JPH0624438B2 - Control method of DC high-voltage power supply device - Google Patents

Control method of DC high-voltage power supply device

Info

Publication number
JPH0624438B2
JPH0624438B2 JP4796188A JP4796188A JPH0624438B2 JP H0624438 B2 JPH0624438 B2 JP H0624438B2 JP 4796188 A JP4796188 A JP 4796188A JP 4796188 A JP4796188 A JP 4796188A JP H0624438 B2 JPH0624438 B2 JP H0624438B2
Authority
JP
Japan
Prior art keywords
voltage
chopper
power supply
output
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4796188A
Other languages
Japanese (ja)
Other versions
JPH01222657A (en
Inventor
昌史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4796188A priority Critical patent/JPH0624438B2/en
Publication of JPH01222657A publication Critical patent/JPH01222657A/en
Publication of JPH0624438B2 publication Critical patent/JPH0624438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、直流高圧電源装置、ことに電子ビーム加工
機など負荷短絡を生じやすい負荷を有する装置における
電圧回復方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC high-voltage power supply device, and more particularly, to a voltage recovery method in a device having a load such as an electron beam processing machine that easily causes a load short circuit.

〔従来の技術〕[Conventional technology]

電源装置の小型化を要求される直流高圧電源装置におい
ては、チョッパおよびインバータを用いて直流を一旦高
周波交流に変換し、この交流を整流回路で再び直流に変
換する,いわゆる変調形直流電源装置が用いられる。
In a DC high-voltage power supply device that requires miniaturization of a power supply device, there is a so-called modulation type DC power supply device in which a DC is once converted into a high-frequency AC by using a chopper and an inverter, and the AC is converted into a DC again by a rectifier circuit. Used.

第4図は変調形の直流高電圧電源装置の一例を示す構成
図であり、直流電源1の出力電流は半導体式降圧チョッ
パ2のスイッチング素子2A等によって制御され、イン
バータ4によって交流電流に変換された後昇圧トランス
5の一次巻線に供給される。昇圧トランス5で所定の高
電圧に高められた交流電流は整流ブリッジ6で整流さ
れ、平滑コンデンサ7でリップルが排除された直流高電
圧となり負荷8に供給される。
FIG. 4 is a block diagram showing an example of a modulation type DC high voltage power supply device. The output current of the DC power supply 1 is controlled by the switching element 2A of the semiconductor step-down chopper 2 and converted into an AC current by the inverter 4. After that, the voltage is supplied to the primary winding of the step-up transformer 5. The alternating current increased to a predetermined high voltage by the step-up transformer 5 is rectified by the rectifying bridge 6 and becomes a DC high voltage with ripples removed by the smoothing capacitor 7 and is supplied to the load 8.

このように構成された直流高圧電源部10の出力電圧V
の制御はチョッパ制御回路11によって行われる。すな
わち、チョッパ制御回路11は出力電圧Vの検出器9の
検出信号9E,および出力電圧Vの設定器12の電圧設
定信号12Eとを入力信号とする自動電圧調整器(以下
AVRと略称する)13と、AVR13の出力であるチ
ョッパ電流設定信号13E,および半導体チョッパ2の
出力電流を検出する電流検出器16の出力であるチョッ
パ電流検出信号16Eを入力信号とする自動電流調整器
(以下ACRと略称する)14と、ACRの出力信号を
整形してスイッチング素子2Aのオン・オフ時間の割合
を制御する制御信号11Eを出力するパルス形成器15
とで構成される。
Output voltage V of the DC high-voltage power supply unit 10 configured in this way
Is controlled by the chopper control circuit 11. That is, the chopper control circuit 11 receives the detection signal 9E of the detector 9 of the output voltage V and the voltage setting signal 12E of the setter 12 of the output voltage V as input signals, and an automatic voltage regulator (abbreviated as AVR hereinafter) 13 And an automatic current regulator (hereinafter abbreviated as ACR) using as input signals the chopper current setting signal 13E which is the output of the AVR 13 and the chopper current detection signal 16E which is the output of the current detector 16 which detects the output current of the semiconductor chopper 2. 14) and a pulse former 15 for shaping the output signal of the ACR and outputting a control signal 11E for controlling the on / off time ratio of the switching element 2A.
Composed of and.

したがって、AVR13の検出側入力信号9Eが設定信
号12Eと等しくなるよう、またACR14のチョッパ
電流検出側入力信号16EがAVR13の出力電圧制御
信号13Eと等しくなるよう、スイッチング素子2Aが
ACRをマイナーループとするAVR制御回路11の出
力制御信号11Eによって制御され、半導体式チョッパ
2の出力電流と負荷8への供給電流との平衡が保たれる
ことにより、直流電源部10の出力電圧Vが整定電圧値
に保持される。
Therefore, the switching element 2A sets the ACR as a minor loop so that the detection side input signal 9E of the AVR 13 becomes equal to the setting signal 12E and the chopper current detection side input signal 16E of the ACR 14 becomes equal to the output voltage control signal 13E of the AVR 13. The output voltage V of the DC power supply unit 10 is controlled by the output control signal 11E of the AVR control circuit 11 and the output current of the semiconductor chopper 2 and the current supplied to the load 8 are balanced. Held in.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、上述の直流高圧電源装置の負荷が電子ビーム
加工機や電子ビーム照射装置などである場合、数十KV
オーダまたはそれ以上の直流電圧が印加される電子銃と
電子ビームによる被加工体とが同一の真空チャンバー内
に収納されるために、その始動に際して被加工体や電極
から吸蔵ガスが放出され、その影響で負荷短絡が繰返し
発生するという問題があり、その発生頻度はエージング
の進行に伴なって徐々に減少し、加工が実施できる定常
運転状態に到達する。したがって、直流高圧電源装置は
その出力側が繰返し短絡されるとともに、その電圧回復
時に発生する電圧のオーバーシュートやリップルを低減
するために設けられた平滑コンデンサ7の蓄積エネルギ
ーが負荷短絡のたびに放電してしまうために、電圧回復
時に平滑コンデンサを充電するための大きな充電エネル
ギーを必要とし、これが原因で直流高圧電源装置が電子
ビームの発生に必要な電源容量に比べて遥かに大きい短
時間容量を要するという問題が発生する。また電圧回復
が遅い場合には電子ビームの停止期間が長くなり、被加
工体の品質にむらが生ずるために速い電圧回復が求めら
れ、これによっても電源の短時間容量の一層の増大が余
儀なくされる。
By the way, when the load of the DC high-voltage power supply device is an electron beam processing machine, an electron beam irradiation device, or the like, several tens of KV
Since the electron gun to which a DC voltage of order or higher is applied and the object to be processed by the electron beam are housed in the same vacuum chamber, the occluded gas is released from the object to be processed and the electrode at the time of starting, There is a problem that load short-circuiting occurs repeatedly due to the influence, and the occurrence frequency gradually decreases with the progress of aging, and reaches a steady operation state in which machining can be performed. Therefore, the output side of the DC high-voltage power supply device is repeatedly short-circuited, and the stored energy of the smoothing capacitor 7 provided for reducing the voltage overshoot or ripple generated when the voltage is restored is discharged each time the load is short-circuited. Therefore, a large amount of charging energy is required to charge the smoothing capacitor at the time of voltage recovery, which causes the DC high-voltage power supply device to have a much shorter time capacity than the power supply capacity required to generate an electron beam. The problem occurs. If the voltage recovery is slow, the electron beam stop period becomes long and the quality of the workpiece is uneven, so fast voltage recovery is required, which also necessitates a further increase in the short-time capacity of the power supply. It

この発明の目的は、負荷短絡の発生頻度に対応して電圧
の回復速度を制御することにより、電源装置の短時間容
量の増大を抑さえるとともに、定常運転時における電子
ビーム停止時間を短縮することにある。
An object of the present invention is to suppress an increase in short-time capacity of a power supply device and to shorten an electron beam stop time during steady operation by controlling a voltage recovery speed in accordance with a frequency of load short circuit. It is in.

〔課題を解決するための手段〕 上記課題を解決するために、この発明方法によればチョ
ッパ制御回路の整定条件に基づいて出力電圧に保持され
るチョッパを有する直流高圧電源装置の、繰返し負荷短
絡に対する出力電圧回復方法であって、負荷短絡を検知
して前記チョッパの出力電流を所定時間絞った後前記チ
ョッパ制御回路の整定値を超えるチョッパ出力電流によ
り前記出力電圧を所定電圧レベルに急回復させる急速回
復モードと、急速回復モードの回復指令時間を積算して
その積算値が上限しきい値レベルに到達したとき前記急
速加速モードを前記チョッパ制御回路の整定値に切換え
て行う通常回復モードとを負荷短絡の発生頻度に対応し
て複数回づつ交互に繰返して行うこととする。
[Means for Solving the Problems] In order to solve the above problems, according to the method of the present invention, a repetitive load short circuit of a DC high-voltage power supply device having a chopper held at an output voltage based on a settling condition of a chopper control circuit is provided. Is a method for recovering output voltage against the output voltage of the chopper, the output current of the chopper is throttled for a predetermined time, and then the output voltage is rapidly recovered to a predetermined voltage level by the chopper output current exceeding the set value of the chopper control circuit. A rapid recovery mode and a normal recovery mode in which the rapid acceleration mode is switched to the set value of the chopper control circuit when the recovery command time of the rapid recovery mode is integrated and the integrated value reaches the upper limit threshold level. Depending on the frequency of load short-circuiting, it will be repeated multiple times alternately.

〔作用〕[Action]

上記手段において、チョッパ制御回路のAVRおよびA
CRによってチョッパ出力電流および直流出力電圧が設
定値に整定制御される直流高圧電源装置に負荷短絡が繰
返し発生した場合、出力電圧の回復制御を複数回の急速
回復モードと、急速回復モードの指令時間を積算して積
算値が所定の上限しきい値レベルに到達したときチョッ
パ制御回路の整定値に切換えて行う複数回の通常回復モ
ードとを負荷短絡の発生頻度に対応して交互に行うよう
構成したことにより、負荷短絡発生頻度の高い負荷のエ
ージング期間中は通常回復モードが機能することによ
り、電源装置の短時間容量増大の抑制が可能になるとと
もに、負荷短絡の発生頻度が低くなる定常運転状態にお
いては急速回復モードによる制御が主体となって電子ビ
ームの停止時間が短絡され、したがって電子ビームの停
止に伴なって生ずる被加工体の品質のばらつきおよび低
下を防止できる。
In the above means, AVR and A of the chopper control circuit
If a load short circuit occurs repeatedly in the DC high-voltage power supply device in which the chopper output current and DC output voltage are settled to the set values by CR, output voltage recovery control is performed multiple times in the rapid recovery mode and command time in the rapid recovery mode. Is configured and when the integrated value reaches a predetermined upper threshold level, it is switched to the set value of the chopper control circuit and a plurality of normal recovery modes are alternately performed according to the frequency of load short circuit. As a result, the normal recovery mode functions during the aging period of the load where the frequency of load short-circuit occurrence is high, which makes it possible to suppress the short-term capacity increase of the power supply device and to reduce the frequency of load short-circuit occurrence during steady operation. In the state, the control by the quick recovery mode is the main, and the stop time of the electron beam is short-circuited, so it occurs with the stop of the electron beam. Variations and deterioration of the quality of the workpiece can be prevented.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be described below based on examples.

第1図はこの発明の実施例方法を説明するための装置の
構成図、第2図は実施例方法における各部のタイムチャ
ート、第3図は実施例方法を示す動作説明図であり、従
来技術と同じ部分には同一参照符号を用いることにより
詳細な説明を省略する。第1図において、20は急速回
復制御回路、30は通常回復制御回路であり、以下第1
図と第2図を参照しつつ回路構成とその動作を説明す
る。チョッパ制御回路11の整定出力電圧V,負荷電
流Iで運転中に時刻tで負荷短絡が発生し、短絡電
流Isが流れたと仮定する。短絡電流Isは短絡電流検
出器17で検出され、短絡信号発生器22から短絡信号
22Eが出力され、この信号によりフリップフロップ2
3がセットされ、Hレベルの信号23Eが出力される。
これを受けたパルスオフ信号発生器24から時刻t
らtまでの所定時間Lレベルとなるパルスオフ信号2
4Eがパルス形成器15に向けて出力され、パルス形成
器15の出力信号が停止し、チョッパ2の出力電流Ic
が時刻tからtの間停止する。その結果、出力電圧
Vおよび負荷電流Iはともに零近くまで低下し、負荷8
の耐電圧性能が回復する。一方、積算回路32の積算値
がその上限しきい値S以下であったとき積算回路はH
レベルの信号をANDゲート33に出力するので、AN
Dゲート33から急速回復指令時間である時刻tから
の間信号34Eが出力され、これを受けた増幅率切
換器26を波形26Eに示すように増幅率gからg
(g>g)に切換える。その結果、チョッパ電流検
出器16の検出信号16Eは、その大きさがg/g
倍に減少した信号26Eに変換される。このことは、A
CRのチョッパ電流の設定を大きくしたことと等価なの
で、ACR14はチョッパ電流IcをIrに増大させる
指令をパルス形成器15を介してチョッパ制御信号11
Eとして半導体スイッチング素子2Aに向けて出力する
ので、直流高圧電源部10の出力電圧Vはチョッパ制御
回路11の整定条件によって決まる通常回復モードより
速い立上りを示し、時刻tで整定電圧V近くにまで
回復する。電圧Vは比較器29に入力され、出力電圧設
定信号12Eを増幅率g(gは1以下)で低減する
増幅器28を通った低減レベルの設定信号と比較される
ことにより、出力電圧Vが整定電圧Vに近いレベルg
×Vに達した時点tでフリップフロップ23がリ
セットされ、その出力Hレベル信号23EがLレベル信
号に変化することにより、増幅率切換器26はその増幅
率がgからgに戻り、これに基づいてチョッパ出力
電流もIrからIcに戻るので、出力電圧Vはチョッパ
制御回路11の整定条件に基づく通常回復モードに戻
り、ゆっくりした速度で整定電圧Vに到達するので、
急速回復による電圧のオーバーシュートの発生が回避さ
れる。
FIG. 1 is a block diagram of an apparatus for explaining an embodiment method of the present invention, FIG. 2 is a time chart of each part in the embodiment method, and FIG. 3 is an operation explanatory view showing the embodiment method. The same parts as those in FIG. In FIG. 1, 20 is a quick recovery control circuit, 30 is a normal recovery control circuit,
The circuit configuration and its operation will be described with reference to the drawings and FIG. It is assumed that a load short circuit occurs at time t 0 during operation with the settling output voltage V 1 and load current I 1 of the chopper control circuit 11 and a short circuit current Is flows. The short circuit current Is is detected by the short circuit current detector 17, and the short circuit signal generator 22 outputs a short circuit signal 22E.
3 is set, and the H-level signal 23E is output.
In response to this, the pulse-off signal generator 24 outputs the pulse-off signal 2 which is at the L level for a predetermined time from time t 0 to time t 1.
4E is output to the pulse former 15, the output signal of the pulse former 15 is stopped, and the output current Ic of the chopper 2 is stopped.
Stops during time t 0 to t 1 . As a result, both the output voltage V and the load current I drop to near zero, and the load 8
Withstand voltage performance is restored. On the other hand, when the integrated value of the integrating circuit 32 is less than or equal to the upper limit threshold S 1 , the integrating circuit is H level.
Since the level signal is output to the AND gate 33,
During signal 34E of t 2 from time t 1 is a rapid recovery instruction time from D gate 33 is output, g 2 a gain switcher 26 from the amplification factor g 1 as shown in the waveform 26E having received the
Switch to (g 1 > g 2 ). As a result, the detection signal 16E of the chopper current detector 16 has a magnitude of g 2 / g 1
It is converted into a signal 26E that has been doubled. This is A
Since this is equivalent to increasing the setting of the CR chopper current, the ACR 14 issues a command to increase the chopper current Ic to Ir via the pulse former 15 to the chopper control signal 11
Since it is output to the semiconductor switching element 2A as E, the output voltage V of the DC high-voltage power supply unit 10 exhibits a faster rise than in the normal recovery mode determined by the settling condition of the chopper control circuit 11, and is close to the settling voltage V 1 at time t 2. Recover to. The voltage V is input to the comparator 29, and the output voltage setting signal 12E is compared with the setting signal of the reduction level that has passed through the amplifier 28 for reducing the output voltage setting signal 12E by the amplification factor g 3 (g 3 is 1 or less), thereby the output voltage V Is a level g close to the settling voltage V 1.
At time t 2 when 3 × V 1 is reached, the flip-flop 23 is reset, and the output H level signal 23E changes to the L level signal, so that the amplification factor switcher 26 changes its amplification factor from g 2 to g 1 . Since the chopper output current also returns from Ir to Ic based on this, the output voltage V returns to the normal recovery mode based on the settling condition of the chopper control circuit 11 and reaches the settling voltage V 1 at a slow speed.
The occurrence of voltage overshoot due to rapid recovery is avoided.

一方ANDゲート23を通ったHレベル信号23Eと、
パルスオフ信号24EはANDゲート34に入力され、
両信号が重なる時刻tからtにかけての急速回復指
令時間中信号34Eによって積算器32の積算値が増加
する。
On the other hand, the H level signal 23E passing through the AND gate 23,
The pulse-off signal 24E is input to the AND gate 34,
The integrated value of the integrator 32 is increased by the rapid recovery command time signal 34E from time t 1 to time t 2 when both signals overlap.

時刻tにおいて再び負荷短絡が発生すると、上述の急
速回復モードに基づく電圧の回復制御が行われるが、時
刻tにおいて積算器32の積算値がその上限しきい値
に到達すると、積算器32のロジックレベルはLレ
ベルに変わり、ANDゲート33がHレベル信号23E
の通過を阻止するので、増幅率切換器26Eはその増幅
率がgからgに変化し、これに基づいてACR14
がその整定レベルに戻り、その結果急速回復制御回路2
0はその動作を停止し、時刻t以後はチョッパ制御回
路11の整定条件に基づいて通常回復モードで整定電圧
に向けてゆっくり回復する。
Again the load short circuit occurs at time t 3, when it recovers control of the voltage based on the rapid recovery mode described above is performed, the integrated value of the integrator 32 at time t 5 has reached its upper threshold S 1, integrated The logic level of the device 32 changes to the L level, and the AND gate 33 outputs the H level signal 23E.
The gain switching unit 26E changes its gain from g 2 to g 1 , and the ACR 14
Returns to its settling level, resulting in a rapid recovery control circuit 2
At 0, the operation is stopped, and after time t 5 , the operation recovers slowly toward the settling voltage V 1 in the normal recovery mode based on the settling condition of the chopper control circuit 11.

以上、出力電圧Vの急速回復モードから通常回復モード
に移る動作を急速回復制御回路20および通常回復制御
回路30の構成とともに説明したが、負荷短絡が繰返し
発生する場合の説明図を第3図に示すように、急速回復
モード期間においては積算回路出力信号32EはHレベ
ルとなり、この時刻ta,tb,tc,tdで負荷短絡
が起こるたびに積算器32はその積算値の上昇(充電)
と下降(放電)を繰返しつつ上昇し、積算値が上限しき
い値Sに到達すると積算回路出力32EがLレベルと
なってANDゲート33および34が信号の通過を阻止
することにより通常回復モード期間に移り、その後時刻
te,tf,tgで負荷短絡が発生しても積算値は増加
しない。積算値が所定の放電時定数で徐々に下がり下限
しきい値Sに低下すると、積算回路出力32Eは再び
Hレベルとなって急速回復モード期間に移行する。した
がって積算回路32のしきい値S,Sおよび充放電
の時定数の設定値をあらかじめ調整しておくことによ
り、急速回復モード期間における負荷短絡回数と通常回
復モード期間における負荷短絡回数との割合を制御する
ことが可能であり、負荷短絡発生頻度が高い電子ビーム
装置のエージング期間中には通常回復モードを主体とす
る電圧回復により直流高圧電源装置の短時間容量の増大
を抑制し、負荷短絡頻度の少い電子ビーム加工の運転状
態では急速回復モードを主体とした電圧回復により電子
ビームの停止時間を短縮し、電子ビームの停止に伴なっ
て生ずる被加工体の加工むらや品質の低下を防止するこ
とができる。
The operation of shifting the output voltage V from the quick recovery mode to the normal recovery mode has been described above together with the configurations of the quick recovery control circuit 20 and the normal recovery control circuit 30. FIG. 3 is an explanatory diagram when a load short circuit occurs repeatedly. As shown, in the rapid recovery mode period, the integrating circuit output signal 32E is at H level, and every time a load short circuit occurs at this time ta, tb, tc, td, the integrator 32 increases (charges) its integrated value.
When the integrated value reaches the upper limit threshold value S 1 , the integrated circuit output 32E becomes L level and the AND gates 33 and 34 prevent the passage of signals, and the normal recovery mode is reached. After the period, the integrated value does not increase even if a load short circuit occurs at times te, tf, and tg. When the integrated value gradually decreases at a predetermined discharge time constant and decreases to the lower limit threshold value S 2 , the integrating circuit output 32E becomes H level again, and the rapid recovery mode period starts. Therefore, by adjusting the threshold values S 1 and S 2 of the integrating circuit 32 and the set values of the charge / discharge time constants in advance, the load short circuit number in the rapid recovery mode period and the load short circuit number in the normal recovery mode period can be It is possible to control the ratio and suppress the short-term capacity increase of the DC high-voltage power supply device by the voltage recovery mainly in the normal recovery mode during the aging period of the electron beam device where the frequency of load short-circuiting is high. In the operating state of electron beam machining where the frequency of short circuits is low, the voltage recovery mainly in the rapid recovery mode shortens the electron beam stop time, resulting in uneven processing and deterioration of the quality of the workpiece caused by the electron beam stop. Can be prevented.

〔発明の効果〕〔The invention's effect〕

この発明は前述のように、直流高圧電源部の出力電圧の
整定を、チョッパ制御回路でチョッパ出力電流を所定の
整定条件に基づいて制御することによって行う直流高圧
電源装置において、負荷短絡の繰返しに対する出力電圧
の回復を急速回復モードと、急速回復モードの指令時間
に比例する信号を積算してその積算値が上限しきい値に
到達したときチョッパ制御回路の整定値に切換えて行う
通常回復モードとを、負荷短絡の発生頻度に対応して複
数回づつ交互に繰返し行うよう構成した。その結果、負
荷短絡の少い運転状態では急速回復モードを主体とする
電圧回復が行われ、出力電圧の停止期間が短絡されるこ
とによって負荷に及ぼす悪影響が排除され、負荷短絡の
発生頻度が多い状態では通常回復モードによる電圧回復
を主体とすることが可能になることにより、出力側に設
けられる平滑コンデンサを充電するために電源に求めら
れる短時間容量の増大を最小限に抑制することができ
る。ことに、負荷が電子ビーム加工機や電子ビーム照射
装置のように、その始動時に負荷短絡が繰返し発生する
ものである場合には、始動時のエージング期間中は通常
回復モードでゆっくり電圧を回復させることにより電源
の短時間容量の増大を防ぎ、負荷短絡頻度が減少する通
常運転時には急速回復モードによって電子ビームの停止
時間を短縮することにより、電子ビームの停止による被
加工体の加工むらやこれに基づく品質の低下を回避する
ことができる。
As described above, in the present invention, the output voltage of the DC high-voltage power supply unit is settled by controlling the chopper output current in the chopper control circuit based on a predetermined settling condition. Output voltage recovery is performed in the rapid recovery mode and the normal recovery mode in which the signal proportional to the command time in the rapid recovery mode is integrated and when the integrated value reaches the upper threshold value, it is switched to the set value of the chopper control circuit. Is configured to be alternately repeated a plurality of times according to the frequency of load short circuit. As a result, in the operating state with few load short circuits, the voltage recovery mainly in the rapid recovery mode is performed, the adverse effect on the load is eliminated by short-circuiting the output voltage stop period, and the frequency of load short circuits is high. In this state, it becomes possible to mainly perform the voltage recovery in the normal recovery mode, so that it is possible to minimize the increase in the short-time capacity required for the power supply for charging the smoothing capacitor provided on the output side. . In particular, when the load is a load short circuit that repeatedly occurs at the time of startup, such as an electron beam processing machine or an electron beam irradiation device, the voltage is slowly recovered in the normal recovery mode during the aging period at startup. This prevents an increase in the capacity of the power supply for a short time and shortens the electron beam stop time by the rapid recovery mode during normal operation when the load short circuit frequency decreases. It is possible to avoid deterioration of quality based on the above.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例方法を説明するための装置の
構成図、第2図は実施例方法におけるタイムチャート、
第3図は実施例方法の動作説明図、第4図は従来装置を
示す構成図である。 10……直流高圧電源部、11……チョッパ制御回路、
20……急速回復制御回路、30……通常回復制御回
路。
FIG. 1 is a block diagram of an apparatus for explaining an embodiment method of the present invention, FIG. 2 is a time chart in the embodiment method,
FIG. 3 is an operation explanatory view of the embodiment method, and FIG. 4 is a configuration diagram showing a conventional device. 10 ... DC high-voltage power supply section, 11 ... Chopper control circuit,
20 ... Rapid recovery control circuit, 30 ... Normal recovery control circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チョッパ制御回路の整定条件に基づいて出
力電圧が整定電圧に保持されるチョッパを有する直流高
圧電源装置の、繰返し負荷短絡に対する出力電圧回復方
法であって、負荷短絡を検知して前記チョッパの出力電
流を所定時間絞った後前記チョッパ制御回路の整定値を
超えるチョッパ出力電流により前記出力電圧を所定電圧
レベルに急回復させる急速回復モードと、急速回復モー
ドの回復指令時間を積算してその積算値が上限しきい値
レベルに到達したとき前記急速加速モードを前記チョッ
パ制御回路の整定値に切換えて行う通常回復モードとを
負荷短絡の発生頻度に対応して複数回づつ交互に繰返し
て行うことを特徴とする直流高圧電源装置の制御方法。
1. A method of recovering output voltage against repeated load short-circuiting of a DC high-voltage power supply device having a chopper whose output voltage is held at the settling voltage based on the settling condition of a chopper control circuit, the method comprising detecting a load short-circuit. After the output current of the chopper is throttled for a predetermined time, a rapid recovery mode in which the output voltage is rapidly recovered to a predetermined voltage level by the chopper output current exceeding the set value of the chopper control circuit, and the recovery command time of the rapid recovery mode is integrated. When the integrated value reaches the upper limit threshold level, the rapid acceleration mode is switched to the settling value of the chopper control circuit and the normal recovery mode is alternately repeated a plurality of times according to the frequency of occurrence of load short circuit. A method of controlling a DC high-voltage power supply device, which is characterized in that:
JP4796188A 1988-03-01 1988-03-01 Control method of DC high-voltage power supply device Expired - Fee Related JPH0624438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4796188A JPH0624438B2 (en) 1988-03-01 1988-03-01 Control method of DC high-voltage power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4796188A JPH0624438B2 (en) 1988-03-01 1988-03-01 Control method of DC high-voltage power supply device

Publications (2)

Publication Number Publication Date
JPH01222657A JPH01222657A (en) 1989-09-05
JPH0624438B2 true JPH0624438B2 (en) 1994-03-30

Family

ID=12789939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4796188A Expired - Fee Related JPH0624438B2 (en) 1988-03-01 1988-03-01 Control method of DC high-voltage power supply device

Country Status (1)

Country Link
JP (1) JPH0624438B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2784136B2 (en) * 1993-10-19 1998-08-06 浜松ホトニクス株式会社 Switching power supply overload and short circuit protection circuit

Also Published As

Publication number Publication date
JPH01222657A (en) 1989-09-05

Similar Documents

Publication Publication Date Title
JP6702010B2 (en) Switching power supply
EP0125278B1 (en) Power supply having a dc imput power source and pulsed current supplying stages
JPH1084680A (en) Pulse power supply
US7049800B2 (en) Switching mode voltage regulator and method thereof
JPH0624438B2 (en) Control method of DC high-voltage power supply device
JPS5928159B2 (en) Excitation adjustment device
JPH0799775A (en) Power source unit
US4309751A (en) Method and apparatus for controlling current type inverters
JP3528496B2 (en) Capacitor resistance welding machine
JPH0993920A (en) Dc high voltage power supply for capacitive load
JPH0662568A (en) Switching power device
US3947746A (en) Single-ended dc-to-dc converter for the pulse control of the voltage at an inductive load as well as method for its operation
JPH01218354A (en) Voltage control circuit for dc power supply
JP3948591B2 (en) Acceleration power supply
EP0173535B1 (en) A power supply system and a method of operating same
JPH0353796Y2 (en)
JP3221051B2 (en) Step-up chopper type DC power supply
JP2714166B2 (en) Capacitor charging circuit
JP2544614Y2 (en) High voltage generator for X-ray generation
JP3119409B2 (en) High frequency heating equipment
JP3244796B2 (en) Electric dust collector
US4314324A (en) Transformer power supply having an inductively loaded full wave rectifier in the primary
JP3364498B2 (en) Switching power supply
JPH03190563A (en) Converter control circuit
JP3886608B2 (en) DC arc welding power supply

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees