JPH06244243A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH06244243A
JPH06244243A JP30276793A JP30276793A JPH06244243A JP H06244243 A JPH06244243 A JP H06244243A JP 30276793 A JP30276793 A JP 30276793A JP 30276793 A JP30276793 A JP 30276793A JP H06244243 A JPH06244243 A JP H06244243A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor element
semiconductor device
thermal expansion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30276793A
Other languages
Japanese (ja)
Other versions
JP3227589B2 (en
Inventor
Toshio Hatsuda
俊雄 初田
Takahiro Oguro
崇弘 大黒
Tetsuya Hayashida
哲哉 林田
Hiroaki Doi
博昭 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30276793A priority Critical patent/JP3227589B2/en
Publication of JPH06244243A publication Critical patent/JPH06244243A/en
Application granted granted Critical
Publication of JP3227589B2 publication Critical patent/JP3227589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To provide a structure, wherein when LSIs are mounted on a substrate having a wiring layer, which is formed using a material different from the material for the substrate as an insulating material, on its surface, damage to connection members, such as pins or solder balls, is reduced even if the substrate is subjected to temperature change. CONSTITUTION:LISs 1 are mounted on a substrate 2 with a thin film wiring layer 3 or are directly mounted on a substrate 2 using solder balls or pins 4. Deformation matching layers 6 consisting of a material having a thermal expansion coefficient different from that of LSI chips are respectively formed on these LSIs 1. By the layers 6, a deformation due to warpage equal to that of the substrate is generated in the LSI chips even at the temperature at the time of normal temperatures subsequent to packaging of a semiconductor device or even at the temperature at the time when the device is working. As a result, damage to connection members, such as the solder balls, can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置およびその製
造方法に係り、特に半導体チップの実装構造で、高発熱
する半導体チップの実装に好適な半導体装置およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a semiconductor device having a semiconductor chip mounting structure, which is suitable for mounting a semiconductor chip having a high heat generation, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】計算機の高速化を達成するには、LSI
を高密度に基板上に実装する必要が有る。この一例が、
アイ ビー エム ジャーナル オヴ リサーチ アン
ド デヴェロプメント 第26巻第1号、30頁(IB
M J. Res. Develop. Vol.26,
No.1, January 1982, P.30)に
開示されている。その構造を図2に示す。この図におい
て、基板2は厚膜配線層を持つセラミック多層基板であ
る。この上面に微細な構造を持つ薄膜配線層3を設ける
と高密度実装に一層有効であり、そのような構造はアイ
イー イー イー 第42回 プロシーディングス
エレクトロニック コンポーネント アンド テクノロ
ジー カンファレンス 第1頁(IEEE Proce
edings of 42nd Electronic
Components & Technology
Conference, 1992, P.1)に開示
されている。この例においては、LSIチップ1はその
表面に半田ボ−ル接続用のパッドを有し、半田ボ−ル4
を介してチップ全面と多くのI/Oピン99が電気的に
接続された構造となっている。また、LSIをLSIチ
ップと熱膨張係数が異なる基板上に接続した例は日本機
械学会第70期全国大会講演論文集B卷(Vol.B)
第525頁に開示されている。
2. Description of the Related Art To achieve a high speed computer, an LSI
Need to be mounted on the substrate in high density. An example of this is
IBM Journal of Research and Development Vol. 26, No. 1, p. 30 (IB
M J. Res. Development. Vol. 26,
No. 1, January 1982, P.30). Its structure is shown in FIG. In this figure, the substrate 2 is a ceramic multilayer substrate having a thick film wiring layer. Providing a thin film wiring layer 3 having a fine structure on this upper surface is more effective for high-density mounting. Such a structure is EE E 42nd Proceedings.
Electronic Component and Technology Conference Page 1 (IEEE Proce
edings of 42nd Electronic
Components & Technology
Conference, 1992, P.1). In this example, the LSI chip 1 has pads for solder ball connection on its surface, and the solder ball 4
A large number of I / O pins 99 are electrically connected to the entire surface of the chip via. An example of connecting an LSI on a substrate whose coefficient of thermal expansion is different from that of the LSI chip is a volume B (Vol.B) of the 70th Annual Meeting of the Japan Society of Mechanical Engineers.
It is disclosed on page 525.

【0003】[0003]

【発明が解決しようとする課題】上記従来の実装構造に
おいて、今後、一層の高密度化を図るには、薄膜配線層
をさらに多層化する必要がある。薄膜配線層では配線に
アルミ、銅などの金属材料、絶縁層にポリイミド樹脂等
基板と熱膨張係数の異なる材料を用いるため、薄膜配線
層を多層化すると、LSIの半田接続時または稼動時等
の温度変化による基板の反り変形が増大する。また、L
SIは、チップ背面から冷却されるが、LSIの高発熱
化はLSI稼動時のチップ厚さ方向の温度勾配の増大を
生じ、このためチップに反り変形を生じる。さらに、半
導体チップが熱膨張係数の異なる基板に接続された場合
もチップ接続面に作用する接続部材からの力により反り
変形を生じる。これらの反り変形はチップ接続用のピン
または半田ボ−ルに接続面に垂直な大きな歪を生じ、信
頼性の低下という近年の半導体装置の高速化に伴う新し
い課題が生じている。
In the above conventional mounting structure, it is necessary to further increase the number of thin film wiring layers in order to achieve higher density in the future. In the thin film wiring layer, a metal material such as aluminum or copper is used for the wiring, and a material such as a polyimide resin having a different thermal expansion coefficient from the substrate is used for the insulating layer. The warp deformation of the substrate due to the temperature change increases. Also, L
The SI is cooled from the back surface of the chip, but the high heat generation of the LSI causes an increase in the temperature gradient in the chip thickness direction during the operation of the LSI, which causes warpage and deformation of the chip. Further, even when the semiconductor chip is connected to a substrate having a different coefficient of thermal expansion, warping deformation occurs due to the force from the connecting member acting on the chip connecting surface. These warp deformations cause a large amount of distortion in the pins for connecting the chips or the solder balls perpendicular to the connection surface, which causes a new problem that the reliability of the semiconductor devices is increased in recent years with the increase in speed.

【0004】本発明の目的は、前述のチップおよび基板
の反り変形による半田ボ−ルとピンの損傷を防止し、高
密度実装を可能にする半導体装置を提供することにあ
る。
An object of the present invention is to provide a semiconductor device which prevents damage to the solder balls and pins due to the warp deformation of the above-mentioned chip and substrate and enables high-density mounting.

【0005】[0005]

【課題を解決するための手段】上記目的は、半導体素子
と、この半導体素子を搭載した基板と、前記半導体素子
および前記基板を電気的に接続する接続素子とを備えた
半導体装置において、前記半導体素子の前記基板に対向
する面の反対面に、前記半導体素子と異なる熱膨張係数
を有する材料の層を形成したことを特徴とする半導体装
置により達成される。
The above object is to provide a semiconductor device comprising a semiconductor element, a substrate on which the semiconductor element is mounted, and a connecting element for electrically connecting the semiconductor element and the substrate. This is achieved by a semiconductor device characterized in that a layer of a material having a thermal expansion coefficient different from that of the semiconductor element is formed on the surface of the element opposite to the surface facing the substrate.

【0006】[0006]

【作用】上記構成によれば、裏面に熱膨張係数の異なる
材料からなる変形整合層を接合された半導体素子は、温
度変化を受けると反り変形を生じる。この変形量は変形
整合層の材料特性、厚さにより変えられる。そこで、変
形整合層、基板あるいは薄膜配線層の厚さを適切に選べ
ば、半田接合時や稼動時における温度変化による素子と
基板の熱変形差を半田ボ−ル、ピン等に損傷を生じるこ
とのない許容値以下に押さえることが可能となる。
According to the above structure, the semiconductor element having the deformation matching layer made of a material having a different coefficient of thermal expansion bonded to the back surface of the semiconductor element undergoes warp deformation when subjected to a temperature change. This amount of deformation can be changed depending on the material characteristics and thickness of the deformation matching layer. Therefore, if the thickness of the deformation matching layer, the substrate or the thin film wiring layer is properly selected, the difference in thermal deformation between the element and the substrate due to temperature changes during solder joining or operation may cause damage to the solder balls, pins, etc. It is possible to keep below the allowable value.

【0007】[0007]

【実施例】以下、本発明のいくつかの実施例を、図面を
参照して説明する。図1は、第1の実施例を示す図で、
基板2上に半田ボ−ルなどの接続部材4を介して半導体
チップ1が実装されている。この半導体チップは冷却用
部材5と基板2とで封止されている。フロリナ−トなど
の冷却用液体10が冷却用部材5の流入口20から流入
し、ノズル7から噴射され半導体チップ1を冷却した
後、流出口21より流出する。基板2の上部にはポリイ
ミド樹脂などの有機材料を絶縁体とした薄膜配線層3が
形成されている。この基板2では基板材と薄膜配線層3
との熱膨張率が異なるため、LSIチップの接続プロセ
ス及び半導体稼働時の温度変化により反り変形が生じ
る。そこで、この変形によるピンまたは半田ボ−ル4な
どの接続部の損傷を防ぐために、半導体チップ1の裏面
全面にチップとは熱膨張率の異なる金属薄膜で形成され
た変形整合層6が設けられている。この変形整合層6は
必ずしも金属膜である必要は無く、セラミック等の溶射
膜でもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a first embodiment,
The semiconductor chip 1 is mounted on the substrate 2 via a connecting member 4 such as a solder ball. This semiconductor chip is sealed by the cooling member 5 and the substrate 2. A cooling liquid 10 such as Fluorinert flows from an inlet 20 of the cooling member 5, is jetted from a nozzle 7 to cool the semiconductor chip 1, and then flows out from an outlet 21. On top of the substrate 2, a thin film wiring layer 3 having an organic material such as polyimide resin as an insulator is formed. In this substrate 2, the substrate material and the thin film wiring layer 3
Since they have different thermal expansion coefficients from each other, warp deformation occurs due to the temperature change during the LSI chip connection process and semiconductor operation. Therefore, in order to prevent damages to the connecting portions such as the pins or the solder balls 4 due to this deformation, a deformation matching layer 6 formed of a metal thin film having a coefficient of thermal expansion different from that of the chip is provided on the entire back surface of the semiconductor chip 1. ing. The deformation matching layer 6 does not necessarily have to be a metal film, but may be a sprayed film of ceramic or the like.

【0008】図3、図4を用いて、この変形整合層6の
作用について説明する。図3は、半導体チップ、変形整
合層付き半導体チップおよび薄膜層付き基板が単体でそ
れぞれ接続プロセス温度、常温及び半導体稼働時の温度
になった場合の反り変形を示したものである。半導体チ
ップ1はピンまたは半田ボ−ル4等を介して基板2に2
00〜300℃の温度で接合された後、−ΔT1 の温度
変化を受け常温(約20℃)に戻る。その後、チップに
通電され稼働状態に入ると、半導体チップ1は平均して
ΔT2だけ温度上昇する。通常この状態では、50〜8
5℃に昇温する。さらに半導体チップ1はその動作面の
発熱を背面から冷却している。この2つの温度変化によ
り、半導体チップ内には温度勾配が生じる。
The operation of the deformation matching layer 6 will be described with reference to FIGS. FIG. 3 shows the warp deformation when the semiconductor chip, the semiconductor chip with the deformation matching layer and the substrate with the thin film layer respectively reach the connection process temperature, the room temperature and the temperature during semiconductor operation. The semiconductor chip 1 is mounted on the substrate 2 via pins or solder balls 4 or the like.
After joining at a temperature of 00 to 300 ° C., the temperature changes to −ΔT 1 and the temperature returns to room temperature (about 20 ° C.). After that, when the chip is energized and enters the operating state, the temperature of the semiconductor chip 1 rises by ΔT 2 on average. Normally, in this state, 50 to 8
Raise to 5 ° C. Further, the semiconductor chip 1 cools the heat generated on its operating surface from the back surface. A temperature gradient occurs in the semiconductor chip due to these two temperature changes.

【0009】整合層を持たない半導体チップ1の場合に
は、基板接合温度になった後、常温に戻る温度変化−Δ
1 においては反り変形を生じない。また、稼働時温度
まで温度上昇ΔT2 しても反り変形を生じないが、半導
体チップ内の温度勾配によって反り変形bを生じる。一
方、基板2はその上面に薄膜配線層3があり、この薄膜
配線層3は熱膨張係数の異なる材料で形成されているの
で、チップ寸法範囲内で温度上昇1℃あたり−a2 の反
り変形を生じる。この反り変形により、チップ接合後に
常温まで温度変化すると、a2ΔT1の変形を生じる。ま
た、基板2は半導体チップの稼働時には、チップとは温
度上昇が同じでなく、ΔT1 より温度差の低いΔT3
当の温度上昇をする。この場合、基板2の稼働時温度で
の変形はチップ寸法範囲内でa2(ΔT1−ΔT3)とな
る。さらに、半導体チップ1上に、温度上昇1℃あたり
−a1 の変形を生じるように変形整合層6を設けると、
チップ1には常温、稼働時温度でそれぞれa1ΔT1、a
1(ΔT1−ΔT2)+bの反り変形が生じる。
In the case of the semiconductor chip 1 having no matching layer, the temperature change returning to room temperature after reaching the substrate bonding temperature-Δ
No warp deformation occurs at T 1 . Further, although the warp deformation does not occur even if the temperature rises to the operating temperature ΔT 2 , the warp deformation b occurs due to the temperature gradient in the semiconductor chip. On the other hand, the substrate 2 has the thin film wiring layer 3 on the upper surface thereof, and since the thin film wiring layer 3 is formed of materials having different thermal expansion coefficients, the warp deformation of −a 2 per 1 ° C. temperature rise within the chip size range. Cause Due to this warp deformation, when the temperature changes to room temperature after chip joining, a deformation of a 2 ΔT 1 occurs. Further, when the semiconductor chip is in operation, the temperature of the substrate 2 is not the same as that of the chip, and the temperature of the substrate 2 rises by ΔT 3 which has a lower temperature difference than ΔT 1 . In this case, the deformation of the substrate 2 at the operating temperature is a 2 (ΔT 1 −ΔT 3 ) within the chip size range. Further, when the deformation matching layer 6 is provided on the semiconductor chip 1 so as to cause deformation of −a 1 per 1 ° C. temperature rise,
The chip 1 has a 1 ΔT 1 and a 1 at room temperature and operating temperature, respectively.
Warp deformation of 1 (ΔT 1 −ΔT 2 ) + b occurs.

【0010】図4に、半導体装置に対して上記の構造を
用いた場合の半導体装置の挙動を示す。基板に配線層が
あり、チップに変形整合層があるの場合においては、
接合時から常温への温度変化により、チップではa1Δ
1 、基板ではa2ΔT1 の変形を生じるので、結果と
して (a1−a2)ΔT1 ……(1) の変形差を生じる。そして、このは、稼動時にはチッ
プでa1(ΔT1−ΔT2)+b、基板でa2(ΔT1 −Δ
3)の変形を生じ、その差は次のようになる。 a1(ΔT1−ΔT2)+b−a2(ΔT1−ΔT3) ……(2) 接続部材はこれらの変形差を生じるチップと基板を結合
するために歪や応力を生じる。従ってこれらの変形差を
十分小さくすることにより、接続部の強度信頼性を高め
ることができる。
FIG. 4 shows the behavior of the semiconductor device when the above structure is used for the semiconductor device. If the substrate has a wiring layer and the chip has a deformation matching layer,
Due to the temperature change from the time of joining to room temperature, a 1 Δ
At T 1 , the substrate is deformed by a 2 ΔT 1 , and as a result, a deformation difference of (a 1 −a 2 ) ΔT 1 (1) is generated. And, this is, a 1 (ΔT 1 -ΔT 2 ) in the chip during operation + b, a substrate with a 2 (ΔT 1
T 3 ) is deformed, and the difference is as follows. a 1 (ΔT 1 −ΔT 2 ) + b−a 2 (ΔT 1 −ΔT 3 ) ... (2) The connecting member causes strain and stress to connect the chip and the substrate that cause these deformation differences. Therefore, the strength reliability of the connection portion can be enhanced by sufficiently reducing the difference in deformation.

【0011】図5に示したように、チップの対角線長さ
をdとする。また、厚さ、ヤング率、熱膨張係数をそれ
ぞれh、E、αで表し、変形整合層、半導体チップ、薄
膜配線層、基板についてのこれらの量をそれぞれ下付き
添字1、2、3、4を付して表す。またチップの単位面
積当りの発熱量をq、熱伝導率をλで表す。このとき、
前記のa1、a2、bはそれぞれ大略次のように表され
る。
As shown in FIG. 5, the diagonal length of the chip is d. Further, the thickness, Young's modulus, and coefficient of thermal expansion are represented by h, E, and α, respectively, and these amounts for the deformation matching layer, the semiconductor chip, the thin film wiring layer, and the substrate are respectively subscripted 1, 2, 3, and 4. It is indicated by adding. The heat generation amount per unit area of the chip is represented by q, and the thermal conductivity is represented by λ. At this time,
The above-mentioned a 1 , a 2 and b are generally represented as follows.

【0012】 a1=(3/4)d2×(α1−α2)×E11/(E22 2)……(3) a2=(3/4)d2×(α3−α4)×E33/(E44 2)……(4) b=d2×α2×q/(8λ) ……(5)A 1 = (3/4) d 2 × (α 1 −α 2 ) × E 1 h 1 / (E 2 h 2 2 ) ... (3) a 2 = (3/4) d 2 × (Α 3 −α 4 ) × E 3 h 3 / (E 4 h 4 2 ) (4) b = d 2 × α 2 × q / (8λ) (5)

【0013】[0013]

【表1】 [Table 1]

【0014】半導体装置が実際に受ける温度変化の一例
として、上に示す表1の条件で熱膨張係数、ヤング率、
厚さを定め、上記(1)〜(3)式を算出する。ここ
で、チップ接続構造は図5に示した構造であり、チップ
の対角線長さd=20mm、チップの単位面積当たりの発
熱量q=1w/mm2、熱伝導率λ=0.14w/mm・℃、温度差
ΔT1=180℃、ΔT2=60℃、ΔT3=30℃とし
た。この結果、b≒1.1μmが得られた。
As an example of the temperature change actually received by the semiconductor device, the thermal expansion coefficient, Young's modulus,
The thickness is determined and the above equations (1) to (3) are calculated. Here, the chip connection structure is the structure shown in FIG. 5, the chip diagonal length d = 20 mm, the heat generation amount per unit area of the chip q = 1 w / mm 2 , the thermal conductivity λ = 0.14 w / mm. C, temperature difference ΔT 1 = 180 ° C., ΔT 2 = 60 ° C., ΔT 3 = 30 ° C. As a result, b≈1.1 μm was obtained.

【0015】この場合に上記(1)、(2)の変形差を共に
0にするには、a1=a2=b/(ΔT2−ΔT3)となる
ようにh1 、h3 、h4 を選べば良い。例えば変形整合
層をNiで形成した場合、上記より、h1 は約2.2μ
m 、Crで形成した場合は、約4.5μmとなる。ま
た、h4 を3mmのままにすれば、h3 を0.64mm
となるように膜を形成すれば良い。
In this case, in order to make both the deformation differences of the above (1) and (2) 0, h 1 , h 3 , and a 1 = a 2 = b / (ΔT 2 −ΔT 3 ) You can choose h 4 . For example, when the deformation matching layer is made of Ni, h 1 is about 2.2 μ from the above.
When formed with m 2 and Cr, the thickness is about 4.5 μm. Also, if h 4 remains 3 mm, h 3 will be 0.64 mm
The film may be formed so that

【0016】しかし、実用的には変形差を0にする必要
は無く、接合強度から決まる許容値以下であれば良い。
半田のクリ−プ破断を防ぐには、半田に応力が作用しつ
づけることを防げば良い。このためには稼動時の高温に
おけるクリ−プで応力緩和が生じた後常温に戻った場合
に半田が降伏しなければ良く、稼動時温度と常温との温
度差で生じる接続面に垂直な歪が0.2%以下であれば
良い。0.5mmの厚さのチップが20%程度の断面積
密度を持つ半田ボ−ルで接続された場合、変形差δによ
る歪はおよそ(20/d)2 δとなる。ここで、δは変
形差(mm)、dはチップ対角線長さである。この場合
の変形差に対する許容値δalは大略次のようになる。 δal=5.0d2/106(mm) この値はチップ厚さの二乗に逆比例し、半田接合部の断
面積密度に比例するからδalは次のようになる。このと
きに強度から変形差に対する許容値δalは大略次のよう
になる。 δal=5.0d2(κ/0.2)(0.5/t)2/106(mm) =6.25(d/t)2κ/106(mm) ここで、dはチップ対角線長さ、tはチップ厚さ、κは
接続半田断面積密度である。
However, in practice, it is not necessary to make the deformation difference zero, and it is sufficient if it is not more than the allowable value determined by the bonding strength.
In order to prevent the creep rupture of the solder, it is sufficient to prevent the stress from continuously acting on the solder. For this purpose, it is sufficient if the solder does not yield when the temperature returns to room temperature after stress relaxation due to creep at high temperature during operation, and the strain perpendicular to the connection surface caused by the temperature difference between the operation temperature and room temperature is generated. Should be 0.2% or less. When a chip having a thickness of 0.5 mm is connected with a solder ball having a cross-sectional area density of about 20%, the strain due to the deformation difference δ is about (20 / d) 2 δ. Here, δ is a deformation difference (mm), and d is a chip diagonal length. The allowable value δ al for the deformation difference in this case is approximately as follows. δ al = 5.0d 2/10 6 (mm) The value is inversely proportional to the square of the chip thickness, al [delta] proportional to the cross-sectional area density of the solder joint is as follows. At this time, the allowable value δ al from the strength to the deformation difference is approximately as follows. δ al = 5.0d 2 (κ / 0.2) (0.5 / t) 2/10 6 (mm) = 6.25 where (d / t) 2 κ / 10 6 (mm), d is The chip diagonal length, t is the chip thickness, and κ is the connection solder cross-sectional area density.

【0017】図5の場合、接続半田断面積密度が0.1
であるとすると、δalは1μmとなる。表1に示した必
要最小厚さで基板を構成するとΔT1により5μmも変
形するためh4を5mmとした。この場合ΔT1による変
形は1.8μmとなる。Ni、Crの場合それぞれ0.8
μm、1.6μmの変形整合層を作ると常温で変形差は
ほぼ0となり、稼動時には0.7μmとなり許容範囲に
入る。
In the case of FIG. 5, the connection solder cross-sectional area density is 0.1.
Then, δ al becomes 1 μm. When the substrate is constructed with the necessary minimum thickness shown in Table 1, 5 μm is deformed by ΔT 1, so h 4 is set to 5 mm. In this case, the deformation due to ΔT 1 is 1.8 μm. 0.8 for Ni and Cr
When a deformation matching layer of μm and 1.6 μm is formed, the deformation difference becomes almost 0 at room temperature and becomes 0.7 μm during operation, which is within the allowable range.

【0018】次に、図4において基板に配線層が有り、
チップに整合層がないの場合では常温でチップは変形
しないにもかかわらず基板がaΔT1 変形するため接続
部材に損傷を生じる。稼動時にはチップはbの変形を生
じ、基板変形はa(ΔT1 −ΔT3 )となるため接続部
の負荷は下がるが、停止時に常温に戻り、常温時と稼動
時の負荷が繰り返される。チップに整合層が無く、基板
にも配線層が無いの場合では、常温時には負荷は生じ
ないが、稼動時にはチップのみにbの変形を生じ負荷が
生じる。チップ発熱量が小さい場合はbは小さく重大な
損傷は生じないが、発熱量が大きくなると損傷を生じ
る。基板に配線層が無くチップに整合層が有るの場合
では常温時、稼動時ともに損傷を生じる。このように
の構造は、基板薄膜配線層が厚い場合やチップ発熱量が
大きい場合に、他の構造に比べて信頼性の高い構造を提
供できる。
Next, in FIG. 4, there is a wiring layer on the substrate,
If the chip does not have a matching layer, the substrate is deformed by aΔT 1 even though the chip is not deformed at room temperature, and the connecting member is damaged. When the chip is in operation, the chip is deformed by b, and the substrate is deformed by a (ΔT 1 −ΔT 3 ), so the load on the connection portion is reduced, but the temperature is returned to room temperature when stopped, and the load at room temperature and during operation is repeated. In the case where the chip has no matching layer and the substrate has no wiring layer, no load is generated at room temperature, but during operation, only the chip is deformed and a load is generated. When the heat value of the chip is small, b is small and no serious damage is caused, but when the heat value of the chip is large, damage is caused. If the substrate has no wiring layer and the chip has a matching layer, damage will occur both at room temperature and during operation. Such a structure can provide a structure with higher reliability than other structures when the substrate thin film wiring layer is thick or the chip heat generation amount is large.

【0019】上記のような構造は、半田ボールの場合だ
けでなく、図6に示すように、変形整合層6を形成した
LSIチップ1と基板2の薄膜配線層3との間を、金属
のボール11またはピンを半田12で接続する場合にも
適用できる。
The structure as described above is not limited to the case of the solder ball, but as shown in FIG. 6, the metal between the LSI chip 1 on which the deformation matching layer 6 is formed and the thin film wiring layer 3 of the substrate 2 is formed. It is also applicable when connecting the balls 11 or the pins with the solder 12.

【0020】図7は、本発明の第2の実施例を示す図で
ある。この図7においては、変形整合層をチップ全面に
では無く、部分的に設けている。この部分的な変形整合
層も第1の実施例と同様の役割を果たしうる。そして、
チップ切りだし時に金属粉が飛散するのを防止するた
め、切断箇所に金属膜を付けないときなどに有効であ
る。なお、図7では基板の変形量を適切にするため、基
板厚さを変える代わりに基板裏面に変形整合層を形成し
ている。また、図7では変形整合層6は部分的に連続し
ているが、複数に分割して設けても同様の効果がある。
FIG. 7 is a diagram showing a second embodiment of the present invention. In FIG. 7, the deformation matching layer is partially provided, not on the entire surface of the chip. This partial deformation matching layer can also play the same role as in the first embodiment. And
This is effective when the metal film is not attached to the cut point, because it prevents the metal powder from scattering when cutting the chip. In FIG. 7, in order to make the amount of deformation of the substrate appropriate, instead of changing the thickness of the substrate, a deformation matching layer is formed on the back surface of the substrate. Further, although the deformation matching layer 6 is partially continuous in FIG. 7, the same effect can be obtained even if the deformation matching layer 6 is divided into a plurality of parts.

【0021】図8は、本発明の第3の実施例を示す図で
ある。この実施例では、チップは冷媒に直接接触はして
いない。そして、熱伝導性コンパウンド13を介して、
冷却部材5に設けられた流路22内を流れる冷媒により
冷却される。熱伝導性コンパウンド13は変形抵抗が小
さいため、チップ上に変形整合層を設けることにより、
接続半田の負荷を低減できる。この熱伝導性コンパウン
ドとしては、酸化亜鉛を含有するグリース等が知られて
いる。
FIG. 8 is a diagram showing a third embodiment of the present invention. In this example, the chips are not in direct contact with the coolant. Then, through the heat conductive compound 13,
It is cooled by the refrigerant flowing in the flow path 22 provided in the cooling member 5. Since the thermal conductive compound 13 has a small deformation resistance, by providing a deformation matching layer on the chip,
The load of connecting solder can be reduced. As this heat conductive compound, grease containing zinc oxide is known.

【0022】図9は、本発明の第4の実施例を示す図で
ある。前述までの実施例は変形整合層がチップ厚さに比
べて十分に薄い場合であったが、変形整合層がチップ厚
さ相当であっても上述と同等の効果が得られる。図9に
おいて、変形整合層6はチップの熱膨張係数より0.2
×10~6/℃だけ大きい窒化アルミでできており、1.
0mmの厚さを有している。この窒化アルミ板は半田な
どの熱伝導性接着剤14でチップに接合されている。こ
のように、変形整合層が厚い場合の1℃当りの変形量a
は前記の式(3)より厳密な次式(6)で表される。す
なわち、熱伝導性接着剤14の影響を無視し、かつ図5
に示した記号を用いると、変形量は次のようになる。
FIG. 9 is a diagram showing a fourth embodiment of the present invention. In the above-described embodiments, the deformation matching layer is sufficiently thinner than the chip thickness, but even if the deformation matching layer corresponds to the chip thickness, the same effect as described above can be obtained. In FIG. 9, the deformation matching layer 6 is 0.2 from the coefficient of thermal expansion of the chip.
It is made of aluminum nitride that is as large as × 10 ~ 6 / ℃.
It has a thickness of 0 mm. This aluminum nitride plate is bonded to the chip with a heat conductive adhesive 14 such as solder. Thus, the deformation amount a per 1 ° C. when the deformation matching layer is thick
1 is represented by the following equation (6), which is more strict than the above equation (3). That is, ignoring the influence of the heat conductive adhesive 14,
Using the symbols shown in, the amount of deformation is as follows.

【0023】 a1=(3/4)×h2×d2×(α1−α2)× (1+m)/{3(1+m)2+(1+mn)×(m2+1/(m
n))} ……(6) ここで、m=h1/h2 、n=E1
/E2である。
A 1 = (3/4) × h 2 × d 2 × (α 1 −α 2 ) × (1 + m) / {3 (1 + m) 2 + (1 + mn) × (m 2 + 1 / (m
n))} (6) where m = h 1 / h 2 and n = E 1
/ E 2 .

【0024】窒化アルミのヤング率は約2.8×105 M
Paであるから、上記寸法の変形整合層を用いると、ΔT
1の温度変化により第1の実施例と同様、1.8μmの熱
変形に抑えることができる。なお、この変形整合層は窒
化アルミ以外のチップとの熱膨張係数差が1×10~6
℃以下の材料であれば良いが、冷却性能を損なわないた
めにはできるだけ薄いことが望ましく熱膨張係数差が
0.5×10~6/℃ 以下であることが好ましい。
The Young's modulus of aluminum nitride is about 2.8 × 10 5 M
Since it is Pa, if the deformation matching layer with the above dimensions is used, ΔT
Similar to the first embodiment by 1 temperature change can be suppressed to a thermal deformation of 1.8 .mu.m. In this variant matching layer thermal expansion coefficient difference between the chip other than aluminum nitride 1 × 10 ~ 6 /
Any material may be used if the temperature is not higher than 0 ° C, but it is preferable that the material is as thin as possible so as not to impair the cooling performance, and the difference in coefficient of thermal expansion is preferably 0.5 × 10 6 / ° C or less.

【0025】図10は、本発明の第5の実施例を示す図
である。図10では薄膜配線層の無い基板上にチップが
接続されている。この接続半田の断面密度κ が0.05
であればd=20mm、t=0.5mmであればδal
0.5μmとなる。一方、チップの単位面積当たりの発
熱量q=1w/mm2、熱伝導率λ=0.14w/mm・℃とすれば
稼動時の温度分布による反り変形はb≒1.1μmとな
り δalを超える。そこで、チップ上にNiまたはCr
の変形整合層をそれぞれ1.0、2.0μm作れば、稼動
時の温度上昇60℃で0.75μmの変形を生じ変形差
は0.35μmとなり、δal以下とできる。この場合に
は、チップ接続時から常温までの温度変化によりδal
上の変形差が生じるが、この温度変化は回数が少なく、
破断の恐れは少ない。変形整合層がこのような役目を果
たせるには、稼動時の温度上昇60℃による変形がδal
の25%以上あることが望ましい。
FIG. 10 is a diagram showing a fifth embodiment of the present invention. In FIG. 10, the chip is connected on a substrate having no thin film wiring layer. The cross-sectional density κ of this connection solder is 0.05
If so, d = 20 mm, and if t = 0.5 mm, δ al becomes 0.5 μm. On the other hand, if the amount of heat generated per unit area of the chip is q = 1 w / mm 2 and the thermal conductivity λ is 0.14 w / mm · ° C, the warp deformation due to the temperature distribution during operation is b ≈ 1.1 μm and δ al Exceed. Therefore, Ni or Cr on the chip
If the respective deformation matching layers of 1.0 and 2.0 μm are made, a deformation of 0.75 μm occurs at a temperature rise of 60 ° C. during operation, and the deformation difference becomes 0.35 μm, which can be δ al or less. In this case, a deformation difference of δ al or more occurs due to the temperature change from the time of chip connection to normal temperature, but this temperature change is small in number,
There is little risk of breakage. In order for the deformation matching layer to fulfill such a role, the deformation due to the temperature rise of 60 ° C. during operation is δ al.
Is preferably 25% or more.

【0026】図11は、本発明の第6の実施例を示す図
である。図11ではチップと熱膨張係数のことなるアル
ミナ、エポキシ、ポリイミド等の基板8の上にチップ6
が接続されている。このような半導体装置が温度変化を
受けると、基板が膨張し、このため半田接続部を介して
チップ下面に剪断力が作用しチップに反り変形を生じ
る。この結果、図12に示すように常温で破線で示した
形状のものが、稼動時等の温度上昇時には実線で示した
ように変形して半田接続界面に垂直な応力が生じる。こ
の場合にも変形整合層により反り変形を減少させること
ができる。有限要素法の計算結果によれば60℃の温度
変化によるこの構造の半田接合部の垂直歪は次のように
なる。
FIG. 11 is a diagram showing a sixth embodiment of the present invention. In FIG. 11, the chip 6 is placed on a substrate 8 made of alumina, epoxy, polyimide or the like having a different coefficient of thermal expansion from that of the chip.
Are connected. When such a semiconductor device undergoes a temperature change, the substrate expands, which causes a shearing force to act on the bottom surface of the chip via the solder connection portion, causing warpage and deformation of the chip. As a result, the shape shown by the broken line at room temperature as shown in FIG. 12 is deformed as shown by the solid line when the temperature rises during operation and the stress perpendicular to the solder connection interface is generated. Also in this case, the warp deformation can be reduced by the deformation matching layer. According to the calculation result of the finite element method, the vertical strain of the solder joint of this structure due to the temperature change of 60 ° C. is as follows.

【0027】εz≒400dκΔαここで、Δαはチッ
プと基板の熱膨張係数差である。例えば、d=20、κ
=0.2、Δα=2/106とすると、 εz=0.0032 前述のように、εzは0.002以下とする必要があるた
めチップの変形整合層は0.0012以上のεz を生じ
る必要がある。このためには1.2μm以上の変形を生
じる必要があるためNiまたはCrの変形整合層は1.
6μm、3.2μm必要となる。
Ε z ≈400 dκ Δα where Δα is the difference in thermal expansion coefficient between the chip and the substrate. For example, d = 20, κ
= 0.2 and Δα = 2/10 6 , ε z = 0.0032 As described above, since ε z needs to be 0.002 or less, the deformation matching layer of the chip has ε of 0.0012 or more. need to yield z . For this purpose, it is necessary to generate deformation of 1.2 μm or more, so the Ni or Cr deformation matching layer is 1.
6 μm and 3.2 μm are required.

【0028】図13は、本発明の第7の実施例を示す図
である。チップと熱膨張係数の異なる基板8の上にチッ
プ1が接続されており、このチップ上には半田14によ
り接合された金属箔15からなる変形整合層を備えてい
る。
FIG. 13 is a diagram showing a seventh embodiment of the present invention. A chip 1 is connected on a substrate 8 having a different coefficient of thermal expansion from the chip, and a deformation matching layer made of a metal foil 15 joined by a solder 14 is provided on the chip.

【0029】図14は、本発明の第8の実施例を示す図
である。チップと熱膨張係数の異なる基板8の上にチッ
プが接続されており、このチップ上には変形整合層とし
て樹脂16が接合されている。
FIG. 14 is a diagram showing an eighth embodiment of the present invention. The chip is connected on the substrate 8 having a different coefficient of thermal expansion from the chip, and the resin 16 is bonded on the chip as a deformation matching layer.

【0030】[0030]

【発明の効果】本発明によれば、半導体装置において、
基板またはチップと熱膨張係数の異なる基板にLSIチ
ップを実装したときに、温度変化により発生する基板の
反り変形を変形整合層がその反りを打ち消すように作用
し、半田ボ−ル等の接続部材の変形応力を緩和するの
で、信頼性の高い実装構造を得ることができる。
According to the present invention, in a semiconductor device,
When an LSI chip is mounted on a substrate or a substrate having a different thermal expansion coefficient from that of the chip, the warping deformation of the substrate caused by a temperature change acts so that the deformation matching layer cancels the warpage, and a connecting member such as a solder ball. Since the deformation stress of is relaxed, a highly reliable mounting structure can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の縦断面図である。FIG. 1 is a vertical cross-sectional view of a first embodiment of the present invention.

【図2】従来例の縦断面図である。FIG. 2 is a vertical sectional view of a conventional example.

【図3】変形整合層の役割を示すための説明図である。FIG. 3 is an explanatory diagram showing a role of a deformation matching layer.

【図4】変形整合層の役割を示すための説明図である。FIG. 4 is an explanatory diagram showing a role of a deformation matching layer.

【図5】変形整合層の役割を示すための説明図である。FIG. 5 is an explanatory diagram showing a role of a deformation matching layer.

【図6】第1の実施例における接続構造の変形例の縦断
面図である。
FIG. 6 is a vertical cross-sectional view of a modified example of the connection structure according to the first embodiment.

【図7】本発明の第2の実施例の縦断面図である。FIG. 7 is a vertical sectional view of a second embodiment of the present invention.

【図8】本発明の第3の実施例の縦断面図である。FIG. 8 is a vertical sectional view of a third embodiment of the present invention.

【図9】本発明の第4の実施例の縦断面図である。FIG. 9 is a vertical sectional view of a fourth embodiment of the present invention.

【図10】本発明の第5の実施例の縦断面図である。FIG. 10 is a vertical sectional view of a fifth embodiment of the present invention.

【図11】本発明の第6の実施例の縦断面図である。FIG. 11 is a vertical sectional view of a sixth embodiment of the present invention.

【図12】チップと基板の熱膨張係数が異なる場合の歪
発生機構の説明図である。
FIG. 12 is an explanatory diagram of a strain generation mechanism when the chip and the substrate have different thermal expansion coefficients.

【図13】本発明の第7の実施例の縦断面図である。FIG. 13 is a vertical sectional view of a seventh embodiment of the present invention.

【図14】本発明の第8の実施例の縦断面図である。FIG. 14 is a vertical sectional view of an eighth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 LSIチップ 2 基板 3 薄膜配線層 4 半田ボ−ル 5 冷却部材 6 変形整合層 7 ノズル 8 チップと熱膨張係数の異なる基板 10 フロリナ−ト 11 金属ボ−ル又はピン 12 半田 13 熱伝導性コンパウンド 14 半田 15 金属箔 16 樹脂からなる変形整合層 20 冷媒流入口 21 冷媒流出口 23 冷媒流路 99 ピン 1 LSI Chip 2 Substrate 3 Thin Film Wiring Layer 4 Solder Ball 5 Cooling Member 6 Deformation Matching Layer 7 Nozzle 8 Substrate with Different Coefficient of Thermal Expansion from Chip 10 Fluorinert 11 Metal Ball or Pin 12 Solder 13 Thermal Conductive Compound 14 Solder 15 Metal Foil 16 Deformation Matching Layer 20 Made of Resin 20 Refrigerant Inlet 21 Refrigerant Outlet 23 Refrigerant Flow Path 99 Pin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土居 博昭 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Doi, 502 Kintatemachi, Tsuchiura City, Ibaraki Prefecture Hiritsu Seisakusho Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 発熱半導体素子と、この発熱半導体素子
を搭載した基板と、この基板の表面に形成され基板と異
なる材料を絶縁体とする配線層と、前記発熱半導体素子
と前記基板とを電気的に接続する接続素子とを備えた半
導体装置において、 前記発熱半導体素子の前記基板に対向する面の反対面
に、前記発熱半導体素子と異なる熱膨張係数を有する材
料の層を設けたことを特徴とする半導体装置。
1. A heating semiconductor element, a substrate on which the heating semiconductor element is mounted, a wiring layer formed on the surface of the substrate and made of a material different from that of the substrate as an insulator, and the heating semiconductor element and the substrate are electrically connected to each other. In a semiconductor device including a connecting element that electrically connects, a layer of a material having a coefficient of thermal expansion different from that of the heating semiconductor element is provided on a surface of the heating semiconductor element opposite to the surface facing the substrate. Semiconductor device.
【請求項2】 前記発熱半導体素子と異なる熱膨張係数
を有する材料の層は、メッキ、スパッタ、溶射等により
形成された薄膜からなることを特徴とする請求項1に記
載の半導体装置。
2. The semiconductor device according to claim 1, wherein the layer of a material having a thermal expansion coefficient different from that of the heat-generating semiconductor element is a thin film formed by plating, sputtering, thermal spraying or the like.
【請求項3】 前記発熱半導体素子と前記基板との間に
前記接続素子を配設し、前記発熱半導体素子の対角線長
さをd(mm)、チップ厚さをt(mm)、接続半田断
面積密度をκとしたときに、前記発熱半導体素子と前記
基板の熱変形差δ(mm)を次式で示される変形限界δ
al(mm)に対して、 δal==6.25(d/t)2κ/106 、 δ≦δal となるように、前記発熱半導体素子と異なる熱膨張係数
を有する材料の層の厚さを形成したことを特徴とする請
求項1に記載の半導体装置。
3. The connecting element is arranged between the heat generating semiconductor element and the substrate, the diagonal length of the heat generating semiconductor element is d (mm), the chip thickness is t (mm), and the solder connection is broken. When the area density is κ, the thermal deformation difference δ (mm) between the heat generating semiconductor element and the substrate is the deformation limit δ expressed by the following equation.
For al (mm), δ al == 6.25 (d / t) 2 κ / 10 6 , and δ ≦ δ al . The semiconductor device according to claim 1, wherein a thickness is formed.
【請求項4】 前記発熱半導体素子と異なる熱膨張係数
を有する材料の層は、Cr、Ni、またはそれらの合金
により形成されていることを特徴とする請求項1ないし
3のうちいずれかに記載の半導体装置。
4. The layer of a material having a coefficient of thermal expansion different from that of the heat-generating semiconductor element is formed of Cr, Ni, or an alloy thereof. Semiconductor device.
【請求項5】 発熱半導体素子と、この発熱半導体素子
を搭載した基板と、この基板の表面に形成され基板と異
なる材料を絶縁体とする配線層と、前記発熱半導体素子
と前記基板とを電気的に接続する接続素子とを備えた半
導体装置の製造方法において、 前記発熱半導体素子の前記基板に対向する面の反対面
に、前記発熱半導体素子と異なる熱膨張係数を有する材
料の層を形成した後に、前記発熱半導体素子と前記基板
とを電気的に接続することを特徴とする半導体装置の製
造方法。
5. A heat-generating semiconductor element, a substrate on which the heat-generating semiconductor element is mounted, a wiring layer formed on the surface of the substrate and made of a material different from the substrate as an insulator, and the heat-generating semiconductor element and the substrate are electrically connected to each other. In a method of manufacturing a semiconductor device including a connection element that is electrically connected, a layer of a material having a coefficient of thermal expansion different from that of the heat-generating semiconductor element is formed on a surface of the heat-generating semiconductor element opposite to the surface facing the substrate. A method of manufacturing a semiconductor device, characterized in that the heating semiconductor element and the substrate are electrically connected later.
【請求項6】 半田ボールまたはピンによる接続端部を
備えたLSIチップにおいて、前記接続端部を含む面の
反対面に、前記LSIチップと異なる熱膨張係数を有す
る材料の層を形成したことを特徴とするLSIチップ。
6. An LSI chip having a solder ball or pin connection end portion, wherein a layer of a material having a thermal expansion coefficient different from that of the LSI chip is formed on a surface opposite to a surface including the connection end portion. Characteristic LSI chip.
【請求項7】 前記LSIチップが、対角線長さをd
(mm)、厚さをt(mm)、60℃の温度変化におけ
る変形δ(mm)としたときに、 δ>0.4(d/t)2/106 となるように、前記LSIチップと異なる熱膨張係数を
有する材料の層の厚さを形成したことを特徴とする請求
項6に記載のLSIチップ。
7. The LSI chip has a diagonal length d
(Mm), the thickness t (mm), when the modified [delta] and (mm) in the temperature change of 60 ℃, δ> 0.4 (d / t) at 2/10 6, the LSI chip 7. The LSI chip according to claim 6, wherein a thickness of a layer of a material having a different thermal expansion coefficient is formed.
【請求項8】 前記LSIチップと異なる熱膨張係数を
有する材料の層は、前記LSIチップ面の中央部を覆う
ことを特徴とする請求項6に記載のLSIチップ。
8. The LSI chip according to claim 6, wherein a layer of a material having a coefficient of thermal expansion different from that of the LSI chip covers a central portion of the surface of the LSI chip.
【請求項9】 半導体素子と、この半導体素子を搭載し
た基板と、前記半導体素子および前記基板を電気的に接
続する接続素子とを備えた半導体装置において、 前記半導体素子の前記基板に対向する面の反対面に、前
記半導体素子と異なる熱膨張係数を有する材料の層を形
成したことを特徴とする半導体装置。
9. A semiconductor device comprising a semiconductor element, a substrate on which the semiconductor element is mounted, and a connection element electrically connecting the semiconductor element and the substrate, wherein a surface of the semiconductor element facing the substrate. A semiconductor device having a layer of a material having a thermal expansion coefficient different from that of the semiconductor element formed on the surface opposite to the above.
【請求項10】 前記接続素子は、半田ボールまたはピ
ンからなることを特徴とする請求項9に記載の半導体装
置。
10. The semiconductor device according to claim 9, wherein the connection element comprises a solder ball or a pin.
【請求項11】 前記半導体素子が、対角線長さをd
(mm)、厚さをt(mm)、60℃の温度変化におけ
る変形δ(mm)としたときに、 δ>0.4(d/t)2κ/106 となるように、前記半導体素子と異なる熱膨張係数を有
する材料の層の厚さを形成したことを特徴とする請求項
9に記載の半導体装置。
11. The semiconductor device has a diagonal length d
(Mm), the thickness is t (mm), and the deformation is δ (mm) at a temperature change of 60 ° C., so that δ> 0.4 (d / t) 2 κ / 10 6 The semiconductor device according to claim 9, wherein a thickness of a layer of a material having a coefficient of thermal expansion different from that of the element is formed.
【請求項12】 前記半導体素子と異なる熱膨張係数を
有する材料の層は、Cr、Ni、またはそれらの合金に
より形成されていることを特徴とする請求項9に記載の
半導体装置。
12. The semiconductor device according to claim 9, wherein the layer of a material having a thermal expansion coefficient different from that of the semiconductor element is formed of Cr, Ni, or an alloy thereof.
【請求項13】 前記半導体素子と異なる熱膨張係数を
有する材料の層は、半田により接合された金属箔により
形成されていることを特徴とする請求項9に記載の半導
体装置。
13. The semiconductor device according to claim 9, wherein the layer of the material having a thermal expansion coefficient different from that of the semiconductor element is formed of a metal foil joined by solder.
【請求項14】 前記半導体素子と異なる熱膨張係数を
有する材料の層は、樹脂により形成されていることを特
徴とする請求項9に記載の半導体装置。
14. The semiconductor device according to claim 9, wherein the layer of a material having a coefficient of thermal expansion different from that of the semiconductor element is formed of resin.
JP30276793A 1992-12-24 1993-12-02 Semiconductor device Expired - Fee Related JP3227589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30276793A JP3227589B2 (en) 1992-12-24 1993-12-02 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34390992 1992-12-24
JP4-343909 1992-12-24
JP30276793A JP3227589B2 (en) 1992-12-24 1993-12-02 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06244243A true JPH06244243A (en) 1994-09-02
JP3227589B2 JP3227589B2 (en) 2001-11-12

Family

ID=26563262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30276793A Expired - Fee Related JP3227589B2 (en) 1992-12-24 1993-12-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3227589B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015758A1 (en) * 2002-08-09 2004-02-19 Fujitsu Limited Semiconductor device and method for manufacturing the same
JP2007318182A (en) * 2007-09-03 2007-12-06 Rohm Co Ltd Semiconductor device
WO2011119944A3 (en) * 2010-03-25 2012-04-12 Qualcomm Incorporated Method of attaching a thin die using sacrificial material to inhibit die warpage and corresponding device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015758A1 (en) * 2002-08-09 2004-02-19 Fujitsu Limited Semiconductor device and method for manufacturing the same
US7138723B2 (en) 2002-08-09 2006-11-21 Fujitsu Limited Deformable semiconductor device
JP2007318182A (en) * 2007-09-03 2007-12-06 Rohm Co Ltd Semiconductor device
WO2011119944A3 (en) * 2010-03-25 2012-04-12 Qualcomm Incorporated Method of attaching a thin die using sacrificial material to inhibit die warpage and corresponding device
US8368232B2 (en) 2010-03-25 2013-02-05 Qualcomm Incorporated Sacrificial material to facilitate thin die attach

Also Published As

Publication number Publication date
JP3227589B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
US4034469A (en) Method of making conduction-cooled circuit package
US6911728B2 (en) Member for electronic circuit, method for manufacturing the member, and electronic part
KR940001283B1 (en) Seramic pack type semiconductor device and assembling method of the same
US8541876B2 (en) Microelectronic package having direct contact heat spreader and method of manufacturing same
KR100531393B1 (en) Semiconductor device and manufacturing method of the same
US6706562B2 (en) Electronic assembly with high capacity thermal spreader and methods of manufacture
US5905299A (en) Thermally enhanced thin quad flatpack package
JPH0261539B2 (en)
WO2007037306A1 (en) Heat sink module and process for producing the same
JPS6038867B2 (en) Isolated semiconductor device
WO2006039176A1 (en) Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
US4290079A (en) Improved solder interconnection between a semiconductor device and a supporting substrate
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2010528472A (en) Integrated circuit package with soldered lid for improved thermal performance
US6534792B1 (en) Microelectronic device structure with metallic interlayer between substrate and die
US5311399A (en) High power ceramic microelectronic package
JP3227589B2 (en) Semiconductor device
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JPH08222658A (en) Semiconductor element package and production thereof
JPH07321258A (en) Semiconductor device
JP2001085819A (en) Integrated circuit stress reduction device
JPH08222670A (en) Package for mounting semiconductor element
JP3592515B2 (en) Package for semiconductor device
JP3418164B2 (en) Electronic package and method of manufacturing electronic package
JPH10125831A (en) Heat sink radiation fin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees