JPH06243989A - Elimination of static electricity for electrified travel body - Google Patents

Elimination of static electricity for electrified travel body

Info

Publication number
JPH06243989A
JPH06243989A JP2534593A JP2534593A JPH06243989A JP H06243989 A JPH06243989 A JP H06243989A JP 2534593 A JP2534593 A JP 2534593A JP 2534593 A JP2534593 A JP 2534593A JP H06243989 A JPH06243989 A JP H06243989A
Authority
JP
Japan
Prior art keywords
electrode
charging
discharge electrode
discharge
traveling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2534593A
Other languages
Japanese (ja)
Other versions
JP3455984B2 (en
Inventor
Koukou Ri
向岡 李
Jun Torikai
潤 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP02534593A priority Critical patent/JP3455984B2/en
Publication of JPH06243989A publication Critical patent/JPH06243989A/en
Application granted granted Critical
Publication of JP3455984B2 publication Critical patent/JP3455984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a static electricity eliminating method for an electrified travel body by which bipolar electrification at small pitch or even a microscopic discharge scar can be eliminated. CONSTITUTION:A static electricity eliminating method for an electrified travel body is to eliminate static electricity of the electrified travel body by generating corona discharge between it and an earth electrode 2 arranged on the opposite side of the electrified travel body while impressing AC voltage on a discharge electrode 3 arranged in a noncontact condition on one side of a web shape electrified travel body 1. Assuming that a distance between the discharge electrode and the electrified travel body when it is measured on the shortest passage connecting between the discharge electrode and the earth electrode is [[d1 (mm)], and thicknesses of air and a dielectric layer interposed between the electrified travel body and the earth electrode are [d2 and 3 (mm)] respectively, and a specific dielectric constant of the dielectric layer is (epsilon), the positional relationship between the discharge electrode, the electrified travel body and the earth electrode, the thickness of the dielectric layer and a construction material are regulated so as to fall withing a range of [[8<=d1+d2+d3/epsilon<=25 and 1<=d2+d3/epsilon<=5]. At the same time, assuming that travel speed of the electrified travel body is V (m/min.), and a width of static electricity in which the static electricity of a stationary object can be eliminated is W (mm), AC voltage having a frequency of 1-10 times a frequency (f0) found by [f0=(1000.V)/(60.W)] is impressed on the discharge electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続的に生産・加工さ
れるプラスチックフィルム、紙などのウェブ状走行体や
静電複写機に使用される複写紙などの帯電走行体の除電
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing static electricity from a web-shaped running body such as a plastic film or paper which is continuously produced and processed, or a charged running body such as copying paper used in an electrostatic copying machine.

【0002】[0002]

【従来の技術】プラスチックフィルムや紙などの絶縁物
は、搬送ロール等による搬送に伴う摩擦によって走行中
に帯電しやすく、帯電すると巻き取ったとき等にシワを
生じたり、放電したりして製品の品質を低下させると共
に安全上の問題もあった。また、帯電した状態で巻き取
られたロール状のフィルムや紙を、使用や加工のために
巻き戻すと、剥離の際に放電したり巻戻工程中にフィル
ムや紙が蛇行するなど種々の問題が発生する。
2. Description of the Related Art Insulators such as plastic films and papers are easily charged during traveling due to friction caused by conveyance by conveyance rolls, etc., and if electrified, wrinkles or discharges occur when wound. There was a safety issue as well as the quality of the. In addition, when a roll-shaped film or paper wound in a charged state is rewound for use or processing, various problems such as discharge during peeling and meandering of the film or paper during the rewinding process may occur. Occurs.

【0003】さらに、静電複写機においては、複写プロ
セスで紙が帯電し、帯電した紙の除電をうまく行わない
と、搬送ロールに紙が吸着したり紙相互が吸着したりす
るなどの問題が生じていた。これらの帯電に伴う問題を
解決するため、従来から、アースされた細いブラシ状の
導電物を除電対象である帯電体に接近させ、ブラシの先
端でコロナ放電を発生させて除電する自己放電式除電器
や、針状電極に高圧の商用周波数交流電圧や直流電圧を
印加してコロナ放電を発生させて除電する電圧印加式除
電器が使用されていた。
Further, in the electrostatic copying machine, the paper is charged in the copying process, and if the charged paper is not properly discharged, there is a problem in that the paper is attracted to the transport roll or the paper is attracted to each other. It was happening. In order to solve these problems associated with electrification, conventionally, a thin grounded brush-shaped conductor is brought close to the charged body that is the object of static elimination, and a corona discharge is generated at the tip of the brush to eliminate static electricity. Electric appliances and voltage application type static eliminators that apply high-voltage commercial frequency AC voltage or DC voltage to needle-shaped electrodes to generate corona discharge and eliminate static electricity have been used.

【0004】さらに、特開昭63−301495号公報に開示さ
れた高周波除電器では、高速で走行するウェブ状走行体
の除電のために、除電対象の走行体を挟む両側に針状電
極とアースロールを設け、針状電極に高周波電圧を印加
して走行体を除電していた。
Further, in the high-frequency static eliminator disclosed in Japanese Patent Laid-Open No. 63-301495, a needle-shaped electrode and a ground are provided on both sides of the running body to be neutralized in order to neutralize the web-shaped running body that runs at high speed. A roll was provided, and a high-frequency voltage was applied to the needle-shaped electrode to remove static electricity from the running body.

【0005】[0005]

【発明が解決しようとする課題】ところで、コロナ放電
を利用した従来の除電器の除電原理は、前記した自己放
電式や電圧印加式にかかわらず、電極におけるコロナ放
電によって正,負のイオンを発生させ、帯電体が持つ静
電気の極性と逆極性のイオンを帯電体の電界で引き寄せ
て、帯電体の静電気を中和するものである。
By the way, the static elimination principle of the conventional static eliminator utilizing corona discharge is that positive and negative ions are generated by the corona discharge in the electrode regardless of the self-discharge type or the voltage application type. Then, the electric field of the charged body attracts ions having a polarity opposite to the static electricity of the charged body to neutralize the static electricity of the charged body.

【0006】しかし、帯電体に生ずる帯電むら、すなわ
ち、帯電体に細かいピッチで生ずる正,負の繰り返し両
極性パターンである両極性帯電や微小な放電痕において
は、帯電体の電界が非常に弱かったり、その電界が帯電
体の表面で閉じているため、必要なイオンを引き寄せる
ことができず、除電ができないという問題があった。一
方、前記特開昭63−301495号公報に開示された高周波除
電器では、上記微小帯電の一部は除電できるが、除電機
構が未解明のため、適切な除電条件が確立していない。
このため、帯電体の除電が不安定で、完全な除電が行え
なかったり、逆に新たな放電痕を発生してしまう等の問
題があった。
However, in the case of uneven charging generated on the charged body, that is, bipolar charging or a minute discharge mark, which is a positive and negative repeated bipolar pattern generated at a fine pitch on the charged body, the electric field of the charged body is very weak. In addition, since the electric field is closed on the surface of the charged body, necessary ions cannot be attracted, and there is a problem that the charge cannot be removed. On the other hand, in the high-frequency static eliminator disclosed in the above-mentioned Japanese Patent Laid-Open No. 63-301495, although a part of the above-mentioned minute charge can be neutralized, an appropriate static elimination condition has not been established because the static elimination mechanism has not been clarified.
For this reason, there are problems that the charge removal of the charged body is unstable and complete charge removal cannot be performed, or conversely new discharge marks are generated.

【0007】本発明の目的は、上記の問題点を解決し、
細かいピッチの両極性帯電や微小な放電痕までも除電で
きる帯電走行体の除電方法を提供することにある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a method of removing charge from a charged running body, which can remove charge even from a finely charged bipolar charge or a minute discharge mark.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者らは、
上記した帯電体の除電について鋭意検討を重ねた結果、
細かいピッチの両極性帯電や微小な放電痕に対する除電
機構を解明し、本発明をなすに到ったものである。すな
わち、本発明によれば上記目的を達成するため、ウェブ
状の帯電走行体の片側に非接触状態で設けた放電電極に
交流電圧を印加し、前記帯電走行体の反対側に設けたア
ース電極との間でコロナ放電を発生させて前記帯電走行
体を除電する帯電走行体の除電方法において、前記放電
電極と前記アース電極とを結ぶ最短経路上で測定したと
きの、該放電電極と前記帯電走行体との間の距離をd
1(mm)、該帯電走行体と前記アース電極との間に介在す
る空気および前記誘電体層の厚さをそれぞれd2,d3(m
m) 、該誘電体層の比誘電率をεとしたときに、 8≦d1+d2+d3/ε≦25 1≦d2+d3/ε≦5 の範囲となるように、該放電電極,前記帯電走行体およ
び前記アース電極の位置関係ならびに前記誘電体層の厚
さおよび材質を調整するとともに、前記帯電走行体の走
行速度をV(m/min.)、交流電圧半周期の印加によっ
て静止物体を除電できる除電幅をW(mm)とするとき、 f0 =(1000・V)/(60・W) で求められる周波数f0 の1〜10倍の周波数の交流電圧
を前記放電電極に印加して除電する方法としたものであ
る。
Means and Actions for Solving the Problems The present inventors have
As a result of repeated intensive studies on the charge removal of the charged body,
The present invention has been completed by elucidating the charge removal mechanism for bipolar charging with a fine pitch and minute discharge marks. That is, according to the present invention, in order to achieve the above object, an AC voltage is applied to a discharge electrode provided in a non-contact state on one side of a web-shaped charging running body, and an earth electrode provided on the opposite side of the charging running body. In the method of destaticizing a charging traveling body for generating a corona discharge between the discharging electrode and the charging traveling body, the discharging electrode and the charging when measured on the shortest path connecting the discharging electrode and the ground electrode. The distance to the running body is d
1 (mm), the thickness of the air and the dielectric layer interposed between the charging traveling body and the ground electrode are d 2 and d 3 (m), respectively.
m), where ε is the relative permittivity of the dielectric layer, the discharge electrode is set to satisfy the following range: 8 ≦ d 1 + d 2 + d 3 / ε ≦ 25 1 ≦ d 2 + d 3 / ε ≦ 5 , By adjusting the positional relationship between the charging traveling body and the ground electrode and the thickness and material of the dielectric layer, and applying a traveling speed of the charging traveling body of V (m / min.) And a half cycle of an AC voltage. When the static elimination width for static elimination of a stationary object is W (mm), an AC voltage having a frequency 1 to 10 times the frequency f 0 obtained by f 0 = (1000 · V) / (60 · W) is applied to the discharge electrode. It is the method of applying the electric charge to and removing the charge.

【0009】ここで、アース電極を前記帯電走行体と直
接接触状態で設けるときは、放電電極はアース電極の直
上に配置しない。放電電極をアース電極の直上に配置す
ると、コロナ放電に伴って発生するイオンが激しく帯電
走行体に衝突し、除電のために好ましくない。一方、ア
ース電極を誘電体層を介して接触状態で設ける、あるい
は、直接または誘電体層を介したアース電極を帯電走行
体と非接触状態で設けるときは、放電電極はアース電極
の直上に配置してもよい。
Here, when the ground electrode is provided in direct contact with the charging running body, the discharge electrode is not arranged directly above the ground electrode. When the discharge electrode is arranged directly above the ground electrode, the ions generated by the corona discharge collide with the charged running body violently, which is not preferable for static elimination. On the other hand, when the ground electrode is provided in contact with the dielectric layer, or when the ground electrode is provided directly or in the non-contact state with the charging traveling body via the dielectric layer, the discharge electrode is placed directly above the ground electrode. You may.

【0010】また、本発明においては、放電電極は、前
記条件を満たすものであれば特に限定はないが、例え
ば、放電電極針を1〜20mmの一定ピッチで配列した針状
電極や直径0.1mm前後のコロナワイヤを張り渡したワイ
ヤ電極を用いることができる。本発明の帯電走行体の除
電方法は、除電対象である帯電走行体の片側に電圧印加
式放電電極を、反対側にアース電極を設け、コロナ放電
によって発生した正,負のイオンを、帯電走行体が発生
する電界ではなく、放電電極とアース電極を結ぶ電界に
よって強制的に帯電走行体に打ち込み、強制充電するこ
とにより微小なピッチを有する両極性帯電や微小な放電
痕を中和するものである。
Further, in the present invention, the discharge electrode is not particularly limited as long as it satisfies the above conditions, for example, needle electrodes or a diameter of 0. A wire electrode having a corona wire of about 1 mm can be used. The method for removing charge from a charged running body according to the present invention includes a voltage application type discharge electrode on one side of the charged running body to be removed and a ground electrode on the opposite side, and positive and negative ions generated by corona discharge are charged and run on the charged running body. It is not an electric field generated by the body, but is forcibly driven into the charging running body by the electric field connecting the discharge electrode and the ground electrode, and is forcibly charged to neutralize bipolar charging or minute discharge traces having a minute pitch. is there.

【0011】したがって、本発明方法においては、好ま
しくは、放電電極は、交流電圧半周期を印加したときの
前記帯電走行体の表面における充電電荷密度を2〜20μ
C/m2 とする。さらに好ましくは、前記帯電走行体に
対して前記放電電極と同一側に、該帯電走行体の走行方
向を基準として前記放電電極の上流または/および下流
5〜25mmの範囲に非接触状態でアース電極を増設して
除電する。
Therefore, in the method of the present invention, preferably, the discharge electrode has a charged charge density on the surface of the charging traveling body of 2 to 20 μm when an AC voltage half cycle is applied.
C / m 2 . More preferably, the earth electrode is on the same side as the discharge electrode with respect to the charging traveling body, in a non-contact state in a range of 5 to 25 mm upstream or / and downstream of the discharge electrode with reference to the traveling direction of the charging traveling body. To eliminate electricity.

【0012】以下、本発明の除電方法により、除電対象
の帯電走行体を除電する方法を以下に説明する。図1
は、本発明方法に基づいて帯電走行体1を除電する場合
の装置配置を示す構成図で、所定の走行速度で走行する
帯電走行体1の下側にはアースロール2が、上側には放
電電極3が配置され、放電電極3は周波数可変高圧電源
(以下、「高圧電源」という)4に接続されている。
Hereinafter, a method of removing the static electricity of the charged running body as the static elimination target by the static elimination method of the present invention will be described. Figure 1
FIG. 3 is a configuration diagram showing a device arrangement in the case of removing charge from the charging traveling body 1 based on the method of the present invention, in which the earth roll 2 is below the charging traveling body 1 traveling at a predetermined traveling speed and the discharging is above. An electrode 3 is arranged, and the discharge electrode 3 is connected to a variable frequency high voltage power source (hereinafter referred to as “high voltage power source”) 4.

【0013】ここで、帯電走行体1は、図示しない搬送
ロールによって搬送されるプラスチックフィルムや紙な
どの絶縁物からなるウェブ状の走行体である。アースロ
ール2は、アース電極となる金属製のローラで、表面に
誘電体層2aが被覆され、帯電走行体1に対して接触状
態で配置されている。このアースロール2は、帯電走行
体1に非接触状態で配置するときには直接あるいは誘電
体層を介して、かつ、放電電極を直上に配置して、一
方、直接接触状態で配置するときには放電電極を走行方
向下流近傍に配置して、それぞれ配置される。
Here, the charging traveling body 1 is a web-shaped traveling body made of an insulating material such as a plastic film or paper conveyed by a conveyance roll (not shown). The earth roll 2 is a metal roller that serves as an earth electrode, has a surface covered with a dielectric layer 2 a, and is arranged in contact with the charging traveling body 1. This earth roll 2 has a discharge electrode directly or via a dielectric layer and directly above the discharge electrode when it is placed in a non-contact state with the charging traveling body 1, while it has a discharge electrode when placed in a direct contact state. They are arranged in the vicinity of the downstream side in the traveling direction and arranged respectively.

【0014】放電電極3は、帯電走行体1に対して非接
触状態で配置され、高圧電源4から印加される交流電圧
によってコロナ放電を発生し、コロナ放電で発生したイ
オンを放電電極3とアースロール2とを結ぶ電界によっ
て強制的に帯電走行体1に打ち込んで強制充電する。こ
れにより、帯電走行体1は、微小なピッチを有する両極
性帯電や微小な放電痕が中和されて除電される。
The discharge electrode 3 is arranged in a non-contact state with the charging traveling body 1, generates corona discharge by an AC voltage applied from the high voltage power source 4, and discharges the ions generated by the corona discharge to the discharge electrode 3 and the ground. The charging traveling body 1 is forcibly driven by the electric field connecting the rolls 2 to be forcibly charged. As a result, the charging traveling body 1 is neutralized by removing bipolar charges and minute discharge marks having a minute pitch.

【0015】このような放電電極3の一例を、図2及び
図3を参照しつつ説明すると、放電電極3は、芯線30
aを絶縁材30bで被覆した高圧ケーブル30、外周に
電極針31aが突設され、高圧ケーブル30に一定の間
隔で嵌着される複数の導電性リング31、高圧ケーブル
30の外周を複数の導電性リング31とともに覆う絶縁
被覆32、絶縁被覆32の外側から高圧ケーブル30を
支持するホルダ33,33およびホルダ33,33の下
部両側に取り付けられる板状の接地電極34,34を備
えている。
An example of such a discharge electrode 3 will be described with reference to FIGS. 2 and 3. The discharge electrode 3 has a core wire 30.
A high voltage cable 30 in which a is covered with an insulating material 30b, a plurality of conductive rings 31 having electrode needles 31a protrudingly provided on the outer periphery thereof and fitted on the high voltage cable 30 at regular intervals, and a plurality of conductive rings on the outer periphery of the high voltage cable 30. An insulating coating 32 that covers the property ring 31 and holders 33 and 33 that support the high-voltage cable 30 from the outside of the insulating coating 32 and plate-shaped ground electrodes 34 and 34 that are attached to both lower sides of the holders 33 and 33 are provided.

【0016】ここで、各導電性リング31は、電極針3
1aが絶縁被覆32から突出し、接地電極34,34の
間に位置するように、電極針31aを下方に向けて高圧
ケーブル30に嵌着される。また、図示した接地電極3
4は板状であるが、棒状であってもよいことはいうまで
もない。また、高圧電源4は、発振周波数を制御可能な
発振器(図示せず)によって放電電極3に交流電圧を印
加する。
Here, each conductive ring 31 has an electrode needle 3
The electrode needle 31a is fitted to the high voltage cable 30 so that the electrode 1a projects from the insulating coating 32 and is located between the ground electrodes 34, 34. Also, the illustrated ground electrode 3
Although 4 is plate-shaped, it goes without saying that it may be rod-shaped. The high-voltage power supply 4 applies an AC voltage to the discharge electrode 3 with an oscillator (not shown) whose oscillation frequency can be controlled.

【0017】なお、帯電走行体1は、下流側に配置した
ガイドローラ5に走行が案内され、走行に伴う振動の発
生が抑制される。本発明方法は、高圧電源4から放電電
極3に交流電圧を印加し、コロナ放電で発生したイオン
を放電電極3とアースロール2とを結ぶ電界によって強
制的に帯電走行体1に打ち込んで強制充電する。これに
より、図示しない搬送ロールによって搬送されてくる帯
電走行体1は、微小なピッチを有する両極性帯電や微小
な放電痕が中和されて除電されるのである。
The charging traveling body 1 is guided to travel by the guide roller 5 arranged on the downstream side, and the generation of vibration accompanying the traveling is suppressed. According to the method of the present invention, an alternating voltage is applied from the high voltage power source 4 to the discharge electrode 3, and the ions generated by the corona discharge are forcibly driven into the charging traveling body 1 by the electric field connecting the discharge electrode 3 and the earth roll 2 to force charging. To do. As a result, the electrified traveling body 1 conveyed by the conveyance rolls (not shown) is neutralized by the bipolar charging having a minute pitch and the minute discharge mark, thereby eliminating the charge.

【0018】本発明方法において重要な要素は、放電電
極とアース電極との間の見掛け距離dADおよび帯電走行
体とアース電極との間の見掛け距離dASである。ここ
で、一般的に、誘電体層を介してアース電極を設けた場
合を考え、放電電極とアース電極とを結ぶ最短経路上で
測定したときの、放電電極と帯電走行体との間の距離を
1(mm) 、帯電走行体と誘電体層表面との間に介在する
空気の厚さ、すなわち帯電走行体と誘電体層表面との間
の距離をd2(mm) 、誘電体層の厚さをd3(mm) 、誘電体
層の比誘電率をεとすると、放電電極とアース電極との
間の見掛け距離dAD(mm) は、帯電走行体の厚さをd1,
2,d3に比べて十分小さいとして省略すると、次式で
定義される。なお、誘電体層がない場合には、前記d2
は、帯電走行体とアース電極との間に介在する空気の厚
さ(mm) となる。
An important factor in the method of the present invention is the apparent distance d AD between the discharge electrode and the ground electrode and the apparent distance d AS between the charging traveling body and the ground electrode. Here, in general, considering the case where a ground electrode is provided via a dielectric layer, the distance between the discharge electrode and the charging traveling body when measured on the shortest path connecting the discharge electrode and the ground electrode. Where d 1 (mm) is the thickness of the air interposed between the charging traveling body and the surface of the dielectric layer, that is, the distance between the charging traveling body and the surface of the dielectric layer is d 2 (mm), Where d 3 (mm) is the thickness of the dielectric layer and ε is the relative permittivity of the dielectric layer, the apparent distance d AD (mm) between the discharge electrode and the ground electrode is d 1 ,
If it is omitted because it is sufficiently smaller than d 2 and d 3 , it is defined by the following equation. If there is no dielectric layer, d 2
Is the thickness (mm) of the air present between the charging traveling body and the ground electrode.

【0019】dAD=d1+d2+d3/ε この見掛け距離dADは、放電電極とアース電極との間の
放電状態を決める重要な要素で、距離dADが大きいと放
電が発生せず、一方、距離dADが小さいと火花放電を発
生し、安定した放電を行うためには、放電電極とアース
電極との間の見掛け距離dADに制限がある。
D AD = d 1 + d 2 + d 3 / ε This apparent distance d AD is an important factor that determines the discharge state between the discharge electrode and the ground electrode. If the distance d AD is large, no discharge occurs. On the other hand, when the distance d AD is small, spark discharge is generated, and in order to perform stable discharge, the apparent distance d AD between the discharge electrode and the ground electrode is limited.

【0020】放電電極とアース電極との間の見掛け距離
ADは、放電電極の構造によって異なるが、放電電極に
交流電圧半周期を印加したときの帯電走行体表面におけ
る充電電荷密度を2〜20μC/m2 、好ましくは5〜15
μC/m2 としたときにおいては、8≦dAD≦25(mm)で
あり、さらに好ましくは、8≦dAD≦20(mm)である。一
方、帯電走行体とアース電極との間の見掛け距離d
ASは、前記と同様にして、次式で定義される。
The apparent distance d AD between the discharge electrode and the ground electrode varies depending on the structure of the discharge electrode, but the charged charge density on the surface of the charged running body when the AC voltage half cycle is applied to the discharge electrode is 2 to 20 μC. / M 2 , preferably 5 to 15
When μC / m 2 , it is 8 ≦ d AD ≦ 25 (mm), and more preferably 8 ≦ d AD ≦ 20 (mm). On the other hand, the apparent distance d between the charging traveling body and the ground electrode
AS is defined by the following equation in the same manner as described above.

【0021】dAS=d2+d3/ε 以上のように、放電電極に周波数f0 以上の交流電圧を
印加するとともに、放電電極とアース電極との間の見掛
け距離dADおよび帯電走行体とアース電極との間の見掛
け距離dASを定めると、放電電極におけるコロナ放電に
よって発生したイオンはアース電極に向かって移動し、
帯電走行体の表面に充電されて帯電むらを中和する。
D AS = d 2 + d 3 / ε As described above, an AC voltage having a frequency of f 0 or more is applied to the discharge electrode, and the apparent distance d AD between the discharge electrode and the ground electrode and the charged traveling body When the apparent distance d AS from the ground electrode is determined, the ions generated by the corona discharge at the discharge electrode move toward the ground electrode,
The surface of the charging running body is charged to neutralize uneven charging.

【0022】このとき、帯電走行体とアース電極との間
の等価静電容量をC、充電中の帯電走行体の表面電荷を
Qとすると、帯電走行体の表面電位Eは、次式で表され
る。 E=Q/C…(1) ここで、等価静電容量Cは、帯電走行体とアース電極と
の間の見掛け距離dASとほぼ反比例の関係にある。
At this time, assuming that the equivalent electrostatic capacitance between the charging running body and the ground electrode is C and the surface charge of the charging running body being charged is Q, the surface potential E of the charging running body is expressed by the following equation. To be done. E = Q / C (1) Here, the equivalent capacitance C is almost inversely proportional to the apparent distance d AS between the charging traveling body and the ground electrode.

【0023】したがって、等価静電容量Cが小、すなわ
ち、見掛け距離dASが大で、帯電走行体表面の帯電むら
を十分中和していない状態の表面電荷Qであっても、帯
電走行体の表面電位Eが上昇し、アース電極へ向かって
いた電界が阻止される。この結果、放電電極において発
生したイオンが帯電走行体の表面に到達できず、帯電走
行体表面の帯電むらを完全に中和して除電することがで
きなくなる。
Therefore, even if the equivalent capacitance C is small, that is, the apparent distance d AS is large and the surface charge Q is in a state where the uneven charging on the surface of the charging traveling body is not sufficiently neutralized, the charging traveling body is The surface potential E of the element rises and the electric field directed to the ground electrode is blocked. As a result, the ions generated at the discharge electrode cannot reach the surface of the charging traveling body, and it becomes impossible to completely neutralize the uneven charging on the surface of the charging traveling body and eliminate the charge.

【0024】一方、等価静電容量Cが大、すなわち、見
掛け距離dASが小の場合には、帯電走行体の表面電位E
が上昇せず、過剰なイオンが帯電走行体表面に充電され
ることになる。この結果、帯電走行体が除電部から離
れ、アース電極から遠ざかると、帯電走行体は高電位に
帯電した状態となり、除電という本来の目的が達成され
ないばかりか、帯電走行体表面で放電が生じ、表面に放
電痕を残すことになる。
On the other hand, when the equivalent capacitance C is large, that is, when the apparent distance d AS is small, the surface potential E of the charging traveling body is
Does not rise, and excessive ions are charged on the surface of the charged running body. As a result, when the charging traveling body separates from the static elimination section and moves away from the ground electrode, the charging traveling body becomes in a state of being charged to a high potential, and not only the original purpose of static elimination is not achieved, but also discharge occurs on the surface of the charging traveling body. This will leave discharge marks on the surface.

【0025】このようなことから、前記等価静電容量
C、すなわち、見掛け距離dASは、1≦dAS≦5(mm)で
あることが好ましく、より好ましくは、1≦dAS≦3(m
m)である。なお、帯電走行体は、片側が放電電極から離
れて非接触状態でなければならないが、反対側はアース
電極あるいは誘電体層と接触していても、非接触であっ
てもよい。ここで、帯電走行体とアース電極とを直接接
触させて配置するときは、放電電極はアース電極の直上
に配置しないようにする。
From the above, the equivalent capacitance C, that is, the apparent distance d AS is preferably 1 ≦ d AS ≦ 5 (mm), and more preferably 1 ≦ d AS ≦ 3 ( m
m). It should be noted that the charging traveling body must be in a non-contact state in which one side is separated from the discharge electrode, but the other side may be in contact with the ground electrode or the dielectric layer or may be in a non-contact state. Here, when the charging traveling body and the ground electrode are arranged in direct contact with each other, the discharge electrode is not arranged directly above the ground electrode.

【0026】但し、帯電走行体をアース電極あるいは誘
電体層と非接触で走行させると、走行に伴う振動によっ
て、帯電走行体とアース電極との間の見掛け距離dAS
変化する。このため、前記(1) 式から明らかなように、
帯電走行体の表面電位E、すなわち等価静電容量Cが変
動する結果、帯電走行体の除電効果が変化してしまう。
したがって、見掛け距離dASの変化を抑えて一定に保持
するためには、帯電走行体をローラ等の支持手段を介し
て走行させ、その上方に除電器を設ける。
However, when the charging traveling body is caused to travel without contact with the ground electrode or the dielectric layer, the apparent distance d AS between the charging traveling body and the ground electrode changes due to the vibration accompanying the traveling. Therefore, as is clear from the equation (1),
As a result of the fluctuation of the surface potential E of the charging traveling body, that is, the equivalent electrostatic capacitance C, the static elimination effect of the charging traveling body changes.
Therefore, in order to suppress the change in the apparent distance d AS and keep the apparent distance d AS constant, the charging traveling body is caused to travel via a supporting means such as a roller, and a static eliminator is provided above it.

【0027】この場合、ローラ表面は、金属等の導体で
はなく、ゴム,セラミック等の誘電体で被覆する必要が
ある。このとき、誘電体は、見掛け距離dASが、1≦d
AS≦5(mm)の範囲となるように、材質及び厚さを、誘電
率,表面抵抗および構造から決定する必要がある。ここ
で、除電対象の帯電走行体は、正,負いずれに帯電して
いるか判らず、特に両極性帯電を除電するためには交流
電圧を放電電極に印加する必要がある。この場合、本発
明方法においては、印加する交流電圧の周波数が次に重
要な要素となる。
In this case, the roller surface must be covered with a dielectric material such as rubber or ceramic instead of a conductor such as metal. At this time, the dielectric has an apparent distance d AS of 1 ≦ d
It is necessary to determine the material and thickness from the dielectric constant, surface resistance, and structure so that AS ≤ 5 (mm). Here, it is not known whether the electrified running object to be destaticized is charged positively or negatively, and it is necessary to apply an AC voltage to the discharge electrode in order to destaticize the bipolar charging. In this case, in the method of the present invention, the frequency of the applied AC voltage is the next most important factor.

【0028】すなわち、帯電走行体の走行速度をV(m
/min.)、交流電圧の印加によって静止物体を除電でき
る除電幅をWとする。このとき、次式で求まる周波数f
0 よりも大きな周波数にしないと、帯電走行体の全面を
有効に除電できない。 f0 =(1000・V)/(60・W)…(2) つまり、放電電極に周波数f0 以上の交流電圧を印加す
ることによって、帯電走行体に生じた正,負の繰り返し
両極性パターンからなる両極性帯電や放電痕を中和する
ことができる。この交流電圧は、周波数がf0 以上であ
ればいくらでもよいが、周波数を上げると電源への負荷
が増えるので、通常は、f0 の1〜10倍とする。
That is, the traveling speed of the charging traveling body is V (m
/ Min.), And the width of static elimination capable of eliminating static objects by applying an AC voltage is W. At this time, the frequency f calculated by the following equation
If the frequency is not higher than 0 , the entire surface of the charging traveling body cannot be effectively discharged. f 0 = (1000 · V) / (60 · W) (2) That is, positive and negative repetitive bipolar patterns generated in the charging traveling body by applying an AC voltage of frequency f 0 or more to the discharge electrode. It is possible to neutralize the bipolar charging and the discharge traces. The AC voltage may be any frequency as long as the frequency is f 0 or higher, but the load on the power source increases when the frequency is increased, so it is usually 1 to 10 times f 0 .

【0029】なお、微小なピッチを有する両極性帯電や
微小な放電痕に対しては、放電電極からのイオンを複数
周期充電した方が効果的で、好ましくはf0 の2〜6倍
となるように電源周波数を調整する。ここで、放電電極
に交流電圧の半周期を印加したときに、静止物体を除電
できる除電幅Wは、除電対象の帯電走行体を静止させ、
発振周期を制御可能な発振器によって高圧電源を半周期
だけ作動させた後、帯電走行体の表面に静電複写機で使
用するトナーをふりかけて可視化すれば、容易に測定す
ることができる。除電幅Wは、用いた放電電極の構造や
設置位置によって異なるが、通常、5〜20mm程度であ
る。
It is more effective to charge the ions from the discharge electrode for a plurality of cycles for bipolar charging having a minute pitch and minute discharge traces, and preferably 2 to 6 times f 0. To adjust the power supply frequency. Here, when a half cycle of the AC voltage is applied to the discharge electrode, the static elimination width W capable of static elimination of a stationary object is such that the electrification traveling body of the static elimination target is made stationary,
After the high-voltage power supply is operated for a half cycle by an oscillator whose oscillation cycle can be controlled, the toner used in the electrostatic copying machine is sprinkled on the surface of the charging traveling body to make it visible, which facilitates measurement. The static elimination width W varies depending on the structure of the discharge electrode used and the installation position, but is usually about 5 to 20 mm.

【0030】また、本発明方法によって、帯電走行体の
微小帯電むらを除電した場合、帯電走行体に僅かな帯電
が残存することがあるが、この帯電は通常の商用周波数
を用いた交流除電器、あるいは直流除電器等で簡単に除
去することができるので、必要に応じて放電電極の下流
側に除電器等を設置する。さらに、本発明の帯電走行体
の除電方法においては、帯電走行体にイオンを充電する
と、帯電走行体の表面電位が上昇する結果、放電電極と
アース電極間の電界が乱れてコロナ放電が停止する。こ
のため、微小ピッチの帯電むらは除電できても、逆に帯
電走行体がゼロ電位にならず、帯電走行体の走行方向下
流側に従来型タイプの除電器を増設する必要が生じる。
When the method according to the present invention eliminates static charge unevenness on the charging running body, a small amount of charge may remain on the charging running body. This charging is performed by an AC static eliminator using a normal commercial frequency. Alternatively, since it can be easily removed by a DC static eliminator, a static eliminator or the like is installed on the downstream side of the discharge electrode as necessary. Furthermore, in the method for removing static electricity of the charged running body of the present invention, when the charged running body is charged with ions, the surface potential of the charged running body rises, and as a result, the electric field between the discharge electrode and the ground electrode is disturbed and the corona discharge is stopped. . For this reason, even if it is possible to eliminate the charge unevenness at a fine pitch, the charge running body does not reach zero potential, and it is necessary to add a conventional type charge remover on the downstream side in the running direction of the charge running body.

【0031】これに対して、帯電走行体の走行方向を基
準とし、放電電極の少なくとも上流または下流の5〜2
5mmの範囲に、非接触状態でアース電極を増設すると、
コロナ放電が放電電極とアース電極との間に加えて、放
電電極と増設したアース電極との間でも発生する。この
ため、コロナ放電が安定する結果、アース電極を増設し
なかった場合に比べて、放電電極をやや低い電圧で作動
させることができる。
On the other hand, with reference to the traveling direction of the charging traveling body, at least 5 or 2 upstream or downstream of the discharge electrode.
If you add a ground electrode in a non-contact state within a range of 5 mm,
Corona discharge occurs not only between the discharge electrode and the ground electrode, but also between the discharge electrode and the additional ground electrode. Therefore, as a result of stable corona discharge, the discharge electrode can be operated at a slightly lower voltage than in the case where the ground electrode is not added.

【0032】しかも、帯電走行体にイオンが充電されて
表面電位が上昇し、放電電極とアース電極との間のコロ
ナ放電が停止しても、放電電極と増設したアース電極と
の間のコロナ放電が継続する。このため、継続するコロ
ナ放電によって発生したイオンが帯電走行体の表面電位
に引き寄せられて表面の帯電を中和するので、帯電走行
体は表面電位がほぼゼロ電位となり、下流側に新たな除
電器を設ける必要がないので好ましい。
Moreover, even if the charged running body is charged with ions and the surface potential rises and the corona discharge between the discharge electrode and the ground electrode is stopped, the corona discharge between the discharge electrode and the additional ground electrode is generated. Continues. Therefore, the ions generated by the continuous corona discharge are attracted to the surface potential of the charging traveling body to neutralize the surface charge, so that the surface potential of the charging traveling body becomes almost zero, and a new static eliminator is provided on the downstream side. Is not necessary, which is preferable.

【0033】なお、放電電極に交流電圧半周期を印加し
たときの帯電走行体の表面における充電電荷密度Dは、
以下のようにして求める。先ず、帯電走行体を静止さ
せ、公知の表面電位計で帯電走行体の表面電位E1を測
定する。次に、発振周波数を制御可能な発振器によって
高圧電源を半周期だけ作動させ、放電電極でコロナ放電
を発生させて帯電走行体にイオンを充電した後、再度帯
電走行体の表面電位E2 を測定する。このとき、帯電走
行体とアース電極との間に介在する空気および誘電体層
の厚さd2,d3(mm) 並びに誘電体層の比誘電率εを併せ
て測定しておくと、充電電荷密度Dは次式で与えられ
る。
The charged charge density D on the surface of the charging traveling body when an AC voltage half cycle is applied to the discharge electrode is
Calculate as follows. First, the charging running body is stopped, and the surface potential E 1 of the charging running body is measured with a known surface electrometer. Next, a high-voltage power supply is operated for half a period by an oscillator whose oscillation frequency can be controlled, corona discharge is generated at the discharge electrode to charge the charged running body with ions, and then the surface potential E 2 of the charged running body is measured again. To do. At this time, if the air and the thickness d 2 and d 3 (mm) of the dielectric layer and the dielectric constant ε of the dielectric layer interposed between the charging traveling body and the ground electrode are also measured, the charge The charge density D is given by the following equation.

【0034】D=|E1−E2|/(d2+d3/ε)D = | E 1 −E 2 | / (d 2 + d 3 / ε)

【0035】[0035]

【実施例】【Example】

実施例1 図1において、帯電走行体1として厚さ7μm、幅200
mmのポリエステルフィルム(東レ(株)製、ルミラ
ー、品番:7YN394)を、アースロール2として表
面にクロムメッキを施した直径200 mmの金属ロール
を、また、放電電極3として、接地電極34,34を外
した図2および図3に示す放電電極3を、それぞれ用
い、帯電走行体1を90m/min.の速度で走行させた。
Example 1 In FIG. 1, the charging traveling body 1 has a thickness of 7 μm and a width of 200
A metal roll having a diameter of 200 mm, the surface of which is a chrome-plated polyester film (Lumirror manufactured by Toray Industries, Inc., product number: 7YN394), the surface of which is plated with chrome, and the discharge electrodes 3 are ground electrodes 34, 34. Using the discharge electrodes 3 shown in FIG. 2 and FIG. 3 without the above, the charging running body 1 was run at a speed of 90 m / min.

【0036】なお、除電処理に先立って、ポリエステル
フィルムに静電複写機のトナーをふりかけて帯電状態を
可視化したところ、このフィルム上には製造工程で発生
した約2mmピッチの微小な両極性帯電むらの存在が見
られた。このとき、放電電極3は、図1に示すようにア
ースロール2から僅かに下流側へ偏倚した位置に配置
し、放電電極3と帯電走行体1との間の距離d1を11m
m、放電電極3をアースロール2の直上から僅かに下流
側に偏倚した位置に設けたために生じた、放電電極3と
アースロール2とを結ぶ最短経路上での帯電走行体1と
アースロール2との間のギャップ距離d2 を1mmに設
定した。
Prior to the charge removal treatment, the toner of an electrostatic copying machine was sprinkled on the polyester film to visualize the charged state. As a result, minute bipolar charge irregularities of about 2 mm pitch generated in the manufacturing process were observed on the film. Was seen. At this time, the discharge electrode 3 is arranged at a position slightly offset to the downstream side from the earth roll 2 as shown in FIG. 1, and the distance d 1 between the discharge electrode 3 and the charging traveling body 1 is 11 m.
m, the charging electrode 1 and the earth roll 2 on the shortest path connecting the discharge electrode 3 and the earth roll 2 caused by disposing the discharge electrode 3 at a position slightly deviated from just above the earth roll 2 to the downstream side. The gap distance d 2 between and was set to 1 mm.

【0037】この状態で帯電走行体1を静止させ、高圧
電源4から放電電極3に180 Hzの交流電圧を半周期印
加して除電幅Wを測定したところ17mmであった。した
がって、放電電極に印加すべき周波数を求める前記(2)
式より、 f0 =(1000・V)/(60・W)=(1000・90)/(60・17) =88.2(Hz) となった。
In this state, the charging traveling body 1 was stopped, the AC voltage of 180 Hz was applied to the discharge electrode 3 from the high voltage power source 4 for a half cycle, and the static elimination width W was measured to be 17 mm. Therefore, the frequency to be applied to the discharge electrode (2)
From the formula, f 0 = (1000 · V) / (60 · W) = (1000 · 90) / (60 · 17) = 88.2 (Hz).

【0038】したがって、周波数f0 の約2倍の180 H
zを電源周波数として高圧電源4をセットし、高圧電源
4から放電電極3に10KVの0−Peak交流電圧を印加
し、帯電走行体1を90m/min.の速度で走行させて除電
処理を行い、除電後の帯電走行体1上に静電複写機のト
ナーをふりかけて可視化することにより除電効果を判定
した。
Therefore, 180 H which is about twice the frequency f 0
The high-voltage power supply 4 is set with z as the power supply frequency, a 10-KV 0-Peak AC voltage is applied from the high-voltage power supply 4 to the discharge electrode 3, and the charging traveling body 1 is run at a speed of 90 m / min. Then, the static elimination effect was judged by sprinkling the toner of the electrostatic copying machine on the charged running body 1 after the static elimination to make it visible.

【0039】その結果、元々ポリエステルフィルム上に
存在した約2mmピッチの微小な両極性帯電むらやその
他の放電痕は見られず、8mmピッチの淡い正,負の帯
電模様が観察された。この淡い正,負の帯電模様は、放
電電極3に印加した交流電圧が180 Hzであり、除電対
象のポリエステルフィルムを90m/min.の速度で走行さ
せたことに起因して、1周期分の充電痕が残ったもので
ある。
As a result, minute bipolar charging unevenness of about 2 mm pitch and other discharge marks which were originally present on the polyester film were not seen, and pale positive and negative charging patterns of 8 mm pitch were observed. This pale positive and negative electrification pattern is due to the fact that the AC voltage applied to the discharge electrode 3 was 180 Hz and the polyester film to be neutralized was run at a speed of 90 m / min. It is the one with the charging marks left.

【0040】なお、この淡い正,負の帯電模様は、帯電
レベルが低いことから、製品としてのポリエステルフィ
ルムの品質を低下させるものではない。 実施例2 実施例1の放電電極3に接地電極34,34を取り付
け、この放電電極3を実施例1と同じ位置に配置して、
前記ポリエステルフィルムを90m/min.の速度で走行さ
せるとともに、高圧電源4から放電電極3に180 Hz、
9KVの0−Peak交流電圧を印加して除電処理を行い、
前記と同様にして除電効果を判定した。
The pale positive and negative electrification patterns do not deteriorate the quality of the polyester film as a product because the electrification level is low. Example 2 Ground electrodes 34, 34 were attached to the discharge electrode 3 of Example 1, and this discharge electrode 3 was arranged at the same position as in Example 1,
The polyester film is run at a speed of 90 m / min.
A 9 KV 0-Peak AC voltage is applied to remove electricity,
The static elimination effect was determined in the same manner as described above.

【0041】その結果、元々ポリエステルフィルム上に
存在した約2mmピッチの微小な両極性帯電むらは観察
されず、しかも、実施例1で発生した淡い正,負の帯電
模様も見られず、ポリエステルフィルムはほぼ完全に除
電されていると判定された。 実施例3 実施例1で使用した直径200 mmの金属ロールに代え、
直径70mmの芯金に厚さ15mm、比誘電率εが約5のN
BR(acrylonitrile-butadiene rubber)を被覆したアー
スロール2を帯電走行体1に接触させて配置するととも
に、接地電極34,34を取り付けた放電電極3を、ア
ースロール2の直上に放電電極3とアースロール2との
距離、すなわち放電電極3と帯電走行体1との間の距離
1 が11mmとなるように配置した。
As a result, the minute bipolar electrification irregularities of about 2 mm pitch originally present on the polyester film were not observed, and the pale positive and negative electrification patterns generated in Example 1 were not observed. Was determined to be almost completely discharged. Example 3 Instead of the metal roll having a diameter of 200 mm used in Example 1,
N with a thickness of 15 mm and a relative permittivity ε of about 5 on a core metal with a diameter of 70 mm
The earth roll 2 coated with BR (acrylonitrile-butadiene rubber) is arranged in contact with the charging traveling body 1, and the discharge electrode 3 having the ground electrodes 34, 34 is mounted directly above the earth roll 2 and the ground electrode 2. The distance from the roll 2, that is, the distance d 1 between the discharge electrode 3 and the charging traveling body 1 was set to 11 mm.

【0042】このとき、放電電極3とアースロール2と
の間の見掛け距離dADおよび帯電走行体1とアースロー
ル2との間の見掛け距離dASは、それぞれdAD=14m
m、dAS=3(=15/5)mmであった。このような、条
件の下に、実施例1のポリエステルフィルムを60m/mi
n.の速度で走行させるとともに、高圧電源4から放電電
極3に120 Hz、9KVの0−Peak交流電圧を印加して
除電処理を行い、前記と同様にして除電効果を判定し
た。
At this time, the apparent distance d AD between the discharge electrode 3 and the earth roll 2 and the apparent distance d AS between the charging traveling body 1 and the earth roll 2 are d AD = 14 m, respectively.
m, d AS = 3 (= 15/5 ) mm. Under such conditions, the polyester film of Example 1 was treated at 60 m / mi.
While running at a speed of n., a high-voltage power supply 4 applied a 0-Peak AC voltage of 120 Hz and 9 KV to the discharge electrode 3 to perform static elimination, and the static elimination effect was determined in the same manner as described above.

【0043】その結果、ポリエステルフィルムは、実施
例2の場合と同様に、ほぼ完全に除電されていた。な
お、比較のため、図1において、接地電極34,34を
取り付けた放電電極3を、下流側に120 mm離れ、上記
実施例と同一のポリエステルフィルムからなる帯電走行
体1から20mm離れた点線で示す位置に移動し、帯電走
行体1を90m/min.の速度で走行させるとともに、高圧
電源4から放電電極3に60Hz、9KVの0−Peak交流
電圧を印加したが、帯電走行体1を除電することはでき
なかった。
As a result, the polyester film was almost completely discharged as in the case of Example 2. For comparison, in FIG. 1, the discharge electrode 3 to which the ground electrodes 34, 34 are attached is separated by 120 mm on the downstream side and is separated by 20 mm from the charging traveling body 1 made of the same polyester film as in the above embodiment. While moving to the position shown and running the charging traveling body 1 at a speed of 90 m / min., A 0-Peak AC voltage of 60 Hz and 9 KV was applied to the discharge electrode 3 from the high voltage power source 4, but the charging traveling body 1 was neutralized. I couldn't.

【0044】[0044]

【発明の効果】以上の説明で明らかなように、本発明の
帯電走行体の除電方法によれば、帯電走行体の除電、特
に、微小ピッチで正,負に帯電した両極性帯電や微小な
放電痕を実用レベルで除電することができるという優れ
た効果を奏する。また、放電電極の少なくとも上流また
は下流の5〜25mmの範囲に、非接触状態で第二アース
電極を設けると、放電電極とアース電極との間のコロナ
放電が停止しても、放電電極と増設した第二アース電極
との間のコロナ放電が継続するので、下流側に新たな除
電器を設けなくとも、除電対象の帯電走行体は表面電位
をほぼゼロ電位に容易に制御することができる。
As is apparent from the above description, according to the method of removing static electricity of a charged running body of the present invention, charge removal of the charged running body, in particular, ambipolar charging and minute charging which are positively and negatively charged at a fine pitch. It has an excellent effect that the discharge mark can be discharged at a practical level. Also, if a second earth electrode is provided in a non-contact state at least in the range of 5 to 25 mm upstream or downstream of the discharge electrode, even if the corona discharge between the discharge electrode and the earth electrode is stopped, it will be expanded with the discharge electrode. Since the corona discharge between the second ground electrode and the second ground electrode is continued, the surface of the charged running body that is the target of static elimination can be easily controlled to almost zero potential without providing a new static eliminator on the downstream side.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の帯電走行体の除電方法を説明するもの
で、装置配置を示す構成図である。
FIG. 1 is a configuration diagram illustrating an apparatus arrangement for explaining a method of removing static electricity from a charged traveling body according to the present invention.

【図2】本発明の除電方法に用いる放電電極の一例を一
部断面にして示した正面図である。
FIG. 2 is a front view showing an example of a discharge electrode used in the charge eliminating method of the present invention in a partial cross section.

【図3】図2に示した放電電極の側面図である。FIG. 3 is a side view of the discharge electrode shown in FIG.

【符号の説明】[Explanation of symbols]

1 帯電走行体 2 アースロール(アース電極) 2a 誘電体層 3 放電電極 4 周波数可変高圧電源 5 ガイドローラ 30 高圧ケーブル 30a 芯線 30b 絶縁材 31 導電性リング 31a 電極針 32 絶縁被覆 33 ホルダ 34 接地電極 d1 放電電極と帯電走行体との間の距離 d2 空気の厚さ(帯電走行体とアース電極
との間に介在する)
1 Charging Running Body 2 Earth Roll (Earth Electrode) 2a Dielectric Layer 3 Discharge Electrode 4 Frequency Variable High Voltage Power Supply 5 Guide Roller 30 High Voltage Cable 30a Core Wire 30b Insulation Material 31 Conductive Ring 31a Electrode Needle 32 Insulation Coating 33 Holder 34 Ground Electrode d 1 Distance between discharge electrode and charge running body d 2 Air thickness (intervened between charge running body and ground electrode)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ウェブ状の帯電走行体の片側に非接触状
態で設けた放電電極に交流電圧を印加し、前記帯電走行
体の反対側に設けたアース電極との間でコロナ放電を発
生させて前記帯電走行体を除電する帯電走行体の除電方
法において、 前記放電電極と前記アース電極とを結ぶ最短経路上で測
定したときの、該放電電極と前記帯電走行体との間の距
離をd1 (mm)、該帯電走行体と前記アース電極との間に
介在する空気および前記誘電体層の厚さをそれぞれd2,
3(mm) 、該誘電体層の比誘電率をεとしたときに、 8≦d1+d2+d3/ε≦25 1≦d2+d3/ε≦5 の範囲となるように、該放電電極,前記帯電走行体およ
び前記アース電極の位置関係ならびに前記誘電体層の厚
さおよび材質を調整するとともに、 前記帯電走行体の走行速度をV(m/min.)、交流電圧
半周期の印加によって静止物体を除電できる除電幅をW
(mm)とするとき、 f0 =(1000・V)/(60・W) で求められる周波数f0 の1〜10倍の周波数の交流電圧
を前記放電電極に印加して除電することを特徴とする帯
電走行体の除電方法。
1. An AC voltage is applied to a discharge electrode provided on one side of a web-shaped charging traveling body in a non-contact state to generate corona discharge between the discharge electrode and a ground electrode provided on the opposite side of the charging traveling body. In the method for removing charge from the charging running body, the distance between the discharge electrode and the charging running body is d when measured on the shortest path connecting the discharge electrode and the ground electrode. 1 (mm), the thickness of the air and the dielectric layer interposed between the charging traveling body and the ground electrode is d 2 ,
d 3 (mm), where ε is the relative permittivity of the dielectric layer, the range is 8 ≦ d 1 + d 2 + d 3 / ε ≦ 25 1 ≦ d 2 + d 3 / ε ≦ 5. The positional relationship among the discharge electrode, the charging traveling body, and the ground electrode and the thickness and material of the dielectric layer are adjusted, and the traveling speed of the charging traveling body is V (m / min.), AC voltage half cycle. The static elimination width that can eliminate static electricity by applying
(Mm), it is characterized in that an AC voltage having a frequency of 1 to 10 times the frequency f 0 calculated by f 0 = (1000 · V) / (60 · W) is applied to the discharge electrode to remove electricity. A method for removing static electricity from a charged running body.
【請求項2】 前記放電電極は、交流電圧半周期を印加
したときの前記帯電走行体の表面における充電電荷密度
を2〜20μC/m2 とする、請求項1の帯電走行体の除
電方法。
2. The method according to claim 1, wherein the discharge electrode has a charge density of 2 to 20 μC / m 2 on the surface of the charging traveling body when an AC voltage half cycle is applied.
【請求項3】 前記帯電走行体に対して前記放電電極と
同一側に、該帯電走行体の走行方向を基準として前記放
電電極の上流または/および下流5〜25mmの範囲に非
接触状態で第二アース電極を設けて除電する、請求項1
または2の帯電走行体の除電方法。
3. A non-contact state on the same side as the discharge electrode with respect to the charging traveling body, in the range of 5 to 25 mm upstream or / and downstream of the discharging electrode with reference to the traveling direction of the charging traveling body. 2. A grounding electrode is provided to eliminate static electricity.
Alternatively, the method for removing static electricity from the charged running body according to item 2.
【請求項4】 前記アース電極が、接地された金属ロー
ルまたは表面を誘電体層で被覆した接地金属ロールであ
る、請求項1、2または3の帯電走行体の除電方法。
4. The method for static elimination of a charged running body according to claim 1, wherein the ground electrode is a grounded metal roll or a grounded metal roll whose surface is covered with a dielectric layer.
JP02534593A 1993-02-15 1993-02-15 Static electricity removal method for charged traveling body Expired - Fee Related JP3455984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02534593A JP3455984B2 (en) 1993-02-15 1993-02-15 Static electricity removal method for charged traveling body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02534593A JP3455984B2 (en) 1993-02-15 1993-02-15 Static electricity removal method for charged traveling body

Publications (2)

Publication Number Publication Date
JPH06243989A true JPH06243989A (en) 1994-09-02
JP3455984B2 JP3455984B2 (en) 2003-10-14

Family

ID=12163299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02534593A Expired - Fee Related JP3455984B2 (en) 1993-02-15 1993-02-15 Static electricity removal method for charged traveling body

Country Status (1)

Country Link
JP (1) JP3455984B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108101A (en) * 2004-10-01 2006-04-20 Illinois Tool Works Inc <Itw> Emitter electrode formed of carbide material for gas ionizer or coated with above material
JP2008277316A (en) * 1998-06-04 2008-11-13 Keyence Corp Static eliminator
JP2009104972A (en) * 2007-10-25 2009-05-14 Shimuko Japan Kk Ion type static eliminator
JP2012186429A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Substrate processing apparatus, and substrate processing method using substrate processing apparatus
JP2018073553A (en) * 2016-10-26 2018-05-10 春日電機株式会社 Static eliminator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277316A (en) * 1998-06-04 2008-11-13 Keyence Corp Static eliminator
JP4663766B2 (en) * 1998-06-04 2011-04-06 株式会社キーエンス Static eliminator
JP2006108101A (en) * 2004-10-01 2006-04-20 Illinois Tool Works Inc <Itw> Emitter electrode formed of carbide material for gas ionizer or coated with above material
JP2009104972A (en) * 2007-10-25 2009-05-14 Shimuko Japan Kk Ion type static eliminator
JP2012186429A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Substrate processing apparatus, and substrate processing method using substrate processing apparatus
JP2018073553A (en) * 2016-10-26 2018-05-10 春日電機株式会社 Static eliminator

Also Published As

Publication number Publication date
JP3455984B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP5029740B2 (en) Method for removing electricity from electrically insulating sheet, method for producing electrically insulating sheet, and electrically insulating sheet
US3863108A (en) Electrostatic charge controller
JPH0352058B2 (en)
US20090324842A1 (en) Coater of electric insulating sheet and method for producing electric insulating sheet with coated film
KR100849062B1 (en) Film roll and method for manufacturing the same
US3474292A (en) Method of reducing electrostatic charges on film structures
JP3455984B2 (en) Static electricity removal method for charged traveling body
US3777164A (en) Electrode for sheet material surface treatment apparatus
JPH02237684A (en) Method for electrifying supporting body
JP2002289394A (en) Method and device for eliminating static charge of insulating sheet
EP0023754B1 (en) Electrostatic recording apparatus and method
JP4396084B2 (en) Manufacturing method of electrical insulating sheet
JP3517968B2 (en) Insulating web static elimination method and web manufacturing method
WO2017159441A1 (en) Insulating sheet discharging method and insulating sheet discharging apparatus
JP4617757B2 (en) Electric insulation sheet neutralizing device and method, method for producing electric insulating sheet, and electric insulating sheet
JP4904786B2 (en) An electrically insulating sheet static eliminator, a static eliminator and a manufacturing method.
KR0181552B1 (en) Discharge and vibration damper
KR20070099588A (en) Electric-insulating sheet neutralizing device, neutralizing method and production method
JPH0922792A (en) Method and device for controlling charging of film having conductive layer on one side and manufacture of film with one side conductive layer
JP2007115559A (en) Static charge eliminator of electrical insulation sheet and manufacturing method of the same
JPH0416867A (en) Contact electrostatic charging device
JP2009026716A (en) Method and device for static elimination from electric insulating sheet with conductive layer
JP2003292650A (en) Corona discharge treatment method, method and apparatus for producing plastic film
JP2002240995A (en) Manufacturing method and winding device for insulative sheet roll body and product thereof
JP5241983B2 (en) Film roll body and method for producing film roll body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees