段の直流電力を第2のDC/AC変換器により交流電力に変換して負荷に安定した交流電力を供給する無停電電源装置において、
第1のDC/AC変換器の交流端子と第2のDC/AC変換器の交流端子との間に開閉手段を接続し、
入力電源が健全な第1の運転モードでは前記開閉手段を開放し、入力電源が停電した第2の運転モードでは、前記開閉手段を閉じて第1,第2のDC/AC変換器を並列運転させることを特徴とした無停電電源装置。
A transformer having a secondary winding connected in series to an AC bus between the AC input / output terminals, a first DC / AC converter having an AC terminal connected to the primary winding of the transformer, and a first DC / A second DC / AC converter in which a DC unit for transmitting and receiving power to and from the AC converter is shared and an AC terminal is connected to an AC output terminal, and an electric power storage connected to the DC unit An uninterruptible power supply comprising:
At the time of fluctuation of the input power supply voltage excluding power failure, as a first operation mode, the voltage of the secondary winding is adjusted by the power conversion operation of the first DC / AC converter to stabilize the AC output voltage, Direct current power converted by the first DC / AC converter is exchanged with the alternating current bus via the second DC / AC converter, and at the time of power failure of the input power source, as a second operation mode, In the uninterruptible power supply that converts the DC power of the power storage means into AC power by a second DC / AC converter and supplies stable AC power to the load,
An opening / closing means is connected between the AC terminal of the first DC / AC converter and the AC terminal of the second DC / AC converter;
In the first operation mode in which the input power is sound, the opening / closing means is opened, and in the second operation mode in which the input power is interrupted, the opening / closing means is closed and the first and second DC / AC converters are operated in parallel. An uninterruptible power supply that is characterized by
JP2005169351A 2005-06-09 2005-06-09 Uninterruptible power supply Withdrawn JP2006345647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169351A JP2006345647A (en) 2005-06-09 2005-06-09 Uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169351A JP2006345647A (en) 2005-06-09 2005-06-09 Uninterruptible power supply

Publications (1)

Publication Number Publication Date
JP2006345647A true JP2006345647A (en) 2006-12-21

Family

ID=37642157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169351A Withdrawn JP2006345647A (en) 2005-06-09 2005-06-09 Uninterruptible power supply

Country Status (1)

Country Link
JP (1) JP2006345647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
CN108988332A (en) * 2018-08-02 2018-12-11 四川航电微能源有限公司 A kind of double-bus power supply apparatus for fast switching and its control method
CN113193581A (en) * 2021-05-17 2021-07-30 广州智光储能科技有限公司 Energy storage system grid-connected device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
CN108988332A (en) * 2018-08-02 2018-12-11 四川航电微能源有限公司 A kind of double-bus power supply apparatus for fast switching and its control method
CN113193581A (en) * 2021-05-17 2021-07-30 广州智光储能科技有限公司 Energy storage system grid-connected device

Similar Documents

Publication Publication Date Title
RU2473159C1 (en) Electric capacity converter
JP5248611B2 (en) Power converter
JP4882266B2 (en) AC-AC converter
US7514817B2 (en) Converting device with power factor correcting and dc/dc converting functions
RU2517207C2 (en) Method for output signals control of uninterrupted power supply system
JP5347362B2 (en) Emergency power circuit
US7710087B2 (en) Power converter and power converting method
JPH11178216A (en) Uninterruptible power unit
JP2006345647A (en) Uninterruptible power supply
JP2008283729A (en) Uninterruptible power supply unit
JP3674283B2 (en) Insulated power converter
WO2013031934A1 (en) Interconnected power system
JP4351008B2 (en) Uninterruptible power system
JP4389387B2 (en) Uninterruptible power system
KR101343953B1 (en) Double conversion uninterruptible power supply of eliminated battery discharger
JP5171852B2 (en) Power converter
Ashrafi et al. Novel reduced parts one-line uninterruptible power supply
JP4138497B2 (en) Power factor improvement method for power supply system, power supply system, switching power supply device and uninterruptible power supply device
JPH11103540A (en) Uninterruptive power source system
JP2005229666A (en) Uninterruptible power source apparatus
JP2003116233A (en) Uninterruptible power supply unit
JPH0759360A (en) Uninterruptive power unit
JPH0962388A (en) Self-exciting type reactive power compensation device
JP5501996B2 (en) Ripple voltage suppression device and power conversion device
JP2020150703A (en) Power supply device and medical care system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902