JPH0352058B2 - - Google Patents
Info
- Publication number
- JPH0352058B2 JPH0352058B2 JP61298420A JP29842086A JPH0352058B2 JP H0352058 B2 JPH0352058 B2 JP H0352058B2 JP 61298420 A JP61298420 A JP 61298420A JP 29842086 A JP29842086 A JP 29842086A JP H0352058 B2 JPH0352058 B2 JP H0352058B2
- Authority
- JP
- Japan
- Prior art keywords
- charging
- voltage
- charged
- photoreceptor
- charging member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 108091008695 photoreceptors Proteins 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 13
- 230000005684 electric field Effects 0.000 claims description 10
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 8
- 208000028659 discharge Diseases 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 238000011161 development Methods 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010351 charge transfer process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、被帯電体を帯電する帯電方法及び同
装置並びこの装置を備えた電子写真装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charging method and device for charging an object to be charged, and an electrophotographic apparatus equipped with this device.
便宜上、画像形成装置である電子写真装置にお
ける感光体の帯電処理(除電処理も含む)を例に
して説明する。
For convenience, a description will be given of an example of charging processing (including static elimination processing) of a photoreceptor in an electrophotographic apparatus, which is an image forming apparatus.
電子写真は周知のように感光体面を所定の電位
に均一帯電処理する工程を含んでいる。その帯電
処理手段としては現在実用化されている電子写真
装置の殆ど全てがワイヤ電極とシールド電極を主
構成部材とするコロナ放電器を利用している。し
かし該コロナ放電器を用いた帯電処理系において
は以下のような問題点を有している。 As is well known, electrophotography includes a process of uniformly charging the surface of a photoreceptor to a predetermined potential. As the charging processing means, almost all electrophotographic apparatuses currently in practical use utilize a corona discharger whose main components are a wire electrode and a shield electrode. However, the charging system using the corona discharger has the following problems.
(1) 高電圧印加
感光体上に500〜700Vの表面電位を得るため
に4〜8KVといつた高電圧をワイヤに印加す
る必要性があり、電極及び本体へのリークを防
止すべくワイヤから電極の距離を大きく維持す
る等のために放電器自体が大型化し、又高絶縁
被覆ケーブルの使用が不可欠である。(1) High voltage application In order to obtain a surface potential of 500 to 700 V on the photoconductor, it is necessary to apply a high voltage of 4 to 8 KV to the wire, and to prevent leakage to the electrode and main body, it is necessary to apply a high voltage of 4 to 8 KV to the wire. In order to maintain a large distance between the electrodes, the discharger itself becomes large in size, and it is essential to use highly insulated cables.
(2) 帯電効率が低い
ワイヤからの放電電流の大半はシールド電極
へ流れ、被帯電体たる感光体側へ流れるコロナ
電流は総放電電流の数パーセントにすぎない。(2) Low charging efficiency Most of the discharge current from the wire flows to the shield electrode, and the corona current that flows to the photoreceptor side, which is the body to be charged, is only a few percent of the total discharge current.
(3) コロナ放電生成物の発生
コロナ放電によつてオゾン等の発生があり、
装置構成部品の酸化、感光体表面のオゾン劣化
による画像ボケ(特にこの現像は高湿環境下に
おいて著しい)が生じ易く、またオゾンの人体
への影響を考慮してオゾン吸収・分解フイルタ
及びフイルタへの気流発生手段であるフアンが
必要である。(3) Generation of corona discharge products Corona discharge generates ozone, etc.
Image blurring is likely to occur due to oxidation of device components and ozone deterioration on the surface of the photoreceptor (this development is particularly noticeable in high humidity environments), and in consideration of the effects of ozone on the human body, ozone absorption/decomposition filters and filters are used. A fan is required to generate airflow.
(4) ワイヤ汚れ
放電効率をあげるために曲率の大きい放電ワ
イヤ(一般的には60μ〜100μの直径のものが用
いられる)が使用されるが、ワイヤ表面に形成
される高電界によつて装置内の微小な塵挨を集
塵してワイヤ表面が汚れる。ワイヤ汚れは放電
にムラを生じ易く、それが画像ムラとなつてあ
らわれる。従つてかなり頻繁にワイヤや放電器
内を清掃処置する必要がある。(4) Wire contamination A discharge wire with a large curvature (generally a diameter of 60μ to 100μ is used) is used to increase discharge efficiency, but the high electric field formed on the wire surface can cause damage to the device. The wire surface gets dirty by collecting minute dust inside. Wire contamination tends to cause uneven discharge, which appears as image unevenness. Therefore, it is necessary to clean the wires and the inside of the discharger quite frequently.
そこで最近では上記のような問題点の多いコロ
ナ放電器を利用しないで、接触帯電手段を利用す
ることが検討されている。 Therefore, recently, consideration has been given to using contact charging means instead of using a corona discharger which has many problems as described above.
具体的には被帯電体たる感光体表面に1KV程
度の直流電圧を外部により印加した導電性繊維毛
ブラシあるいは導電性弾性ローラ等の帯電部材で
ある導電性部材(導電性電位繊維部材)を接触さ
せることにより感光体表面に電荷を直接注入して
感光体表面を所定の電位に帯電させるものであ
る。 Specifically, a conductive member (conductive potential fiber member), which is a charging member, such as a conductive fiber bristle brush or a conductive elastic roller, to which a direct current voltage of about 1 KV is applied externally, is brought into contact with the surface of the photoreceptor, which is the object to be charged. By doing so, charges are directly injected onto the surface of the photoreceptor, and the surface of the photoreceptor is charged to a predetermined potential.
しかし実際には被帯電体たる感光体面を上記の
ような接触帯電手段により帯電処理しても感光体
面の各部均一な帯電はなされず、斑点状の帯電ム
ラを生じる。これは電圧を印加した帯電部材と、
それを接触させた感光体表面とが微視的には両表
面の凹凸によつて理想的な密着面が得られにくい
ためと考えられる。そしてこの斑点状帯電ムラ状
態の感光体面に光像露光以下の作像プロセスを適
用しても出力画像は斑点状体帯電ムラに対応した
斑点状の黒点画像となり、高品位な画像は得られ
ない。
However, in reality, even if the surface of the photoreceptor, which is the object to be charged, is charged by the above-mentioned contact charging means, each part of the photoreceptor surface is not uniformly charged, resulting in spot-like charging unevenness. This consists of a charging member to which a voltage is applied,
This is thought to be because it is difficult to obtain an ideal contact surface with the surface of the photoreceptor with which it is brought into contact due to the microscopic irregularities on both surfaces. Even if an image forming process lower than optical image exposure is applied to the photoreceptor surface with this spotty charging unevenness, the output image will be a spotty black dot image corresponding to the spotty charging unevenness, and a high-quality image will not be obtained. .
本発明は帯電手段について被帯電面の各部が均
一帯電されるように改善し、前述したように問題
の多いコロナ放電器を利用する代りに例えば電子
写真装置のような画像形成装置における感光体の
均一帯電手段として問題なく利用することができ
るようにすることを目的とする。 The present invention improves the charging means so that each part of the surface to be charged is uniformly charged, and instead of using the problematic corona discharger as described above, for example, the photoreceptor in an image forming apparatus such as an electrophotographic apparatus is used. The purpose is to enable it to be used without problems as a uniform charging means.
本発明は、下記の構成を特徴とする帯電方法及
び同装置並びにこの装置を備えた電子写真装置で
ある。
The present invention relates to a charging method and device, and an electrophotographic apparatus equipped with this device, which are characterized by the following configuration.
帯電部材により被帯電体を帯電する帯電方法に
おいて、帯電部材は被帯電体面との距離が大きく
なつていく領域を具備し、被帯電体に対する帯電
開始電圧値の2倍以上のピーク間電圧値を有する
電圧を被帯電体と帯電部材との間に印加すること
により、被帯電体面と帯電部材の前記領域との間
に振動電界を形成することを特徴とする帯電方
法。 In a charging method of charging an object to be charged with a charging member, the charging member has a region where the distance from the surface of the object to be charged increases, and the charging member has a peak-to-peak voltage value that is at least twice the charging start voltage value for the object to be charged. A charging method characterized in that an oscillating electric field is formed between the surface of the object to be charged and the region of the charging member by applying a voltage between the object to be charged and the charging member.
被帯電体を帯電する帯電装置において、
被帯電体との距離が大きくなつていく領域と被
帯電体と接触する領域とを備える帯電部材と、
被帯電体と帯電部材との間に、被帯電体に対す
る帯電開始電圧値の2倍以上のピーク間電圧を有
する電圧を印加する電圧印加手段と、
を有し、被帯電体と帯電部材との間に振動電界を
形成することを特徴とする帯電装置。 A charging device that charges an object to be charged includes a charging member having an area where the distance from the object to be charged increases and a region in contact with the object to be charged, and a charging member between the object to be charged and the charging member. A charging device comprising: a voltage applying means for applying a voltage having a peak-to-peak voltage that is at least twice the charging start voltage value for the body; and forming an oscillating electric field between the body to be charged and the charging member. Device.
感光体を帯電する帯電部材を備えた電子写真装
置において、
感光体との距離が大きくなつていく領域と感光
体と接触する領域とを備える帯電部材と、
感光体と帯電部材との間に、感光体に対する帯
電開始電圧値の2倍以上のピーク間電圧値を有す
る電圧を印加する電圧印加手段と、
を有し、感光体と帯電部材との間に振動電界を形
成することを特徴とする電子写真装置。 In an electrophotographic apparatus equipped with a charging member that charges a photoreceptor, the charging member includes an area where the distance from the photoreceptor increases and an area that contacts the photoreceptor, and between the photoreceptor and the charging member, Voltage application means for applying a voltage having a peak-to-peak voltage value that is twice or more the charging start voltage value to the photoreceptor, and forming an oscillating electric field between the photoreceptor and the charging member. Electrophotographic equipment.
上記のような条件で被帯電体を帯電処理する
と、実際上被帯電体面は斑点状等の帯電ムラを生
じることなく各部均一の所定電位で常に安定に一
様帯電処理されることが後述実施例に示すように
確認された。
When the object to be charged is charged under the above conditions, the surface of the object to be charged is actually always stably and uniformly charged with a uniform predetermined potential at each part without causing uneven charging such as spots, as shown in the examples described later. It was confirmed as shown in
第1図に於て、1は被帯電体としての電子写真
感光ドラムの一部であり、ドラム基本1aの外周
面に感光体層1b(有機半導体・アモルフアスシ
リコン・セレン等の光導電性半導体材料層)を形
成してなるもので、矢印a方向に所定の速度で面
移動駆動される。
In FIG. 1, reference numeral 1 denotes a part of an electrophotographic photosensitive drum as an object to be charged, and a photosensitive layer 1b (a photoconductive semiconductor such as an organic semiconductor, amorphous silicon, selenium, etc.) is formed on the outer peripheral surface of a basic drum 1a. It is formed by forming a material layer) and is driven to move in plane at a predetermined speed in the direction of arrow a.
2は上記の感光ドラム1面に所定圧力をもつて
接触させた帯電部材としての導電性ローラであ
り、感光ドラム1の回転に伴ない矢印方向に従動
回転する。この導電性ローラ2において、Aは被
帯電体たる感光ドラム1面に当接する面領域であ
り、Bは引続いて感光ドラムの面移動方向下流側
に向かうに従つて被帯電体から徐々に離間する面
領域である。本例の場合該離間面領域Bはローラ
2の曲面と感光ドラムの曲面によつて構成され
る。3はこの導電性ローラに電圧を印加する電源
である。 Reference numeral 2 denotes a conductive roller as a charging member which is brought into contact with the surface of the photosensitive drum 1 with a predetermined pressure, and rotates in the direction of the arrow as the photosensitive drum 1 rotates. In this conductive roller 2, A is a surface area that comes into contact with one surface of the photosensitive drum, which is an object to be charged, and B is a surface area that gradually separates from the object to be charged as it goes downstream in the surface movement direction of the photosensitive drum. This is the surface area where In this example, the separation surface area B is constituted by the curved surface of the roller 2 and the curved surface of the photosensitive drum. 3 is a power source that applies voltage to this conductive roller.
導電性ローラ2は具体的には例えば第2図aの
ように金属芯棒2aにEPDM・NBR等の弾性ゴ
ム層2bを設け、更にその周面にカーボンを分散
したウレタンゴム層2c(抵抗〜105Ω)を設けた
2層被覆構成のもの、第2図bのように金属芯棒
2aにカーボンを分散した発泡ウレタンゴム層2
dを被覆したもの等を用いることができる。 Specifically, the conductive roller 2 has an elastic rubber layer 2b such as EPDM/NBR on a metal core 2a as shown in FIG. 10 5 Ω), a foamed urethane rubber layer 2 with carbon dispersed in a metal core 2a as shown in Fig. 2b.
A material coated with d can be used.
導電性ローラ2は非回転のローラやパツド部材
であつてもよい。第2図c及び同図dは夫々パツ
ド部材として構成した例を示している。 The conductive roller 2 may be a non-rotating roller or a pad member. FIGS. 2c and 2d each show an example constructed as a pad member.
A 一般帯電手段の場合
(直流電圧印加)
上記において感光ドラム1の感光体層1b
は、アゾ顔料をCGL層(キヤリア発生層)と
し、その上にヒドラゾンと樹脂を混合したもの
をCTL層(キヤリア輸送層)として19μの厚さ
に積層した負極性有機半導体層(OPC層)と
し、このOPC感光ドラム1を回転駆動させ、
その表面に導電性ローラ2を接触させ、該導電
性ローラ2に直流電圧VDCを印加して暗所で
OPC感光ドラム1の接触帯電を行わせるもの
とし、導電性ローラ2通過後の帯電された
OPC感光ドラム1の表面電位Vと、導電性ロ
ーラ2に対する印加直流電圧VDCとの関係を測
定した。A In the case of general charging means (DC voltage application) In the above case, the photoconductor layer 1b of the photoconductor drum 1
The azo pigment is used as a CGL layer (carrier generation layer), and on top of that, a mixture of hydrazone and resin is used as a CTL layer (carrier transport layer), which is laminated to a thickness of 19μ as a negative polarity organic semiconductor layer (OPC layer). , rotate this OPC photosensitive drum 1,
A conductive roller 2 is brought into contact with the surface of the conductive roller 2, and a DC voltage V DC is applied to the conductive roller 2.
Contact charging of the OPC photosensitive drum 1 is performed, and the charged
The relationship between the surface potential V of the OPC photosensitive drum 1 and the DC voltage V DC applied to the conductive roller 2 was measured.
第8図のグラフはその測定結果を示すもので
ある。印加直流電圧VDCに対して帯電は閾値を
有し、約−560Vから帯電が開始し、その帯電
開始電圧値(560V)以上の電圧印加に対して
は、得られる表面電位Vはグラフ上傾き1の直
線的な関係が得られた。この特性は環境特性的
にも(例えば高温高湿・低温低湿環境)ほぼ同
等の結果が得られた。 The graph in FIG. 8 shows the measurement results. Charging has a threshold value for the applied DC voltage V DC , and charging starts from approximately -560V, and when a voltage higher than the charging start voltage value (560V) is applied, the obtained surface potential V slopes upward on the graph. A linear relationship of 1 was obtained. Almost the same results were obtained in terms of environmental characteristics (for example, high temperature and high humidity environments, and low temperature and low humidity environments).
すなわち、導電性ローラ2への直流印加電圧
値をVaとし、OPC感光ドラム表面に得られる
帯電電位の値をVc、帯電開始電圧値をVTHとす
ると、
Vc=Va−VTH
の関係がある。 That is, if the value of the DC applied voltage to the conductive roller 2 is Va, the value of the charging potential obtained on the surface of the OPC photosensitive drum is Vc, and the charging start voltage value is VTH , then there is a relationship of Vc = Va - VTH. .
上記の式はパツシエン(Paschen)の法則を
用いて導出できる。 The above equation can be derived using Paschen's law.
第9図の模型図に示すように導電性ローラ2
とOPC感光体層1bとの間の微視的空隙Zに
かかる電圧Vgは以下の(1)式で表わされる。 As shown in the model diagram of Fig. 9, the conductive roller 2
The voltage Vg applied to the microscopic gap Z between the OPC photoreceptor layer 1b and the OPC photoreceptor layer 1b is expressed by the following equation (1).
Vg=(Va−Vc)Z/Ls/Ks+Z ……(1)
Va:印加電圧値
Vc:感光体層表面電位の値
Z:空隙
Ls:感光体層厚み
Ks:感光体層比誘電率
一方、空隙Zにおける放電現像はパツシエン
の法則により、Z=8μ以上では放電破壊電圧
Vbは次の1次式(2)で近似できる。 Vg=(Va−Vc)Z/Ls/Ks+Z...(1) Va: Applied voltage value Vc: Value of photoreceptor layer surface potential Z: Gap Ls: Photoreceptor layer thickness Ks: Photoreceptor layer relative permittivity On the other hand, According to Patsien's law, the discharge development in the gap Z has a discharge breakdown voltage of Z = 8 μ or more.
Vb can be approximated by the following linear equation (2).
Vb=312+6.2Z ……(2)
(1)・(2)式をグラフに書くと第10図のグラフ
のようになる。横軸は空隙距離Z、縦軸は空隙
破壊電圧を示し、下に凸の曲線がパツシエン
の曲線、上に凸に曲線・・が夫々
(Va−Vc)
をパラメータとした空隙電圧Vgの特性を示す。 Vb=312+6.2Z ……(2) If you write equations (1) and (2) on a graph, it will look like the graph in Figure 10. The horizontal axis shows the gap distance Z, the vertical axis shows the gap breakdown voltage, the downward convex curve is the Patsien curve, and the upward convex curve shows the characteristics of the gap voltage Vg with (Va−Vc) as a parameter. show.
パツシエンの曲線と、曲線〜が交点を
有するとき放電が生ずるものであり、放電が開
始する点においては、Vg=VbとおいたZの二
次式で判別式が0になる。すなわち、
(Va−Vc−312−6.2×Ls/Ks)2=4×6.2×
312
×Ls/KsVc=Va−√7737.6×
+312+6.2×Ls/Ks) ……(3)
(Vc=Va−VTH)
(3)式の右辺に先の実験で用いたOPC感光体層
1bの比誘電率3、CTL厚み19μを代入する
と、Vc=Va−573が得られ、先に得られた実
験式とほぼ一致する。 Discharge occurs when Patsien's curve intersects with the curve . That is, (Va−Vc−312−6.2×Ls/Ks) 2 =4×6.2× 312×Ls/KsVc=Va−√7737.6× +312+6.2×Ls/Ks) ……(3) (Vc=Va− V TH ) By substituting the dielectric constant 3 and CTL thickness 19 μ of the OPC photoreceptor layer 1b used in the previous experiment into the right side of equation (3), Vc = Va−573 is obtained, and the experimental formula obtained earlier almost matches.
パツシエンの法則は空隙での放電現像に関す
るものであるが、上記誘電性ローラ2を用いた
帯電過程においても帯電部のすぐ近傍で微少な
がらオゾンの発生(コロナ放電に比較して10
-2〜10-3)が認められ、帯電がなんらかの形
で放電現像に関係しているものと考えられる。 Patsien's law relates to discharge development in voids, but even in the charging process using the dielectric roller 2, a small amount of ozone is generated in the immediate vicinity of the charging area (10% compared to corona discharge).
-2 to 10 -3 ), and it is thought that charging is somehow related to discharge development.
第11図のグラフは感光ドラム1の感光体層
1bを上記例のOPC層に変えてアモルフアス
シリコン(a−Si)層とした場合の導電性ロー
ラ2通過後の帯電された該a−Si感光ドラム1
の表面電位と、導電性ローラ2に対する印加直
流電圧との関係を測定したものである。 The graph in FIG. 11 shows the charged a-Si after passing through the conductive roller 2 when the photosensitive layer 1b of the photosensitive drum 1 is replaced with the OPC layer in the above example and is replaced with an amorphous silicon (a-Si) layer. Photosensitive drum 1
The relationship between the surface potential of the conductive roller 2 and the DC voltage applied to the conductive roller 2 is measured.
暗減衰の因子を最小にするため帯電行程前の
露光無で実験を行なつた。VTH≒440Vから帯電
が開始し、その後は前述第8図のOPC感光ド
ラムの場合のグラフと同様な直線的関係が得ら
れた。 In order to minimize the dark decay factor, experiments were conducted without exposure before the charging process. Charging started from V TH ≈440V, and thereafter a linear relationship similar to the graph for the OPC photosensitive drum shown in FIG. 8 was obtained.
前記(3)式で得られたKs・Lsに、用いたa−
Si感光ドラムのKs=12、Ls=20μを代入すると
VTH=432Vが得られ、実験結果とほぼ一致す
る。 The a-
Substituting Ks=12 and Ls=20μ for the Si photosensitive drum
V TH =432V was obtained, which is almost in agreement with the experimental results.
導電性ローラ2に直流電圧を印加した場合、
以上のような特性をもつて感光体表面に帯電電
位が得られるが、その静電荷パターンを公知の
現像方法を用いて顕像化すると斑点状のムラす
なわち帯電ムラが生じていることは前述した通
りである。 When a DC voltage is applied to the conductive roller 2,
With the characteristics described above, a charging potential can be obtained on the surface of the photoreceptor, but as mentioned above, when the electrostatic charge pattern is visualized using a known developing method, spot-like unevenness, that is, uneven charging occurs. That's right.
B 本発明の接触帯電手段の場合
(脈流電圧印加)
上記A項で用いたOPC感光ドラム及びa−
Si感光ドラムについて、導電性ローラ2に直流
VDCにVP-Pのピーク間電圧を有する交流VACを
重畳した脈流電圧(VDC+VAC)を印加して感
光ドラムを接触帯電処理したときのピーク間電
圧に対する感光体帯電電位の関係を夫々測定し
た。第3図及び第4図はその夫々の測定結果グ
ラフである。VP-Pの小さい領域では、帯電電
位の値はVP-Pに比例して直線的に増加し、あ
る値を越えると脈流電圧成分中の直流分VDC値
にほぼ飽和し、VP-P変化に対して一定値をと
る。B In the case of the contact charging means of the present invention (pulsating current voltage application) OPC photosensitive drum used in the above section A and a-
Regarding the Si photosensitive drum, direct current is applied to the conductive roller 2.
The relationship between the photoreceptor charging potential and the peak-to-peak voltage when the photosensitive drum is subjected to contact charging by applying a pulsating voltage (V DC + V AC ) obtained by superimposing AC V AC with a peak - to-peak voltage of V PP on V DC is shown below. Each was measured. FIGS. 3 and 4 are graphs of the measurement results. In the region where V PP is small, the value of the charged potential increases linearly in proportion to V PP , and when it exceeds a certain value, it almost saturates to the DC component of the pulsating voltage component V DC value, and takes a constant value.
感光体帯電電圧のVP-P/2値変化に対する
上記の変曲点は、OPC感光ドラムの場合は第
3図のグラフのように約1100V、a−Si感光ド
ラムの場合は第4図のグラフのように約900V
であり、これ等は丁度前述A項で求めた直流印
加時のVTHのほぼ2倍の値になる。 The above inflection point for the V PP /binary change in the photoconductor charging voltage is approximately 1100 V as shown in the graph of Figure 3 for the OPC photosensitive drum, and approximately 1100 V as shown in the graph of Figure 4 for the a-Si photosensitive drum. about 900V
These values are approximately twice the value of V TH when direct current is applied, which was determined in Section A above.
この関係は印加電圧の周波数及び直流成分
VDCを変化させても帯電電位の飽和点がVDC値
の変化によつてシフトするだけで、VP-Pの変
化に対する変曲点の位置は一定であり、かつ導
電性ローラ2の感光体1に対するスピード(例
えば停止・回転・逆転)には依存しない。 This relationship is based on the frequency and DC component of the applied voltage.
Even if V DC is changed, the saturation point of the charging potential only shifts due to the change in V DC value, and the position of the inflection point with respect to the change in V PP remains constant, and It does not depend on the speed (for example, stopping, rotating, reversing).
このように脈流電圧を印加して得られた感光
体の帯電表面を現像すると、VP-Pの値が小さ
い時即ちVP-P/2と帯電電位との間に傾き1
の直線的な関係にある領域においては、前述の
導電性ローラ2に直流のみを印加した時と同様
に斑点状のムラを生じているが、変曲点以上の
ピーク間電圧を印加した領域では帯電電位が一
定であるとともに、得られた顕画像は均一であ
り、帯電が均一・一様に行われていた。 When the charged surface of the photoreceptor obtained by applying a pulsating voltage is developed in this way, when the value of V PP is small, that is, there is a slope of 1 between V PP /2 and the charging potential.
In the region where there is a linear relationship between The charging potential was constant and the obtained microscopic image was uniform, indicating that charging was uniform and uniform.
すなわち、帯電の一様性を得るために感光体
の諸特性等によつて決定される直流印加時の帯
電開始電圧VTHの2倍以上のピーク間電圧を有
する振動電圧を印加する必要があり、その時得
られる帯電電位は印加電圧の直流成分に依存す
る。 That is, in order to obtain charging uniformity, it is necessary to apply an oscillating voltage having a peak-to-peak voltage that is at least twice the charging start voltage V TH when direct current is applied, which is determined by various characteristics of the photoreceptor. , the charging potential obtained at that time depends on the DC component of the applied voltage.
帯電の一様性と脈流電圧のピーク間電圧
VP-Pと帯電開始電圧値VTHとの関係、即ち
VP-P≧2VTH
に関して前述のように実験的には確証された
が、理論的には以下のように考えられる。 Uniformity of charging and peak-to-peak voltage of pulsating voltage
The relationship between V PP and the charging start voltage value V TH , that is, V PP ≧2V TH, has been experimentally confirmed as described above, but it can be theoretically considered as follows.
すなわち、VP-P変化に対する帯電電位の関
係における変曲点は感光体と帯電部材間の電界
下において感光体から帯電部材への電荷逆転移
開始点と考えられる。 That is, the inflection point in the relationship between the charging potential and the change in V PP is considered to be the point at which charge reverse transfer from the photoreceptor to the charging member starts under the electric field between the photoreceptor and the charging member.
第5図は帯電部材への印加電圧を示すもので
ある。説明上VDC直流成分にVP-Pの正弦波が重
畳された電圧波形とすると、脈流電圧印加にお
いてVmax・Vminは
Vmax=VDC+1/2VP-P、
Vmin=VDC−1/2VP-P
と表わされる。 FIG. 5 shows the voltage applied to the charging member. For the sake of explanation, assuming that the voltage waveform is a sine wave of V PP superimposed on the V DC direct current component, Vmax and Vmin are expressed as Vmax = V DC + 1/2V PP , Vmin = V DC - 1/2V PP when applying a pulsating voltage. It will be done.
Vmaxの電圧が印加された時、感光体は前述
の(3)式によつて
V=VDC+1/2VP-P−VTH
の表面電位に帯電される。 When a voltage of Vmax is applied, the photoreceptor is charged to a surface potential of V=V DC +1/2V PP -V TH according to the above equation (3).
この後、上記表面電位に対して帯電部材への
印加電圧値が電圧値中最小値すなわちVnioにな
つた時、その差が帯電開始電圧値VTHを越える
と過剰な感光体上の電荷は帯電部材側へ逆転移
する。 After this, when the voltage applied to the charging member with respect to the above-mentioned surface potential reaches the minimum value among the voltage values, that is, V nio , and the difference exceeds the charging start voltage value V TH , the excess charge on the photoreceptor is removed. Reverse transfer to the charging member side.
帯電部材と感光体との間の電荷の転移・逆転
移が両者ともVTHの閾値を有して行われるとい
う事は、電荷の転移が両者間の空隙間電圧によ
つて決定されることから方向的に等価と考えら
れることになる。 The fact that the charge transfer and reverse transfer between the charging member and the photoreceptor are both carried out with a threshold value of V TH is because the charge transfer is determined by the gap voltage between the two. They can be considered directionally equivalent.
したがつて、電荷の逆転移が生じるために
は、
(VDC+1/2VP-P−VTH)−(VDC−1/2VP-P)≧VTH
すなわち
VP-P≧2VTH
となり、前述の実験式と一致する結果が得られ
る。 Therefore, in order for reverse charge transition to occur, (V DC + 1/2V PP - V TH ) - (V DC - 1/2V PP ) ≧V TH , that is, V PP ≧2V TH , and the above empirical formula is satisfied. The result is consistent with .
つまり、たとえば感光体へ局部的に過剰な電
荷がのつて高電位になつても上述の電荷の逆転
移により一様化される。 In other words, even if, for example, excessive charges are locally applied to the photoreceptor, resulting in a high potential, it is evened out by the above-mentioned charge reverse transfer.
帯電部材と感光体との間の前述の電圧による
振動電界が形成される事により両者間で電荷の
転移・逆転移が生じるが、VTHという値により
電荷の転移過程が決まる、すなわちVTH以上の
電位差がある定まつた距離間で生じると電荷転
移が起こるとすると、帯電部材と感光体が近接
した領域では感光体の電位は第6図に示すよう
に矩形波に似た形状で振動する。図からわかる
ように振幅が
(VP-P/2−VTH)の振動である。 The formation of an oscillating electric field due to the aforementioned voltage between the charging member and the photoreceptor causes charge transfer/reverse transfer between the two, but the charge transfer process is determined by the value of V TH ; If a charge transfer occurs when a potential difference between . As can be seen from the figure, the vibration has an amplitude of (V PP /2−V TH ).
帯電開始電圧値とは帯電部材を被帯電体に使
用位置で対向配設し、被帯電体と帯電部材との
間に直流電圧を印加して被帯電体の帯電が開始
するときの、被帯電体と帯電部材との間の印加
直流電圧値である。 Charging start voltage value is the charging start voltage value when the charging member is placed facing the charged object at the use position, and a DC voltage is applied between the charged object and the charging member to start charging the charged object. This is the DC voltage value applied between the body and the charging member.
VTHに関してはその定義上電荷の転移の生じ
る最近接距離での電位差であり、本来は距離に
依存するものであり、帯電部材と感光体のギヤ
ツプが大きいと電荷の転移を生じるために必要
なTHも大きくならなければならない。第10図
に示すパツシエンの曲線位置も距離の増加にし
たがつて空隙破壊電圧の増加現像を示してい
る。 Regarding V TH , by definition it is the potential difference at the closest distance where charge transfer occurs, and it is originally dependent on distance. TH must also become large. The position of the Patsien curve shown in FIG. 10 also shows an increasing development of the gap breakdown voltage as the distance increases.
したがつて帯電部材2と感光体1が、その感
光体の回転下流方向へ徐々に遠のく構成、すな
わち第1図・第2図に示すように帯電部材と感
光体との距離が大きくなつていく構成において
は、第6図に示した振幅
(VP-P/2−VTH)の矩形波形状で振動していた
感光体電位はその離間行程で上記振幅中VTHの
増加にしたがいその振幅は0に収束する。 Therefore, the charging member 2 and the photoreceptor 1 are configured to gradually move away from each other in the rotational direction of the photoreceptor, that is, the distance between the charging member and the photoreceptor increases as shown in FIGS. 1 and 2. In this configuration, the photoreceptor potential, which was oscillating in a rectangular waveform with an amplitude (V PP /2-V TH ) shown in FIG. 6, becomes 0 as V TH increases during the separation process. converges to.
電荷の転移・逆転移の生じなくなつた十分離
れた領域において感光体表面電位は印加電圧値
中VP-Pには依存せずほぼVDC値に安定する。 In a sufficiently distant region where charge transfer and countertransference no longer occur, the photoreceptor surface potential does not depend on the applied voltage value V PP and stabilizes at approximately the V DC value.
以上説明したように、帯電部材は被帯電体面と
の距離が大きくなつていく領域を具備し、被帯電
体に対する帯電開始電圧値の2倍以上のピーク間
電圧値を有する電圧を被帯電体と帯電部材との間
に印加することにより、被帯電体面と帯電部材の
前記領域との間に振動電界を形成することで被帯
電体を帯電ムラなく均一に帯電処理することが可
能となる。
As explained above, the charging member has a region where the distance from the surface of the charged object increases, and a voltage having a peak-to-peak voltage value that is twice or more of the charging start voltage value for the charged object is applied to the charged object. By applying the voltage between the charged member and the charged member, an oscillating electric field is formed between the surface of the charged member and the region of the charged member, thereby making it possible to uniformly charge the charged member without uneven charging.
さらには、前述のごとく被帯電体と帯電部材間
で電荷の転移・逆転移が生じていると考えられ、
帯電前の被帯電体の電位に依存せず所望の電位を
高精度で得ることができる(第7図のグラフ参
照)。すなわちコロナ放電器で用いるグリツドに
似た効果もあり、電子写真で言う静電潜像変動に
ともなう画像変動といつた現像のない安定した帯
電プロセスが可能となる。 Furthermore, as mentioned above, it is thought that charge transfer and reverse transfer occur between the charged body and the charged member.
A desired potential can be obtained with high precision without depending on the potential of the object to be charged before charging (see the graph in FIG. 7). In other words, it has an effect similar to that of a grid used in a corona discharger, and enables a stable charging process without development, such as image fluctuations caused by electrostatic latent image fluctuations in electrophotography.
第1図は被帯電体としての感光ドラムの一部と
その面に接触させた接触帯電用の電圧印加導電性
ローラを示す図。第2図a・bは夫々導電性ロー
ラの構成例の横断面図、同図c・dは夫々導電性
パツド部材の構成例の横断面図。第3図・第4図
は夫々OPC感光ドラムとa−Si感光ドラムにつ
いての印加電圧VP-P値と感光体帯電電位Vとの
関係グラフ。第5図は導電性ローラへの印加電圧
波形例。第6図は導電性部材と感光体の近接した
領域での感光体電位の振動状態を示すグラフ。第
7図はOPC感光ドラムについての帯電前電位と
帯電後電位の関係グラフ。第8図・第11図は
夫々OPC感光ドラムとa−Si感光ドラムについ
ての直流印加電圧VDCと感光体帯電電圧Vとの関
係グラフ。第9図は感光体層−導電性ローラ間の
空隙ギヤツプ模型図。第10図はパツシエンの曲
線と空隙電圧の関係グラフ。
1は被帯電体としての感光ドラム、2は帯電部
材、3は電圧印加源。
FIG. 1 is a diagram showing a part of a photosensitive drum as an object to be charged and a voltage-applying conductive roller for contact charging that is in contact with the surface of the photosensitive drum. FIGS. 2a and 2b are cross-sectional views of an example of the structure of a conductive roller, and FIGS. 2c and d are cross-sectional views of an example of the structure of a conductive pad member, respectively. FIGS. 3 and 4 are graphs of the relationship between the applied voltage V PP value and the photoreceptor charging potential V for the OPC photosensitive drum and the a-Si photosensitive drum, respectively. FIG. 5 shows an example of the voltage waveform applied to the conductive roller. FIG. 6 is a graph showing the oscillation state of the photoreceptor potential in a region where the conductive member and the photoreceptor are close to each other. Figure 7 is a graph showing the relationship between the potential before charging and the potential after charging for the OPC photosensitive drum. FIGS. 8 and 11 are graphs of the relationship between the DC applied voltage V DC and the photoreceptor charging voltage V for the OPC photosensitive drum and the a-Si photosensitive drum, respectively. FIG. 9 is a model diagram of the gap between the photoreceptor layer and the conductive roller. Figure 10 is a graph showing the relationship between Patsien's curve and air gap voltage. 1 is a photosensitive drum as an object to be charged, 2 is a charging member, and 3 is a voltage application source.
Claims (1)
におて、帯電部材は被帯電体面との距離が大きく
なつていく領域を具備し、被帯電体に対する帯電
開始電圧値の2倍以上のピーク間電圧値を有する
電圧を被帯電体と帯電部材との間に印加すること
により、被帯電体面と帯電部材の前記領域との間
に振動電界を形成することを特徴とする帯電方
法。 2 上記電圧は、直流電圧と交流電圧との重畳電
圧である特許請求の範囲第1項記載の帯電方法。 3 被帯電体を帯電する帯電装置において、 被帯電体との距離が大きくなつていく領域と被
帯電体と接触する領域とを備える帯電部材と、 被帯電体と帯電部材との間に、被帯電体に対す
る帯電開始電圧値の2倍以上のピーク間電圧値を
有する電圧を加する電圧印加手段と、 を有し、被帯電体と帯電部材との間に振動電界を
形成することを特徴とする帯電装置。 4 上記帯電部材は、ローラ状である特許請求の
範囲第3項記載の帯電装置。 5 上記帯電部材は、、パツド状である特許請求
の範囲第3項記載の帯電装置。 6 上記電圧は直流電圧と交流電圧との重畳電圧
である特許請求の範囲第3乃至第5項記載の帯電
装置。 7 感光体を帯電する帯電部材を備えた電子写真
装置において、 感光体との距離が大きくなつていく領域と感光
体と接触する領域とを備える帯電部材と、 感光体と帯電部材との間に、感光体に対する帯
電開始電圧値の2倍以上のピーク間電圧値を有す
る電圧を印加する電圧印加手段と、 を有し、感光体と帯電部材との間に振動電界を形
成することを特徴とする電子写真装置。 8 上記帯電部材は、ローラ状である特許請求の
範囲第7項記載の電子写真装置。 9 上記帯電部材は、パツド状である特許請求の
範囲第7項記載の電子写真装置。 10 上記電圧は、直流電圧との交流電圧との重
畳電圧である特許請求の範囲第7項乃至第9項記
載の電子写真装置。 11 上記感光体は、有機光導電体層を有する特
許請求の範囲第7項乃至第10項記載の電子写真
装置。 12 上記感光体は、アモルフアスシリコン光導
電体層を有する特許請求の範囲第7項乃至第10
項記載の電子写真装置。[Scope of Claims] 1. In a charging method of charging an object to be charged with a charging member, the charging member has a region where the distance from the surface of the object to be charged increases, and the charging start voltage value for the object to be charged is adjusted. An oscillating electric field is formed between the surface of the charged member and the region of the charged member by applying a voltage having a peak-to-peak voltage value of twice or more between the charged member and the charged member. Charging method. 2. The charging method according to claim 1, wherein the voltage is a superimposed voltage of a DC voltage and an AC voltage. 3. A charging device that charges an object to be charged includes a charging member having an area where the distance from the object to be charged increases and a region in contact with the object to be charged, and a charging member between the object to be charged and the charging member. Voltage application means for applying a voltage having a peak-to-peak voltage value that is twice or more the charging start voltage value to the charged body, and forming an oscillating electric field between the charged body and the charged member. charging device. 4. The charging device according to claim 3, wherein the charging member is roller-shaped. 5. The charging device according to claim 3, wherein the charging member is pad-shaped. 6. The charging device according to any one of claims 3 to 5, wherein the voltage is a superimposed voltage of a DC voltage and an AC voltage. 7. In an electrophotographic device equipped with a charging member that charges a photoreceptor, the charging member includes an area where the distance from the photoreceptor increases and an area that contacts the photoreceptor, and a space between the photoreceptor and the charging member. , a voltage applying means for applying a voltage having a peak-to-peak voltage value that is at least twice the charging start voltage value to the photoreceptor, and forming an oscillating electric field between the photoreceptor and the charging member. electrophotographic equipment. 8. The electrophotographic apparatus according to claim 7, wherein the charging member is roller-shaped. 9. The electrophotographic apparatus according to claim 7, wherein the charging member is pad-shaped. 10. The electrophotographic apparatus according to claims 7 to 9, wherein the voltage is a superimposed voltage of a DC voltage and an AC voltage. 11. The electrophotographic apparatus according to claims 7 to 10, wherein the photoreceptor has an organic photoconductor layer. 12 The photoreceptor has an amorphous silicon photoconductor layer, as claimed in claims 7 to 10.
The electrophotographic device described in Section 1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29842086A JPS63149668A (en) | 1986-12-15 | 1986-12-15 | Contact electric charging method |
US07/131,585 US4851960A (en) | 1986-12-15 | 1987-12-11 | Charging device |
DE3789893T DE3789893T2 (en) | 1986-12-15 | 1987-12-14 | Charger. |
EP87310983A EP0272072B1 (en) | 1986-12-15 | 1987-12-14 | A charging device |
US08/562,788 USRE35581E (en) | 1986-12-15 | 1995-11-27 | Charging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29842086A JPS63149668A (en) | 1986-12-15 | 1986-12-15 | Contact electric charging method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7832391A Division JPH04218076A (en) | 1991-03-19 | 1991-03-19 | Contact electrostatic charging method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63149668A JPS63149668A (en) | 1988-06-22 |
JPH0352058B2 true JPH0352058B2 (en) | 1991-08-08 |
Family
ID=17859473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29842086A Granted JPS63149668A (en) | 1986-12-15 | 1986-12-15 | Contact electric charging method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63149668A (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412455A (en) * | 1992-01-30 | 1995-05-02 | Canon Kabushiki Kaisha | Charging device, image forming apparatus and detachably mountable process cartridge having a constant voltage power source feature |
JPH0635302A (en) * | 1992-07-16 | 1994-02-10 | Canon Inc | Image forming device |
JP2806174B2 (en) * | 1992-09-09 | 1998-09-30 | 富士ゼロックス株式会社 | Electrophotography using conductive toner |
CN1049745C (en) * | 1993-05-31 | 2000-02-23 | 株式会社理光 | Roller charging apparatus and image forming apparatus using the same |
US6245473B1 (en) | 1993-07-30 | 2001-06-12 | Canon Kabushiki Kaisha | Electrophotographic apparatus with DC contact charging and photosensitive layer with polycarbonate resin in charge generation layer |
US5538826A (en) * | 1993-09-09 | 1996-07-23 | Canon Kabushiki Kaisha | Electrophotographic image forming method, apparatus and device unit |
JPH07219312A (en) * | 1993-12-10 | 1995-08-18 | Canon Inc | Image forming device |
JP2887831B2 (en) | 1993-12-28 | 1999-05-10 | 富士ゼロックス株式会社 | Charging member for electrophotography |
DE69525996T2 (en) | 1994-06-22 | 2002-09-19 | Canon K.K., Tokio/Tokyo | Electrophotographic device |
JPH08220840A (en) * | 1994-10-05 | 1996-08-30 | Ricoh Co Ltd | Electrifying roller, roller electrifying device and image forming device using same |
JPH0950170A (en) * | 1994-10-19 | 1997-02-18 | Canon Inc | Charging device |
JPH08328352A (en) * | 1995-05-30 | 1996-12-13 | Ricoh Co Ltd | Electrifying member and electrifying device using it |
US5792533A (en) * | 1995-08-16 | 1998-08-11 | Ricoh Company, Ltd. | Electrostatic charging roller |
JP3279152B2 (en) * | 1995-10-04 | 2002-04-30 | キヤノン株式会社 | Control method of image forming apparatus |
JP3489321B2 (en) * | 1996-03-19 | 2004-01-19 | 東海ゴム工業株式会社 | Charging roll |
US5876890A (en) * | 1996-05-27 | 1999-03-02 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member and apparatus and process cartridge provided with the same |
US6434351B2 (en) | 1996-05-30 | 2002-08-13 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus employing the same |
US6324365B1 (en) | 1996-05-30 | 2001-11-27 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus employing the same |
US5876888A (en) * | 1996-07-04 | 1999-03-02 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, and apparatus and process cartridge provided with the same |
EP0841595B1 (en) * | 1996-11-12 | 2004-09-15 | Canon Kabushiki Kaisha | Photosensitive member, electrophotographic apparatus and process cartridge |
US6180302B1 (en) | 1997-10-27 | 2001-01-30 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus provided with the electrophotographic member |
JPH11174783A (en) * | 1997-12-10 | 1999-07-02 | Ricoh Co Ltd | Multifunctional contact electrification and transfer device |
US6408152B1 (en) | 1998-04-30 | 2002-06-18 | Canon Kabushiki Kaisha | Process cartridge and electrophotographic apparatus |
JPH11327262A (en) | 1998-05-15 | 1999-11-26 | Canon Inc | Electrification device and image forming device |
US6185398B1 (en) | 1998-07-21 | 2001-02-06 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
DE60022956T2 (en) | 1999-07-09 | 2006-07-13 | Seiko Epson Corp. | Working unit of an image forming apparatus with charging roller and cleaning unit, the latter being brought into contact with the charging roller only for cleaning and by a motor drive |
US6410195B1 (en) | 1999-08-12 | 2002-06-25 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
US6532347B2 (en) | 2000-01-20 | 2003-03-11 | Canon Kabushiki Kaisha | Method of controlling an AC voltage applied to an electrifier |
CA2337087C (en) | 2000-03-08 | 2006-06-06 | Canon Kabushiki Kaisha | Magnetic toner, process for production thereof, and image forming method, apparatus and process cartridge using the toner |
JP2002055512A (en) | 2000-05-30 | 2002-02-20 | Ricoh Co Ltd | Electrostatic charging device, and image forming device provided with same |
DE60136322D1 (en) | 2000-09-29 | 2008-12-11 | Canon Kk | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
JP4272808B2 (en) * | 2000-12-19 | 2009-06-03 | キヤノン株式会社 | Image forming apparatus |
US6697591B2 (en) | 2001-06-21 | 2004-02-24 | Canon Kabushiki Kaisha | Electrophotographic apparatus and process cartridge |
US6819893B2 (en) | 2002-04-24 | 2004-11-16 | Ricoh Company, Ltd. | Image forming apparatus and charging device |
JP4302471B2 (en) | 2003-09-18 | 2009-07-29 | 株式会社リコー | Conductive member, process cartridge including the conductive member, and image forming apparatus |
US7139501B2 (en) | 2003-11-20 | 2006-11-21 | Canon Kabushiki Kaisha | Charge voltage control circuit and image forming apparatus which controls a charge voltage based on a discharge current |
US7092649B2 (en) | 2004-03-31 | 2006-08-15 | Konica Minolta Business Technologies, Inc. | Charging device and image forming apparatus provided therewith |
JP2006259661A (en) | 2004-10-27 | 2006-09-28 | Ricoh Co Ltd | Lubricant supplying unit and image forming apparatus |
US7693456B2 (en) | 2005-01-27 | 2010-04-06 | Ricoh Company, Ltd. | Conductive member and process cartridge having it and image forming apparatus having the process cartridge |
JP4627674B2 (en) | 2005-03-24 | 2011-02-09 | 株式会社山武 | Data processing method and program |
JP4543989B2 (en) * | 2005-03-24 | 2010-09-15 | 富士ゼロックス株式会社 | Image forming apparatus |
JP2006330483A (en) | 2005-05-27 | 2006-12-07 | Ricoh Co Ltd | Conductive member, process cartridge including same, and image forming apparatus including process cartridge |
JP4690815B2 (en) | 2005-08-01 | 2011-06-01 | 株式会社リコー | Image forming apparatus |
JP4938294B2 (en) | 2005-11-10 | 2012-05-23 | 株式会社リコー | Conductive member, charging member using the conductive member, process cartridge using the charging member, and image forming apparatus using the process cartridge |
JP4980008B2 (en) | 2006-08-10 | 2012-07-18 | 株式会社リコー | Conductive member, process cartridge having the same, and image forming apparatus having the process cartridge |
US7899352B2 (en) | 2007-03-06 | 2011-03-01 | Kyocera Mita Corporation | Image forming apparatus |
JP4330082B2 (en) | 2007-03-06 | 2009-09-09 | 京セラミタ株式会社 | Image forming apparatus |
JP5118366B2 (en) | 2007-03-08 | 2013-01-16 | 株式会社リコー | Conductive member, process cartridge using the conductive member, and image forming apparatus using the process cartridge |
JP4809286B2 (en) | 2007-05-11 | 2011-11-09 | 株式会社リコー | Conductive member, process cartridge having the same, and image forming apparatus having the process cartridge |
JP5219452B2 (en) | 2007-10-22 | 2013-06-26 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus |
JP4459998B2 (en) | 2007-11-29 | 2010-04-28 | 株式会社リコー | Conductive member, process cartridge using the conductive member, and image forming apparatus using the process cartridge |
JP5163079B2 (en) | 2007-11-30 | 2013-03-13 | 株式会社リコー | Conductive member, process cartridge using the conductive member, and image forming apparatus using the process cartridge |
JP5791436B2 (en) | 2011-09-09 | 2015-10-07 | キヤノン株式会社 | Image forming apparatus |
JP5512009B2 (en) | 2012-05-17 | 2014-06-04 | キヤノン株式会社 | Image forming apparatus |
JP6589889B2 (en) | 2017-01-06 | 2019-10-16 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus |
JP7475228B2 (en) | 2020-07-17 | 2024-04-26 | シャープ株式会社 | Image forming device |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2777957A (en) * | 1950-04-06 | 1957-01-15 | Haloid Co | Corona discharge device |
US3076092A (en) * | 1960-07-21 | 1963-01-29 | Xerox Corp | Xerographic charging apparatus |
JPS495034A (en) * | 1972-04-28 | 1974-01-17 | ||
US3936174A (en) * | 1975-01-27 | 1976-02-03 | Xerox Corporation | Transfer roller with stationary internal electrode |
JPS5518659A (en) * | 1978-07-28 | 1980-02-08 | Canon Inc | Electrophotographic developing method |
JPS56104347A (en) * | 1980-01-23 | 1981-08-20 | Toshiba Corp | Charging device of electrophotographic copier |
JPS56126861A (en) * | 1980-03-10 | 1981-10-05 | Toshiba Corp | Electric charging device |
JPS56147160A (en) * | 1980-04-18 | 1981-11-14 | Toshiba Corp | Electrostatically charging method |
JPS57185455A (en) * | 1981-05-11 | 1982-11-15 | Toshiba Corp | Charging device |
US4371252A (en) * | 1980-03-10 | 1983-02-01 | Tokyo Shibaura Denki Kabushiki Kaisha | Contact type charging device with pliable contact member |
JPS5840566A (en) * | 1981-09-03 | 1983-03-09 | Kinoshita Kenkyusho:Kk | Method for contact charging in electrophotography |
JPS5872981A (en) * | 1981-10-28 | 1983-05-02 | Toshiba Corp | Cleaning device for contact charge |
JPS58194061A (en) * | 1982-05-10 | 1983-11-11 | Toshiba Corp | Roll electrostatic charge device |
JPS60134261A (en) * | 1983-12-23 | 1985-07-17 | Fuji Xerox Co Ltd | Electrifying device |
-
1986
- 1986-12-15 JP JP29842086A patent/JPS63149668A/en active Granted
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2777957A (en) * | 1950-04-06 | 1957-01-15 | Haloid Co | Corona discharge device |
US3076092A (en) * | 1960-07-21 | 1963-01-29 | Xerox Corp | Xerographic charging apparatus |
JPS495034A (en) * | 1972-04-28 | 1974-01-17 | ||
US3936174A (en) * | 1975-01-27 | 1976-02-03 | Xerox Corporation | Transfer roller with stationary internal electrode |
JPS5518659A (en) * | 1978-07-28 | 1980-02-08 | Canon Inc | Electrophotographic developing method |
JPS56104347A (en) * | 1980-01-23 | 1981-08-20 | Toshiba Corp | Charging device of electrophotographic copier |
JPS56126861A (en) * | 1980-03-10 | 1981-10-05 | Toshiba Corp | Electric charging device |
US4371252A (en) * | 1980-03-10 | 1983-02-01 | Tokyo Shibaura Denki Kabushiki Kaisha | Contact type charging device with pliable contact member |
JPS56147160A (en) * | 1980-04-18 | 1981-11-14 | Toshiba Corp | Electrostatically charging method |
JPS57185455A (en) * | 1981-05-11 | 1982-11-15 | Toshiba Corp | Charging device |
JPS5840566A (en) * | 1981-09-03 | 1983-03-09 | Kinoshita Kenkyusho:Kk | Method for contact charging in electrophotography |
JPS5872981A (en) * | 1981-10-28 | 1983-05-02 | Toshiba Corp | Cleaning device for contact charge |
JPS58194061A (en) * | 1982-05-10 | 1983-11-11 | Toshiba Corp | Roll electrostatic charge device |
JPS60134261A (en) * | 1983-12-23 | 1985-07-17 | Fuji Xerox Co Ltd | Electrifying device |
Also Published As
Publication number | Publication date |
---|---|
JPS63149668A (en) | 1988-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0352058B2 (en) | ||
US4851960A (en) | Charging device | |
JPS63149669A (en) | Contact electric charging method | |
USRE35581E (en) | Charging device | |
JPH09134053A (en) | Image forming device | |
JPH04218076A (en) | Contact electrostatic charging method | |
JP2919205B2 (en) | Charging method | |
JPH0416867A (en) | Contact electrostatic charging device | |
JPH04240671A (en) | Electrostatic charging device and image forming device provided therewith | |
JP3032659B2 (en) | Image forming device | |
JPH0720681A (en) | Electrifier | |
JPH05303259A (en) | Contact electrostatic charging device | |
JPH04301861A (en) | Contact electrifier | |
JPH0430186A (en) | Contact electrifier | |
JPH04245265A (en) | Electrifier and image forming device with it | |
JP2662121B2 (en) | Electrophotographic equipment | |
JPH0486681A (en) | Electrifying device | |
JPH05100545A (en) | Electrifying method and device | |
JPH03249775A (en) | Brush electrostatic charging device and destaticizing device | |
JP3618881B2 (en) | Charging device and image forming apparatus | |
JPH04240670A (en) | Electrostatic charging device and image forming device provided therewith | |
JPH0895344A (en) | Conductive brush and electrifying device using that | |
JPS6134531Y2 (en) | ||
JP3024791B2 (en) | Charging roll for image forming equipment | |
JPH03100674A (en) | Electrifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |