JPH06244493A - Distributed feedback type semiconductor laser and its manufacture - Google Patents

Distributed feedback type semiconductor laser and its manufacture

Info

Publication number
JPH06244493A
JPH06244493A JP2796893A JP2796893A JPH06244493A JP H06244493 A JPH06244493 A JP H06244493A JP 2796893 A JP2796893 A JP 2796893A JP 2796893 A JP2796893 A JP 2796893A JP H06244493 A JPH06244493 A JP H06244493A
Authority
JP
Japan
Prior art keywords
diffraction grating
layer
semiconductor laser
active
distributed feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2796893A
Other languages
Japanese (ja)
Inventor
Takashi Kato
隆志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2796893A priority Critical patent/JPH06244493A/en
Publication of JPH06244493A publication Critical patent/JPH06244493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a structure for decreasing non-radiative recombination at the interface between a diffraction grating and a luminous layer, and preventing joining efficiency with an optical fiber from deteriorating, and to provide its manufacturing method. CONSTITUTION:An active layer 1 for obtaining laser oscillation has a multilayer structure composed of a diffraction grating waveguide region 1a whose luminous layer is cut periodically by a built-in diffraction grating 3, and active regions 16 containing individual luminous layers provided on the upside and underside of this diffraction grating waveguide regions 1a. Especially, each of the diffraction grating waveguide region 1a and the active regions 1b has quantum well structure by the lamination of more than one well layer 6 to be a luminous layer, or lamination structure having more than one luminous layer composed of a plurality of double heterojunctions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光通信、光情報処理
(光集積回路)等の分野で光源として用いられる半導体
レーザに関し、特に分布帰還型半導体レーザの構造及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source in the fields of optical communication, optical information processing (optical integrated circuit), etc., and more particularly to a structure of a distributed feedback semiconductor laser and a manufacturing method thereof. .

【0002】[0002]

【従来の技術】従来の分布帰還型半導体レーザは、その
レーザ光の出射方向に対して屈折率を周期的に変化させ
た回折格子を形成し、光を分布的に帰還させて発振を得
る屈折率結合型と、レーザ光の出射方向に対して利得あ
るいは損失を周期的に変化させた回折格子により分布帰
還を行なう利得結合型が提案されている。なお、この分
布帰還型半導体レーザは活性層より出た光が、活性層の
上側あるいは下側に位置する回折格子により、発振縦モ
ードが単色性よく選択されるレーザである。
2. Description of the Related Art A conventional distributed feedback semiconductor laser is a refraction device that forms a diffraction grating whose refractive index is periodically changed with respect to the emission direction of the laser light and returns the light in a distributed manner to obtain oscillation. A rate-coupling type and a gain-coupling type in which distributed feedback is performed by a diffraction grating whose gain or loss is periodically changed in the emission direction of laser light have been proposed. Note that this distributed feedback semiconductor laser is a laser in which light emitted from the active layer is selected in the oscillation longitudinal mode with good monochromaticity by a diffraction grating located above or below the active layer.

【0003】ここで、上述した分布帰還型半導体レーザ
のうち屈折率結合型は図3に示すように、発光層となる
活性層1をクラッド層2で挟み込み、さらに上部と下部
に電極4a、4bを取り付けて構成されている。
Among the distributed feedback semiconductor lasers described above, as shown in FIG. 3, the refractive index coupled type has an active layer 1 serving as a light emitting layer sandwiched between clad layers 2 and electrodes 4a and 4b on the upper and lower sides. It is configured by attaching.

【0004】特に、活性層1の上側に形成される回折格
子3(下側に形成されてもよい)は、活性層1で発生し
たレーザ光の出射方向に対して周期的に凹凸を形成した
クラッド層2bと、その上に形成した屈折率の異なるク
ラッド層2aとの界面部分をいい、周期的に屈折率が変
化する構造である。
In particular, the diffraction grating 3 formed on the upper side of the active layer 1 (may be formed on the lower side) has irregularities periodically formed in the emitting direction of the laser light generated in the active layer 1. It refers to the interface between the clad layer 2b and the clad layer 2a formed on the clad layer 2b having a different refractive index, and has a structure in which the refractive index changes periodically.

【0005】上述した屈折率結合型の分布帰還型半導体
レーザの特徴は、原理的に二つの縦モードで発振すると
ころにある。したがって、単一の縦モードを得るために
はさらに発振波長の1/4周期の凹凸を当該半導体レー
ザ中央部に形成するか、あるいは当該半導体レーザ端面
の反射率を前面と後面で変える必要があるが、1/4周
期の凹凸を形成することは技術的に難しく、また当該半
導体レーザの両端面の反射率を変える方法では、端面で
の凹凸の位相に単一縦モードの良否が左右され、その位
相を制御することが困難なために高い単一縦モード性を
持つ半導体レーザが得られる割合が小さいという問題が
あった。
The above-mentioned characteristic of the refractive index coupling type distributed feedback semiconductor laser is that it oscillates in two longitudinal modes in principle. Therefore, in order to obtain a single longitudinal mode, it is necessary to further form irregularities having a quarter period of the oscillation wavelength in the central portion of the semiconductor laser or to change the reflectance of the end face of the semiconductor laser between the front surface and the rear surface. However, it is technically difficult to form unevenness of 1/4 cycle, and in the method of changing the reflectance of both end faces of the semiconductor laser, the quality of the single longitudinal mode depends on the phase of the unevenness at the end face, Since it is difficult to control the phase, there is a problem that a ratio of a semiconductor laser having a high single longitudinal mode property is small.

【0006】一方、利得結合型の分布帰還型半導体レー
ザの特徴は、レーザ光の出射方向に対して利得あるいは
損失を周期的に変化させることにより単一縦モードの発
振が得られるところにあり、原理的に単一縦モードで発
振するため、上述した屈折率結合型のように、1/4周
期の凹凸を当該半導体レーザ中央に形成したり両端面の
反射率を変えなければならないという問題がない。
On the other hand, a characteristic of the gain-coupled distributed feedback semiconductor laser is that single longitudinal mode oscillation can be obtained by periodically changing the gain or loss with respect to the emission direction of the laser light. Since the laser oscillates in a single longitudinal mode in principle, there is a problem that, as in the above-described refractive index coupling type, it is necessary to form unevenness of 1/4 period in the center of the semiconductor laser or change the reflectance of both end surfaces. Absent.

【0007】この利得結合型の分布帰還型半導体レーザ
の第1の従来例としては、例えばW.T.Tsang,etc."1.5μ
m wavelength InGaAs/InGaAsP distributed feedback m
ulti-quantumwell laser grown by chemical beam epit
axy"(Applied Physics Letters,1991,vol.59,No.19,pp.
2375-2377)に、損失を周期的に変化させ、良好な単一縦
モードを得た例が示されている。この報告では、多重量
子井戸構造を有する光導波層中に回折格子を形成するこ
とにより、レーザ光の出射方向に対して吸収率、すなわ
ち損失を変化させるように構成されている。
As a first conventional example of the gain coupling type distributed feedback semiconductor laser, for example, WTTsang, etc.
m wavelength InGaAs / InGaAsP distributed feedback m
ulti-quantum well laser grown by chemical beam epit
axy "(Applied Physics Letters, 1991, vol.59, No. 19, pp.
2375-2377), an example in which a good single longitudinal mode is obtained by periodically changing the loss is shown. In this report, by forming a diffraction grating in an optical waveguide layer having a multiple quantum well structure, it is configured to change the absorptance, that is, the loss, in the emission direction of laser light.

【0008】この構成によると、その損失の割合を光導
波層の多重量子井戸構造を変えることにより容易に調節
できるので、光と回折格子の結合の割合も最適となるよ
うに容易に選ぶことができる。
According to this structure, since the loss ratio can be easily adjusted by changing the multiple quantum well structure of the optical waveguide layer, it is possible to easily select the optimum ratio of the coupling between the light and the diffraction grating. it can.

【0009】また、利得を周期的に変化させる技術とし
ては、例えば図4(a)に示すように、活性層1とクラ
ッド層2との界面に回折格子3を作り込み、周期的な構
造を形成する技術(第2の従来例)、すなわち、東敏
生、その他" 周期的利得と屈折率をもつDFBレーザの
解析"(電子情報通信学会論文,OQE91-31,pp.79-84) に示
された技術であって、例えば図4(b)に示すように、
活性層1に量子細線5を形成する技術(第3の従来
例)、あるいは特開平4−165686号公報に示され
た技術であって、例えば図4(c)に示すように、多重
量子井戸構造の活性層1(図中6は、発光層となる井戸
層である)とクラッド層2との界面に回折格子を作り込
んだ技術が提案されている。
As a technique for periodically changing the gain, for example, as shown in FIG. 4A, a diffraction grating 3 is formed at the interface between the active layer 1 and the cladding layer 2 to form a periodic structure. Forming technology (second conventional example), namely Toshio Higashi and others "Analysis of DFB laser with periodic gain and refractive index" (IEICE Thesis, OQE91-31, pp.79-84) This is a technology that has been adopted, and for example, as shown in FIG.
A technique for forming the quantum wires 5 in the active layer 1 (third conventional example) or a technique disclosed in Japanese Patent Laid-Open No. 4-165686, for example, as shown in FIG. A technique has been proposed in which a diffraction grating is formed at the interface between the active layer 1 (6 in the figure is a well layer that becomes a light emitting layer) and the cladding layer 2 of the structure.

【0010】[0010]

【発明が解決しようとする課題】従来の分布帰還型半導
体レーザは、例えば第1の従来例(図4(a))の場
合、図5に示すように、回折格子3が活性層1とクラッ
ド層2との界面に形成されるため(図中、太線で示
す)、この界面で非発光再結合が増大することにより、
しきい値電流が高くなったり、発光効率が悪くなるた
め、実用化が難しいという課題があった。
In the conventional distributed feedback semiconductor laser, for example, in the case of the first conventional example (FIG. 4A), as shown in FIG. 5, the diffraction grating 3 has an active layer 1 and a cladding. Since it is formed at the interface with the layer 2 (indicated by a thick line in the figure), non-radiative recombination is increased at this interface.
There is a problem that it is difficult to put into practical use because the threshold current becomes high and the luminous efficiency becomes poor.

【0011】また、屈折率結合型及び利得結合型のいず
れについても、従来の分布帰還型半導体レーザは、活性
層の上側及び下側のいずれか一方に回折格子を形成して
いたため、レーザ光出射方向に対して垂直方向の屈折率
分布が活性層を中心として非対称となっているので、遠
視野像も非対称になり、光ファイバとの結合効率が劣化
するという課題があった。
In both the refractive index coupling type and the gain coupling type, the conventional distributed feedback type semiconductor laser has a diffraction grating formed on either the upper side or the lower side of the active layer, so that the laser light is emitted. Since the refractive index distribution in the direction perpendicular to the direction is asymmetrical about the active layer, the far-field pattern is also asymmetrical, and there is a problem that the coupling efficiency with the optical fiber deteriorates.

【0012】この発明は上記のような課題を解決するた
めになされたもので、回折格子と発光層との界面での非
発光再結合を減少させるとともに、光ファイバとの結合
効率が劣化するのを防止する分布帰還型半導体レーザの
構造及びその製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and reduces non-radiative recombination at the interface between the diffraction grating and the light emitting layer, and also deteriorates the coupling efficiency with the optical fiber. It is an object of the present invention to provide a structure of a distributed feedback semiconductor laser that prevents the occurrence of the above and a manufacturing method thereof.

【0013】[0013]

【課題を解決するための手段】この発明に係る分布帰還
型半導体レーザは、レーザ発振を得る活性層を、作り込
まれた回折格子により周期的に発光層が切断された回折
格子導波路領域と、この回折格子導波路領域の上側及び
下側に、それぞれ発光層を含む活性領域を設けた多層構
造としたことを特徴としている。
In a distributed feedback semiconductor laser according to the present invention, an active layer for obtaining laser oscillation is provided with a diffraction grating waveguide region in which a light emitting layer is periodically cut by a built-in diffraction grating. The multi-layer structure is characterized in that active regions including a light emitting layer are provided on the upper side and the lower side of the diffraction grating waveguide region.

【0014】特に、上記回折格子導波路領域及び各活性
領域は、発光層となる井戸層を1層以上積層した量子井
戸構造か、あるいは複数のダブルヘテロ接合部より構成
した1層以上の発光層を有する積層構造であることを特
徴としているが、各活性層は単層で構成してもよい。
In particular, the diffraction grating waveguide region and each active region have a quantum well structure in which one or more well layers to be light emitting layers are laminated, or one or more light emitting layers composed of a plurality of double heterojunctions. However, each active layer may be composed of a single layer.

【0015】また、活性層における回折格子導波路領域
及び各活性領域は、上記量子井戸構造とダブルへテロ接
合部を構成した積層構造とを組み合わせてもよく、その
際には、量子井戸構造で得られるレーザ発振波長とダブ
ルへテロ接合部を構成した積層構造で得られるレーザ発
振波長とが略同一になるように構成する。
Further, the diffraction grating waveguide region and each active region in the active layer may be a combination of the above quantum well structure and a laminated structure forming a double heterojunction portion, in which case the quantum well structure is used. The obtained laser oscillation wavelength and the laser oscillation wavelength obtained in the laminated structure having the double hetero junction are configured to be substantially the same.

【0016】この発明に係る分布帰還型半導体レーザの
製造方法としては、第1の工程において、半導体基板上
に形成したクラッド層上に、量子井戸構造、あるいはダ
ブルヘテロ接合部を構成した積層構造の活性領域を形成
し、第2の工程において、上記活性領域上にさらに形成
した量子井戸構造、あるいはダブルヘテロ接合部を構成
した積層構造を有する層表面に、干渉露光法により回折
格子を作り込み、この回折格子部分を発振レーザ光のエ
ネルギーより大きいバンドギャップエネルギーをもつ半
導体材料で埋め込んで回折格子導波路領域を形成し、第
3の工程において、上記回折格子導波路領域上に、量子
井戸構造、あるいはダブルヘテロ接合部で構成した積層
構造の活性領域を形成し、さらに該活性領域部上にクラ
ッド層を形成して製造することを特徴としている。
As a method of manufacturing a distributed feedback semiconductor laser according to the present invention, in the first step, a quantum well structure or a laminated structure in which a double hetero junction is formed on a clad layer formed on a semiconductor substrate. An active region is formed, and in a second step, a diffraction grating is formed by an interference exposure method on a layer surface having a quantum well structure further formed on the active region or a laminated structure forming a double heterojunction portion, This diffraction grating portion is embedded with a semiconductor material having a bandgap energy larger than that of the oscillation laser light to form a diffraction grating waveguide region, and in the third step, a quantum well structure is formed on the diffraction grating waveguide region. Alternatively, an active region having a laminated structure composed of a double heterojunction is formed, and a clad layer is further formed on the active region. It is characterized in that granulation.

【0017】[0017]

【作用】この発明における分布帰還型半導体レーザは、
回折格子が作り込まれた回折格子導波路領域を、発光層
となる井戸層を1層以上積層した量子井戸構造か、ある
いは複数のダブルヘテロ接合部より構成した1層以上の
発光層を有する積層構造としたので、回折格子により切
断される非発光再結合が生じる発光層と回折格子との界
面は、この発光層が回折格子により切断された断面のみ
となる。したがって、従来と比較して発光層と回折格子
との界面部分が著しく減少し、界面における非発光再結
合が飛躍的に減少する。
The distributed feedback semiconductor laser according to the present invention is
A diffraction grating waveguide region having a built-in diffraction grating has a quantum well structure in which one or more well layers to be a light emitting layer are stacked, or a stack having one or more light emitting layers composed of a plurality of double hetero junctions. Since the structure is adopted, the interface between the light emitting layer and the diffraction grating, in which non-radiative recombination that is cut by the diffraction grating occurs, is only the cross section of the light emitting layer cut by the diffraction grating. Therefore, the interface between the light emitting layer and the diffraction grating is significantly reduced as compared with the conventional one, and non-radiative recombination at the interface is dramatically reduced.

【0018】また、活性層を回折格子導波路領域の上側
及び下側に活性領域を設けた積層構造としたので、レー
ザ出射方向に対する垂直方向の屈折率分布を略対称にで
き、これにより出力端面における光強度分布を活性層を
中心に略対称にできるので、対称性のよい遠視野像が得
られる。
Further, since the active layer has a laminated structure in which the active regions are provided on the upper side and the lower side of the diffraction grating waveguide region, the refractive index distribution in the direction perpendicular to the laser emission direction can be made substantially symmetrical, whereby the output end face is formed. Since the light intensity distribution can be made substantially symmetrical with respect to the active layer, a far field image with good symmetry can be obtained.

【0019】[0019]

【実施例】以下、この発明の一実施例を図1及び図2を
用いて説明する。なお、図中同一部分には同一符号を付
して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. In the figure, the same parts are designated by the same reference numerals and the description thereof will be omitted.

【0020】図1は、この発明に係る分布帰還型半導体
レーザの代表的な実施例の構造を示した図であり、以
下、図1(a)に示した実施例を製造する場合を、各製
造工程に沿って説明する。
FIG. 1 is a diagram showing the structure of a typical embodiment of the distributed feedback semiconductor laser according to the present invention. Hereinafter, the case of manufacturing the embodiment shown in FIG. A description will be given along the manufacturing process.

【0021】まず、第1の工程において、半導体基板上
に形成したクラッド層2上に、ガイド層1cを介して活
性領域1bを形成するが、特に、図1(a)では、活性
領域1bは、それぞれバリア層(発振レーザ光のエネル
ギーより大きいバンドギャップエネルギーを有する半導
体層)を介して発光層6を1層以上積層した量子井戸構
造を採用した実施例の構造を示している。
First, in the first step, the active region 1b is formed on the cladding layer 2 formed on the semiconductor substrate via the guide layer 1c. Particularly, in FIG. 1A, the active region 1b is formed. 3 shows the structure of an example in which a quantum well structure in which one or more light emitting layers 6 are stacked via barrier layers (semiconductor layers having a bandgap energy larger than the energy of oscillation laser light) is used.

【0022】なお、図1(b)は活性層領域1bの発光
層として積層構造を採用した実施例であり、また図1
(c)は活性領域1bとして,同様の量子井戸構造を採
用した実施例である。
FIG. 1B shows an embodiment in which a laminated structure is adopted as the light emitting layer of the active layer region 1b.
(C) is an example in which a similar quantum well structure is adopted as the active region 1b.

【0023】次に、第2の工程では、以上のように形成
された量子井戸構造の活性領域1b上に、バリア層を介
して回折格子導波路領域1aを形成する。この回折格子
導波路領域は、まずそれぞれバリア層を介して発光層6
を1層以上積層した量子井戸構造を形成し、さらにこの
層表面を干渉露光法によりエッチングすることで回折格
子を作り込んだ後、バリア層で表面を平坦にする。
Next, in the second step, the diffraction grating waveguide region 1a is formed on the active region 1b of the quantum well structure formed as described above via the barrier layer. In the diffraction grating waveguide region, first, the light emitting layer 6 is formed through the respective barrier layers.
A quantum well structure in which one or more layers are laminated is formed, and the surface of this layer is etched by an interference exposure method to form a diffraction grating, and then the surface is flattened by a barrier layer.

【0024】このとき、発光層6と回折格子3との界面
部分は、図2に示すように回折格子3により切断された
断面(図中A1、A2、A3、A4)のみとなるので、
従来の界面部分(図5において太線で示される部分)に
比べ、飛躍的に減少させることができる。
At this time, since the interface portion between the light emitting layer 6 and the diffraction grating 3 is only the cross section (A1, A2, A3, A4 in the figure) cut by the diffraction grating 3 as shown in FIG.
Compared with the conventional interface part (the part shown by the thick line in FIG. 5), it can be dramatically reduced.

【0025】なお、図1(b)は回折格子導波路領域1
aに複数のダブルヘテロ接合部より構成した1層以上の
発光層を有する積層構造を採用した実施例であり、また
図1(c)は回折格子導波路領域1aとして,同様の量
子井戸構造を採用した実施例であり、異なる構造を活性
層1に作り込む場合は、特に得られるレーザ発振波長が
ほぼ等しくなるように層数、層厚、構成元素の組み合わ
せ、あるいは構成元素の組成比を変更する必要がある。
FIG. 1B shows the diffraction grating waveguide region 1
This is an example in which a laminated structure having one or more light emitting layers composed of a plurality of double heterojunction portions is adopted in a, and FIG. 1C shows a similar quantum well structure as the diffraction grating waveguide region 1a. This is an example adopted, and when different structures are formed in the active layer 1, the number of layers, the layer thickness, the combination of constituent elements, or the composition ratio of constituent elements is changed so that the obtained laser oscillation wavelengths are substantially equal. There is a need to.

【0026】第3の工程では、レーザ光出射方向に対し
て垂直方向に屈折率が略対称になるように、以上の工程
を逆に行っている。すなわち、以上のように形成した回
折格子導波路領域1a上に、量子井戸構造の活性領域1
bを形成し、さらにガイド層1cを介して活性層1上に
クラッド層2を形成する。
In the third step, the above steps are reversed so that the refractive index becomes substantially symmetrical in the direction perpendicular to the laser light emitting direction. That is, the active region 1 of the quantum well structure is formed on the diffraction grating waveguide region 1a formed as described above.
Then, the cladding layer 2 is formed on the active layer 1 via the guide layer 1c.

【0027】なお、図1(b)は回折格子導波路領域1
a上に活性領域1bとして複数のダブルヘテロ接合部よ
り構成した1層以上の発光層を有する積層構造を採用し
た実施例であり、また図1(c)は回折格子導波路領域
1a上に活性領域1bとして、同様の量子井戸構造を採
用した実施例であり、以上の構成により、レーザ光発振
方向に対して垂直方向の屈折率分布を回折格子導波路領
域1aを中心として略対称にすることができ、出射端面
にいける出力光強度分布を対称に補正することが可能と
なる。
FIG. 1B shows the diffraction grating waveguide region 1
This is an example in which a laminated structure having one or more light emitting layers formed of a plurality of double heterojunction portions is adopted as an active region 1b on a, and FIG. 1C shows an active region on the diffraction grating waveguide region 1a. This is an example in which a similar quantum well structure is adopted as the region 1b. With the above configuration, the refractive index distribution in the direction perpendicular to the laser light oscillation direction is made substantially symmetrical with the diffraction grating waveguide region 1a as the center. Therefore, it is possible to symmetrically correct the output light intensity distribution on the emission end face.

【0028】また、上記実施例以外にも、活性層1にお
ける上記活性領域1bとして量子井戸構造とダブルヘテ
ロ接合部を有する積層構造を幾つか組み合わせた構造が
考えられ、回折格子が作り込まれる回折格子導波路領域
1aについても量子井戸構造と複数のダブルヘテロ接合
部を有する積層構造を幾つか組み合わせが考えられる。
In addition to the above embodiment, a structure in which several active layers 1b in the active layer 1 are combined with a quantum well structure and a laminated structure having a double heterojunction portion can be considered. Regarding the lattice waveguide region 1a, some combinations of a quantum well structure and a laminated structure having a plurality of double heterojunctions are possible.

【0029】さらに、回折格子が作り込まれた回折格子
導波路領域1aと、この回折格子導波路領域1aの上側
及び下側に設けられた活性領域1bのダブルヘテロ構造
を複数有する積層構造や量子井戸層構造を、層数、層
厚、構成元素の組み合わせ、あるいは構成元素の組成比
を変えることにより、光ファイバとの結合効率を最適と
なるように容易に選択することができる。
Further, a laminated structure or a quantum structure having a plurality of double hetero structures of a diffraction grating waveguide region 1a in which a diffraction grating is formed and active regions 1b provided above and below the diffraction grating waveguide region 1a. The well layer structure can be easily selected by optimizing the coupling efficiency with the optical fiber by changing the number of layers, layer thickness, combination of constituent elements, or composition ratio of constituent elements.

【0030】[0030]

【発明の効果】以上のようにこの発明によれば、回折格
子が作り込まれた回折格子導波路領域を、発光層となる
井戸層を1層以上積層した量子井戸構造か、あるいは複
数のダブルヘテロ接合部より構成した1層以上の発光層
を有する積層構造としたので、回折格子により切断され
る非発光再結合が生じる発光層と回折格子との界面部分
は、従来と比較して著しく減少し、この界面部分におけ
る非発光再結合が飛躍的に減少することにより、しきい
値電流が小さく、かつ発光効率のよい分布帰還型半導体
レーザが得られるという効果がある。
As described above, according to the present invention, the diffraction grating waveguide region in which the diffraction grating is formed has a quantum well structure in which at least one well layer serving as a light emitting layer is laminated, or a plurality of double well layers. Since the laminated structure has one or more light emitting layers composed of heterojunction portions, the interface between the light emitting layer and the diffraction grating, which causes non-radiative recombination that is cut by the diffraction grating, is significantly reduced compared to the conventional case. However, since the non-radiative recombination at the interface portion is drastically reduced, there is an effect that a threshold current is small and a distributed feedback semiconductor laser having a high luminous efficiency can be obtained.

【0031】また、活性層を回折格子導波路領域の上側
及び下側に活性領域を設けた積層構造としたので、レー
ザ出射端面における光強度分布(レーザ出射方向に対す
る垂直方向)を活性層を中心に略対称にできるので、対
称性のよい遠視野像が得られるという効果がある。
Further, since the active layer has a laminated structure in which the active regions are provided on the upper side and the lower side of the diffraction grating waveguide region, the light intensity distribution (perpendicular to the laser emitting direction) at the laser emitting end face is centered on the active layer. Since it can be made substantially symmetrical, there is an effect that a far field image with good symmetry can be obtained.

【0032】さらに、この発明によれば、活性層を構成
する各領域の構造を、層数、層厚、構成元素の組み合わ
せ、あるいは構成元素の組成比を変えることにより、光
ファイバとの結合効率を最適となるように容易に選択す
ることができという効果がある。
Further, according to the present invention, the coupling efficiency with the optical fiber is changed by changing the number of layers, the layer thickness, the combination of the constituent elements, or the composition ratio of the constituent elements in the structure of each region constituting the active layer. Has an effect that it can be easily selected to be optimum.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る分布帰還型半導体レーザの各実
施例による構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the configuration of each embodiment of a distributed feedback semiconductor laser according to the present invention.

【図2】この発明に係る分布帰還型半導体レーザの作用
を説明するための断面図である。
FIG. 2 is a cross-sectional view for explaining the operation of the distributed feedback semiconductor laser according to the present invention.

【図3】従来の分布帰還型半導体レーザ(屈折率結合
型)の構成を示す斜視断面図である。
FIG. 3 is a perspective sectional view showing a configuration of a conventional distributed feedback semiconductor laser (refractive index coupling type).

【図4】従来の分布帰還型半導体レーザ(利得結合型)
の構成を示す断面図である。
FIG. 4 Conventional distributed feedback semiconductor laser (gain-coupled type)
3 is a cross-sectional view showing the configuration of FIG.

【図5】従来の分布帰還型半導体レーザ(利得結合型)
の課題を説明するための断面図である。
FIG. 5: Conventional distributed feedback semiconductor laser (gain-coupled type)
FIG. 6 is a cross-sectional view for explaining the problem.

【符号の説明】[Explanation of symbols]

1…活性層、1a…回折格子導波路領域、1b…活性領
域、1c…ガイド層、2…クラッド層、3…回折格子、
6…井戸層(発光層)。
DESCRIPTION OF SYMBOLS 1 ... Active layer, 1a ... Diffraction grating waveguide region, 1b ... Active region, 1c ... Guide layer, 2 ... Clad layer, 3 ... Diffraction grating,
6 ... Well layer (light emitting layer).

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 周期的な屈折率変動あるいは利得変動を
有する回折格子が作り込まれ、発光層となる活性層を備
えた分布帰還型半導体レーザにおいて、 前記活性層は、前記回折格子が作り込まれ、該回折格子
により周期的に発光層が切断された回折格子導波路領域
と、該回折格子導波路領域の上側及び下側に、それぞれ
発光層を含む活性領域を設けた多層構造であることを特
徴とする分布帰還型半導体レーザ。
1. A distributed feedback semiconductor laser including an active layer serving as a light emitting layer, wherein a diffraction grating having periodic refractive index fluctuations or gain fluctuations is formed, wherein the active layer is formed by the diffraction grating. A multilayer structure in which a light emitting layer is periodically cut by the diffraction grating, and active regions including a light emitting layer are provided above and below the diffraction grating waveguide region, respectively. A distributed feedback semiconductor laser.
【請求項2】 前記回折格子導波路領域は、発光層とな
る井戸層を1層以上積層した量子井戸構造か、あるいは
複数のダブルヘテロ接合部より構成した1層以上の発光
層を有する積層構造であることを特徴とする請求項1記
載の分布帰還型半導体レーザ。
2. The diffraction grating waveguide region has a quantum well structure in which one or more well layers to be a light emitting layer are laminated, or a laminated structure having one or more light emitting layers composed of a plurality of double heterojunctions. The distributed feedback semiconductor laser according to claim 1, wherein
【請求項3】 前記回折格子導波路領域における量子井
戸構造、あるいはダブルヘテロ接合部を構成した積層構
造は、前記回折格子により周期的に切断されていること
を特徴とする請求項2記載の分布帰還型半導体レーザ。
3. The distribution according to claim 2, wherein the quantum well structure in the diffraction grating waveguide region or the laminated structure forming a double heterojunction portion is periodically cut by the diffraction grating. Feedback semiconductor laser.
【請求項4】 前記回折格子導波路領域の上側及び下側
に設けられた活性領域は、発光層となる井戸層を1層以
上積層した量子井戸構造か、あるいは複数のダブルヘテ
ロ接合部より構成した1層以上の発光層を有する積層構
造であることを特徴とする請求項1又は2に記載の分布
帰還型半導体レーザ。
4. The active region provided on the upper side and the lower side of the diffraction grating waveguide region has a quantum well structure in which one or more well layers to be a light emitting layer are stacked, or a plurality of double hetero junctions. 3. The distributed feedback semiconductor laser according to claim 1, which has a laminated structure having one or more light emitting layers.
【請求項5】 前記活性層において、前記量子井戸構造
を有する回折格子導波路領域あるいは各活性領域は、前
記のダブルヘテロ接合を構成した積層構造を有する回折
格子導波路領域あるいは各活性領域における発振波長と
略同一の波長でレーザ発振を得ることを特徴とする請求
項1、2、3、又は4のいずれか一項に記載の分布帰還
型半導体レーザ。
5. In the active layer, the diffraction grating waveguide region or each active region having the quantum well structure is oscillated in the diffraction grating waveguide region or each active region having a laminated structure forming the double heterojunction. The distributed feedback semiconductor laser according to claim 1, wherein laser oscillation is obtained at a wavelength substantially the same as the wavelength.
【請求項6】 前記活性層は、レーザ光の出射方向に対
して垂直方向に、略対称な屈折率分布を有することを特
徴とする請求項1、2、3、4、又は5のいずれか1項
に記載の分布帰還型半導体レーザ。
6. The active layer has a refractive index distribution that is substantially symmetrical in a direction perpendicular to a laser light emission direction, according to any one of claims 1, 2, 3, 4, and 5. The distributed feedback semiconductor laser according to item 1.
【請求項7】 半導体基板上に形成したクラッド層上
に、量子井戸構造、あるいはのダブルヘテロ接合部を構
成した積層構造の活性領域を形成する第1の工程と、 前記活性領域上にさらに形成した量子井戸構造、あるい
はダブルヘテロ接合部を構成した積層構造を有する層表
面に、干渉露光法により回折格子を作り込み、該回折格
子部分を発振レーザ光のエネルギーより大きいバンドギ
ャップエネルギーをもつ半導体材料で埋め込んで回折格
子導波路領域を形成する第2の工程と、 前記回折格子導波路領域上に、量子井戸構造、あるいは
ダブルヘテロ接合部を構成した積層構造の活性領域を形
成し、さらに該活性領域部上にクラッド層を形成する第
3の工程を備えた分布帰還型半導体レーザの製造方法。
7. A first step of forming an active region of a quantum well structure or a laminated structure forming a double heterojunction part on a clad layer formed on a semiconductor substrate, and further forming on the active region. A semiconductor material having a bandgap energy larger than the energy of oscillation laser light by forming a diffraction grating by an interference exposure method on the surface of a layer having a stacked quantum well structure or a double heterojunction structure. And a second step of forming a diffraction grating waveguide region by embedding with the above, and forming an active region of a quantum well structure or a laminated structure forming a double heterojunction on the diffraction grating waveguide region, and further activating the active region. A method of manufacturing a distributed feedback semiconductor laser, comprising a third step of forming a cladding layer on a region portion.
JP2796893A 1993-02-17 1993-02-17 Distributed feedback type semiconductor laser and its manufacture Pending JPH06244493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2796893A JPH06244493A (en) 1993-02-17 1993-02-17 Distributed feedback type semiconductor laser and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2796893A JPH06244493A (en) 1993-02-17 1993-02-17 Distributed feedback type semiconductor laser and its manufacture

Publications (1)

Publication Number Publication Date
JPH06244493A true JPH06244493A (en) 1994-09-02

Family

ID=12235693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2796893A Pending JPH06244493A (en) 1993-02-17 1993-02-17 Distributed feedback type semiconductor laser and its manufacture

Country Status (1)

Country Link
JP (1) JPH06244493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111126A (en) * 2000-09-28 2002-04-12 Fujitsu Ltd Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111126A (en) * 2000-09-28 2002-04-12 Fujitsu Ltd Semiconductor laser

Similar Documents

Publication Publication Date Title
US6167073A (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
EP1146614B1 (en) Semiconductor laser element having increased light confinement and method for fabrication
WO2005088791A1 (en) Semiconductor laser couplable to single mode optical fiber at high coupling efficiency
JPS5940592A (en) Semiconductor laser element
US4636821A (en) Surface-emitting semiconductor elements
US6925103B2 (en) Gain-coupled DFB laser diode
JPH08307012A (en) Mask for selective growth, manufacture of semiconductor optical device, and semiconductor optical device
JPH09307190A (en) Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
JP3037111B2 (en) Semiconductor lasers and composite semiconductor lasers
JP2002111125A (en) Distributed feedback semiconductor laser
JPH06244493A (en) Distributed feedback type semiconductor laser and its manufacture
JPH0319292A (en) Semiconductor laser
JP2003218462A (en) Distributed feedback semiconductor laser device
JPS63213383A (en) Semiconductor laser
JPS63150981A (en) Semiconductor laser
JP2606838B2 (en) Distributed feedback semiconductor laser
EP0491152B1 (en) Semiconductor laser devices with a plurality of light emitting layers having different bands gaps and methods for driving the same
JP3211330B2 (en) Semiconductor laser array device
JP3911002B2 (en) Semiconductor laser element
JPH06291409A (en) Distributed feedback semiconductor laser and manufacture thereof
JP2683092B2 (en) Semiconductor laser device
JPH06177480A (en) Semiconductor laser element and manufacture thereof
JPH04245494A (en) Multiwavelength semiconductor laser element and driving method of that element
JP3949704B2 (en) Semiconductor laser element
JPH104239A (en) Semiconductor light emitting diode