JPH04218076A - Contact electrostatic charging method - Google Patents

Contact electrostatic charging method

Info

Publication number
JPH04218076A
JPH04218076A JP7832391A JP7832391A JPH04218076A JP H04218076 A JPH04218076 A JP H04218076A JP 7832391 A JP7832391 A JP 7832391A JP 7832391 A JP7832391 A JP 7832391A JP H04218076 A JPH04218076 A JP H04218076A
Authority
JP
Japan
Prior art keywords
charging
voltage
photoreceptor
charged
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7832391A
Other languages
Japanese (ja)
Inventor
Toshiharu Nakamura
俊治 中村
Hiromitsu Hirabayashi
弘光 平林
Junji Araya
荒矢 順治
Norifumi Kosakabashi
小坂橋 規文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7832391A priority Critical patent/JPH04218076A/en
Publication of JPH04218076A publication Critical patent/JPH04218076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To uniformly execute the processing of electrostatic charge without irregularity in a contact electrostatic charging method that the electrostatic charge is executed by impressing a voltage on an electorical conductive member which is made to abut on the surface of a body to be electrostatically charged. CONSTITUTION:The electrical conductive member 2 is provided with a surface area A which abuts on the surface of the body to be electrostatically charged 1 and a surface area B which continues to the area A and which is gradually separated from the surface of the body 1 according as it is faced to the downstream side of the surface moving direction of the body 1. By impressing the pulsating voltage having an inter-peak voltage which is double or more of the voltage at the starting time of the electrostatic charge on the conductive member 2, a vibrating electric field is formed between the separated area B of the conductive member 2 and the surface of the body 1 and the electrostatic charge is executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は接触帯電方法に関する。 更に詳しくは、外部より電圧を印加した導電性部材を被
帯電体に当接させて帯電(除電も含む)を行なう接触帯
電方法の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact charging method. More specifically, the present invention relates to an improvement in a contact charging method in which a conductive member to which a voltage is applied from the outside is brought into contact with a charged object to perform charging (including neutralization).

【0002】0002

【従来の技術】便宜上、画像形成装置である電子写真装
置における感光体の帯電処理(除電処理も含む)を例に
して説明する。
2. Description of the Related Art For convenience, a description will be given of an example of charging processing (including charge removal processing) of a photoreceptor in an electrophotographic apparatus, which is an image forming apparatus.

【0003】電子写真は周知のように感光体面を所定の
電位に均一帯電処理する工程を含んでいる。その帯電処
理手段としては現在実用化されている電子写真装置の殆
ど全てがワイヤ電極とシールド電極を主構成部材とする
コロナ放電器を利用している。しかし該コロナ放電器を
用いた帯電処理系においては以下のような問題点を有し
ている。
As is well known, electrophotography includes the step of uniformly charging the surface of a photoreceptor to a predetermined potential. As the charging processing means, almost all electrophotographic apparatuses currently in practical use utilize a corona discharger whose main components are a wire electrode and a shield electrode. However, the charging system using the corona discharger has the following problems.

【0004】1)高電圧印加 感光体上に500〜700Vの表面電位を得るために4
〜8KVといった高電圧をワイヤに印加する必要性があ
り、電極及び本体へのリークを防止すべくワイヤから電
極の距離を大きく維持する等のために放電器自体が大型
化し、又高絶縁被覆ケーブルの使用が不可欠である。
1) In order to obtain a surface potential of 500 to 700 V on the high voltage applied photoreceptor, 4
It is necessary to apply a high voltage of ~8KV to the wire, and in order to prevent leakage to the electrode and main body, the distance between the wire and the electrode must be kept large, which requires the discharger itself to be large in size, and the highly insulated cable is required. It is essential to use

【0005】2)帯電効率が低い ワイヤからの放電電流の大半はシールド電極へ流れ、被
帯電体たる感光体側へ流れるコロナ電流は総放電電流の
数パーセントにすぎない。
2) Most of the discharge current from the wire with low charging efficiency flows to the shield electrode, and the corona current that flows to the photoreceptor side, which is the body to be charged, is only a few percent of the total discharge current.

【0006】3)コロナ放電生成物の発生コロナ放電に
よってオゾン等の発生があり、装置構成部品の酸化、感
光体表面のオゾン劣化による画像ボケ(特にこの現象は
高湿環境下において著しい)が生じ易く、またオゾンの
人体への影響を考慮してオゾン吸収・分解フィルタ及び
フィルタへの気流発生手段であるファンが必要である。
3) Generation of corona discharge products Corona discharge generates ozone, etc., which causes oxidation of device components and ozone deterioration of the photoreceptor surface, causing image blurring (this phenomenon is particularly noticeable in high humidity environments). In consideration of the influence of ozone on the human body, an ozone absorption/decomposition filter and a fan as means for generating airflow to the filter are required.

【0007】4)ワイヤ汚れ 放電効率をあげるために曲率の大きい放電ワイヤ(一般
的には60μ〜100μの直径のものが用いられる)が
使用されるが、ワイヤ表面に形成される高電界によって
装置内の微小な塵挨を集塵してワイヤ表面が汚れる。ワ
イヤ汚れは放電にムラを生じ易く、それが画像ムラとな
ってあらわれる。従ってかなり頻繁にワイヤや放電器内
を清掃処置する必要がある。
4) Wire contamination In order to increase the discharge efficiency, a discharge wire with a large curvature (generally a diameter of 60μ to 100μ is used) is used, but the high electric field formed on the wire surface causes the device to The wire surface gets dirty by collecting minute dust inside. Wire contamination tends to cause uneven discharge, which appears as image unevenness. Therefore, it is necessary to clean the wires and the inside of the discharger quite frequently.

【0008】そこで最近では上記のような問題点の多い
コロナ放電器を利用しないで、接触帯電手段を利用する
ことが検討されている。
Therefore, recently, consideration has been given to using contact charging means instead of using a corona discharger which has many problems as described above.

【0009】具体的には被帯電体たる感光体表面に1K
V程度の直流電圧を外部により印加した導電性繊維毛ブ
ラシあるいは導電性弾性ローラ等の帯電部材である導電
性部材(導電性電位維持部材)を接触させることにより
感光体表面に電荷を直接注入して感光体表面を所定の電
位に帯電させるものである。
Specifically, 1K is applied to the surface of the photoreceptor, which is the object to be charged.
Electric charges are directly injected onto the surface of the photoreceptor by bringing into contact with a conductive member (conductive potential maintaining member) that is a charging member such as a conductive fiber bristle brush or a conductive elastic roller to which a direct current voltage of about V is externally applied. The surface of the photoreceptor is charged to a predetermined potential.

【0010】0010

【発明が解決しようとする課題】しかし実際には被帯電
体たる感光体面を上記のような接触帯電手段により帯電
処理しても感光体面の各部均一な帯電はなされず、斑点
状の帯電ムラを生じる。これは電圧を印加した帯電部材
と、それを接触させた感光体表面とが微視的には両表面
の凹凸によって理想的な密着面が得られにくいためと考
えられる。そしてその斑点状帯電ムラ状態の感光体面に
光像露光以下の作像プロセスを適用しても出力画像は斑
点状帯電ムラに対応した斑点状の黒点画像となり、高品
位な画像は得られない。
[Problems to be Solved by the Invention] However, in reality, even if the surface of the photoreceptor, which is the object to be charged, is charged by the above-mentioned contact charging means, each part of the surface of the photoreceptor is not uniformly charged, and uneven charging occurs. arise. This is thought to be because the charging member to which a voltage is applied and the surface of the photoreceptor with which it is in contact are microscopically uneven, making it difficult to obtain an ideal contact surface. Even if an image forming process lower than photoimage exposure is applied to the photoreceptor surface with spotty charging unevenness, the output image will be a spotty black dot image corresponding to the spotty charging unevenness, and a high-quality image cannot be obtained.

【0011】本発明は帯電手段について被帯電面の各部
が均一帯電されるように改善し、前述したように問題の
多いコロナ放電器を利用する代りに例えば電子写真装置
のような画像形成装置における感光体の均一帯電処理手
段として問題なく利用することができるようにすること
を目的とする。
The present invention improves the charging means so that each part of the surface to be charged is uniformly charged, and instead of using the problematic corona discharger as described above, it can be used in an image forming apparatus such as an electrophotographic apparatus. It is an object of the present invention to enable the present invention to be used without problems as a means for uniformly charging a photoreceptor.

【0012】0012

【課題を解決するための手段】本発明は、被帯電体表面
に当接させた導電性部材に電圧を印加して帯電を行う接
触帯電方法において、前記導電性部材は被帯電体表面に
当接する面領域と、それに引続いて被帯電体の面移動方
向下流側に向うに従って被帯電体面から徐々に離間する
面領域を具備させ、該導電性部材に対して帯電開始電圧
の2倍以上のピーク間電圧を有する脈流電圧を印加する
ことにより該部材の前記離間面領域と被帯電体面間で振
動電界を形成させ帯電を行わせることを特徴とする接触
帯電方法、である。
[Means for Solving the Problems] The present invention provides a contact charging method in which charging is performed by applying a voltage to a conductive member brought into contact with the surface of the charged object, in which the conductive member is brought into contact with the surface of the charged object. A surface area that is in contact with the surface area and a surface area that gradually separates from the surface of the object to be charged as it goes downstream in the surface movement direction of the object to be charged are provided, and a voltage of at least twice the charging start voltage is applied to the conductive member. A contact charging method characterized in that a pulsating voltage having a peak-to-peak voltage is applied to form an oscillating electric field between the separated surface area of the member and the surface of the object to be charged, thereby performing charging.

【0013】[0013]

【作用】上記のような条件で被帯電体を帯電処理すると
、実際上被帯電体面は斑点状等の帯電ムラを生じること
なく各部均一の所定電位で常に安定に一様帯電処理され
ることが後述実施例に示すように確認された。
[Operation] When a charged object is charged under the above conditions, the surface of the charged object is actually always stably and uniformly charged with a uniform predetermined potential at each part without causing uneven charging such as spots. This was confirmed as shown in the Examples below.

【0014】[0014]

【実施例】図1に於て、1は被帯電体としての電子写真
感光ドラムの一部であり、ドラム基体1aの外周面に感
光体層1b(有機半導体・アモルファスシリコン・セレ
ン等の光導電性半導体材料層)を形成してなるもので、
矢印a方向に所定の速度で面移動駆動される。
[Example] In FIG. 1, numeral 1 is a part of an electrophotographic photosensitive drum as an object to be charged, and a photosensitive layer 1b (a photoconductive material such as an organic semiconductor, amorphous silicon, selenium, etc.) is formed on the outer peripheral surface of a drum base 1a. It is formed by forming a semiconductor material layer).
It is driven to move in plane at a predetermined speed in the direction of arrow a.

【0015】2は上記の感光ドラム1面に所定圧力をも
って接触させた帯電部材としての導電性ローラであり、
感光ドラム1の回転に伴ない矢印方向に従動回転する。 この導電性ローラ2において、Aは被帯電体たる感光ド
ラム1面に当接する面領域であり、Bは引続いて感光ド
ラムの面移動方向下流側に向かうに従って被帯電体から
徐々に離間する面領域である。本例の場合該離間面領域
Bはローラ2の曲面と感光ドラムの曲面によって構成さ
れる。3はこの導電性ローラに電圧を印加する電源であ
る。
2 is a conductive roller as a charging member that is brought into contact with the surface of the photosensitive drum with a predetermined pressure;
As the photosensitive drum 1 rotates, it rotates in the direction of the arrow. In this conductive roller 2, A is a surface area that comes into contact with one surface of the photosensitive drum, which is an object to be charged, and B is a surface that gradually separates from the object to be charged as it goes downstream in the surface movement direction of the photosensitive drum. It is an area. In this example, the separation surface area B is constituted by the curved surface of the roller 2 and the curved surface of the photosensitive drum. 3 is a power source that applies voltage to this conductive roller.

【0016】導電性ローラ2は具体的には例えば図2(
a)のように金属芯棒2aにEPDM・NBR等の弾性
ゴム層2bを設け、更にその周面にカーボンを分散した
ウレタンゴム層2c(抵抗〜105 Ω)を設けた2層
被覆構成のもの、図2の(b)のように金属芯棒2aに
カーボンを分散した発泡ウレタンゴム層2dを被覆した
もの等を用いることができる。導電性ローラ2は非回転
のローラやパッド部材であってもよい。図2の(c)及
び(d)は夫々パッド部材として構成した例を示してい
る。
Specifically, the conductive roller 2 is shown in FIG.
As shown in a), a two-layer coating structure in which a metal core rod 2a is provided with an elastic rubber layer 2b such as EPDM/NBR, and a urethane rubber layer 2c (resistance ~ 105 Ω) in which carbon is dispersed is further provided on the circumferential surface of the elastic rubber layer 2b. As shown in FIG. 2(b), a metal core rod 2a coated with a foamed urethane rubber layer 2d in which carbon is dispersed can be used. The conductive roller 2 may be a non-rotating roller or a pad member. FIGS. 2(c) and 2(d) each show an example configured as a pad member.

【0017】A.一般帯電手法の場合(直流電圧印加)
上記において感光ドラム1の感光体層1bは、アゾ顔料
をCGL層(キャリア発生層)とし、その上にヒドラゾ
ンと樹脂を混合したものをCTL層(キャリア輸送層)
として19μの厚さに積層した負極性有機半導体層(O
PC層)とし、このOPC感光ドラム1を回転駆動させ
、その表面に導電性ローラ2を接触させ、該導電性ロー
ラ2に直流電圧VDCを印加して暗所でOPC感光ドラ
ム1の接触帯電を行わせるものとし、導電性ローラ2通
過後の帯電されたOPC感光ドラム1の表面電位Vと、
導電性ローラ2に対する印加直流電圧VDCとの関係を
測定した。
A. In the case of general charging method (DC voltage applied)
In the above, the photosensitive layer 1b of the photosensitive drum 1 has a CGL layer (carrier generation layer) made of azo pigment, and a CTL layer (carrier transport layer) made of a mixture of hydrazone and resin thereon.
A negative polarity organic semiconductor layer (O
PC layer), this OPC photosensitive drum 1 is driven to rotate, a conductive roller 2 is brought into contact with the surface of the OPC photosensitive drum 1, and a DC voltage VDC is applied to the conductive roller 2 to conduct contact charging of the OPC photosensitive drum 1 in a dark place. The surface potential V of the charged OPC photosensitive drum 1 after passing through the conductive roller 2,
The relationship with the DC voltage VDC applied to the conductive roller 2 was measured.

【0018】図8のグラフはその測定結果を示すもので
ある。印加直流電圧VDCに対して帯電は閾値を有し、
約−560Vから帯電が開始し、その帯電開始電圧値(
560V)以上の電圧印加に対しては、得られる表面電
位Vはグラフ上傾き1の直線的な関係が得られた。この
特性は環境特性的にも(例えば高温高湿・低温低湿環境
)ほぼ同等の結果が得られた。
The graph in FIG. 8 shows the measurement results. The charging has a threshold value with respect to the applied DC voltage VDC,
Charging starts from about -560V, and the charging start voltage value (
When a voltage of 560 V) or higher was applied, the obtained surface potential V had a linear relationship with a slope of 1 on the graph. Almost the same results were obtained in terms of environmental characteristics (for example, high temperature and high humidity environments, and low temperature and low humidity environments).

【0019】すなわち、導電性ローラ2への直流印加電
圧値をVaとし、OPC感光ドラム表面に得られる帯電
電位の値をVc、帯電開始電圧値をVTHとすると、V
c=Va−VTH の関係がある。
That is, if the value of the DC voltage applied to the conductive roller 2 is Va, the value of the charging potential obtained on the surface of the OPC photosensitive drum is Vc, and the charging start voltage value is VTH, then V
There is a relationship of c=Va-VTH.

【0020】上記の式はパッシェン(Paschen)
の法則を用いて導出できる。
The above formula is Paschen
It can be derived using the law of

【0021】図9の模型図に示すように導電性ローラ2
とOPC感光体層1bとの間の微視的空隙Zにかかる電
圧Vgは以下の(1)式で表わされる。
As shown in the model diagram of FIG. 9, the conductive roller 2
The voltage Vg applied to the microscopic gap Z between and the OPC photoreceptor layer 1b is expressed by the following equation (1).

【0022】[0022]

【数1】 Va:印加電圧値 Vc:感光体層表面電位の値 Z  :空隙 Ls:感光体層厚み Ks:感光体層比誘電率 一方、空隙Zにおける放電現象はパッシェンの法則によ
り、Z=8μ以上では放電破壊電圧Vbは次の1次式(
2)で近似できる。
[Equation 1] Va: Applied voltage value Vc: Value of photoreceptor layer surface potential Z: Gap Ls: Photoreceptor layer thickness Ks: Photoreceptor layer relative dielectric constant On the other hand, the discharge phenomenon in the air gap Z is determined by Paschen's law, Z= At 8μ or more, the discharge breakdown voltage Vb is expressed by the following linear formula (
2) can be approximated.

【0023】Vb=312+6.2Z  ・・・・・・
・・・(2)(1)・(2) 式をグラフに書くと図1
0のグラフのようになる。横軸は空隙距離Z、縦軸は空
隙破壊電圧を示し、下に凸の曲線■がパッシェンの曲線
、上に凸の曲線■・■・■が夫々(Va−Vc)をパラ
メータとした空隙電圧Vgの特性を示す。パッシェンの
曲線■と、曲線■〜■が交点を有するとき放電が生ずる
ものであり、放電が開始する点においては、Vg=Vb
とおいたZの二次式で判別式が0になる。すなわち、
[0023]Vb=312+6.2Z...
...(2)(1)・(2) When the formula is written on a graph, it is shown in Figure 1.
It will look like the graph of 0. The horizontal axis shows the gap distance Z, the vertical axis shows the gap breakdown voltage, the downward convex curve ■ is the Paschen curve, and the upward convex curves ■, ■, and ■ are the gap voltage with (Va-Vc) as a parameter. The characteristics of Vg are shown. Discharge occurs when Paschen's curve ■ and curves ■ to ■ have intersections, and at the point where the discharge starts, Vg = Vb
The discriminant becomes 0 in the quadratic expression of Z. That is,

【0024】[0024]

【数2】 (3) 式の右辺に先の実験で用いたOPC感光体層1
bの比誘電率3と、CTL厚み19μを代入すると、V
c=Va −573が得られ、先に得られた実験式とほ
ぼ一致する。
[Equation 2] (3) On the right side of the equation is the OPC photoreceptor layer 1 used in the previous experiment.
By substituting the dielectric constant of b of 3 and the CTL thickness of 19 μ, V
c=Va -573 was obtained, which is almost in agreement with the experimental formula obtained earlier.

【0025】パッシェンの法則は空隙での放電現象に関
するものであるが、上記導電性ローラ2を用いた帯電過
程においても帯電部のすぐ近傍で微少ながらオゾンの発
生(コロナ放電に比較して10−2〜10−3)が認め
られ、帯電がなんらかの形で放電現象に関係しているも
のと考えられる。
Paschen's law is related to the discharge phenomenon in a gap, and even in the charging process using the conductive roller 2, a small amount of ozone is generated in the immediate vicinity of the charging part (10-10% compared to corona discharge). 2 to 10-3) were observed, and it is considered that charging is somehow related to the discharge phenomenon.

【0026】図11のグラフは感光ドラム1の感光体層
1bを上記例のOPC層に変えてアモルファスシリコン
(a−Si)層とした場合の導電性ローラ2通過後の帯
電された該a−Si感光ドラム1の表面電位と、導電性
ローラ2に対する印加直流電圧との関係を測定したもの
である。
The graph in FIG. 11 shows the charged a- The relationship between the surface potential of the Si photosensitive drum 1 and the DC voltage applied to the conductive roller 2 is measured.

【0027】暗減衰の因子を最小にするため帯電行程前
の露光無で実験を行なった。VTH≒440Vから帯電
が開始し、その後は前述図8のOPC感光ドラムの場合
のグラフと同様な直線的関係が得られた。
In order to minimize the dark decay factor, experiments were conducted without exposure prior to the charging process. Charging started from VTH≈440V, and thereafter a linear relationship similar to the graph for the OPC photosensitive drum shown in FIG. 8 was obtained.

【0028】前記(3) 式で得られたKs・Lsに、
用いたa−Si感光ドラムのKs= 12と、Ls= 
20μを代入するとVTH=432Vが得られ、実験結
果とほぼ一致する。
[0028] In Ks and Ls obtained by the above formula (3),
Ks=12 and Ls= of the a-Si photosensitive drum used
By substituting 20μ, VTH=432V is obtained, which almost agrees with the experimental results.

【0029】導電性ローラ2に直流電圧を印加した場合
、以上のような特性をもって感光体表面に帯電電位が得
られるが、その静電荷パターンを公知の現像方法を用い
て顕像化すると斑点状のムラすなわち帯電ムラが生じて
いることは前述した通りである。
When a DC voltage is applied to the conductive roller 2, a charged potential is obtained on the surface of the photoreceptor with the above-mentioned characteristics, but when the electrostatic charge pattern is visualized using a known developing method, a spot-like pattern appears. As mentioned above, uneven charging occurs.

【0030】B.本発明の接触帯電手法の場合(脈流電
圧印加)上記A項で用いたOPC感光ドラム及びa−S
i感光ドラムについて、導電性ローラ2に直流VDCに
VP−P のピーク間電圧を有する交流VACを重畳し
た脈流電圧(VDC+VAC)を印加して感光ドラムを
接触帯電処理したときのピーク間電圧に対する感光体帯
電電位の関係を夫々測定した。図3及び図4はその夫々
の測定結果グラフである。VP−P の小さい領域では
、帯電電位の値はVP−P に比例して直線的に増加し
、ある値を越えると脈流電圧成分中の直流分VDC値に
ほぼ飽和し、VP−P 変化に対して一定値をとる。
B. In the case of the contact charging method of the present invention (pulsating current voltage application), the OPC photosensitive drum used in the above section A and a-S
i Regarding the photosensitive drum, the peak-to-peak voltage when the photosensitive drum is subjected to contact charging by applying to the conductive roller 2 a pulsating voltage (VDC+VAC), which is a superimposition of AC VAC having a peak-to-peak voltage of VP-P on DC VDC. The relationship between the photoreceptor charging potential was measured. 3 and 4 are graphs of the respective measurement results. In the region where VP-P is small, the value of the charged potential increases linearly in proportion to VP-P, and when it exceeds a certain value, it is almost saturated at the DC component VDC value in the pulsating voltage component, and the VP-P changes. takes a constant value for

【0031】感光体帯電電位のVP−P /2値変化に
対する上記の変曲点は、OPC感光ドラムの場合は図3
のグラフのように約1100V、a−Si感光ドラムの
場合は図4のグラフのように約900Vであり、これ等
は丁度前述A項で求めた直流印加時のVTHのほぼ2倍
の値になる。
The above inflection point for the VP-P/binary change in the photoreceptor charging potential is shown in FIG. 3 in the case of an OPC photoreceptor drum.
As shown in the graph of , it is approximately 1100V, and in the case of an a-Si photosensitive drum, it is approximately 900V as shown in the graph of Figure 4, which is approximately twice the VTH when DC is applied, which was determined in section A above. Become.

【0032】この関係は印加電圧の周波数及び直流成分
VDCを変化させても帯電電位の飽和点がVDC値の変
化によってシフトするだけで、VP−P の変化に対す
る変曲点の位置は一定であり、かつ導電性ローラ2の感
光体1に対するスピード(例えば停止・回転・逆転)に
は依存しない。
This relationship shows that even if the frequency of the applied voltage and the DC component VDC are changed, the saturation point of the charging potential only shifts due to the change in the VDC value, and the position of the inflection point with respect to the change in VP-P remains constant. , and does not depend on the speed of the conductive roller 2 relative to the photoreceptor 1 (for example, stopping, rotating, reversing).

【0033】このように脈流電圧を印加して得られた感
光体の帯電表面を現像するとVP−P の値が小さい時
即ちVP−P /2と帯電電位との間に傾き1の直線的
な関係にある領域においては、前述の導電性ローラ2に
直流のみを印加した時と同様に斑点状のムラを生じてい
るが、変曲点以上のピーク間電圧を印加した領域では帯
電電位が一定であるととに、得られた顕画像は均一であ
り、帯電が均一・一様に行われていた。
When the charged surface of the photoreceptor obtained by applying a pulsating voltage is developed in this way, when the value of VP-P is small, that is, there is a linear relationship with a slope of 1 between VP-P/2 and the charging potential. In areas where this relationship exists, spot-like unevenness occurs, similar to when only direct current was applied to the conductive roller 2 described above, but in areas where a peak-to-peak voltage above the inflection point was applied, the charging potential When the charge was constant, the obtained microscopic image was uniform, indicating that charging was uniform and uniform.

【0034】即ち、帯電の一様性を得るためには感光体
の諸特性等によって決定される直流印加時の帯電開始電
圧値VTHの2倍以上のピーク間電圧を有する振動電圧
を印加する必要があり、その時得られる帯電電位は印加
電圧の直流成分に依存する。
That is, in order to obtain charging uniformity, it is necessary to apply an oscillating voltage having a peak-to-peak voltage that is at least twice the charging start voltage VTH when direct current is applied, which is determined by various characteristics of the photoreceptor. The charging potential obtained at that time depends on the DC component of the applied voltage.

【0035】帯電の一様性と脈流電圧のピーク間電圧V
P−P と帯電開始電圧値VTHとの関係、VPーP 
≧2VTHに関して前述のように実験的には認証された
が、理論的には以下のように考えられる。すなわち、V
PーP 変化に対する帯電電位の関係における変曲点は
感光体と帯電部材間の電界下において感光体から帯電部
材への電荷逆転移開始点と考えられる。
Uniformity of charging and peak-to-peak voltage V of pulsating voltage
Relationship between P-P and charging start voltage value VTH, VP-P
Although ≧2VTH has been experimentally verified as described above, it can be theoretically considered as follows. That is, V
The inflection point in the relationship between the charging potential and the P--P change is considered to be the point at which charge reverse transfer from the photoreceptor to the charging member starts under the electric field between the photoreceptor and the charging member.

【0036】図5は帯電部材への印加電圧を示すもので
ある。説明上VDC直流成分にVP−P の正弦波が重
畳された電圧波形とすると、脈流電圧印加においてVm
ax ・Vmin は
FIG. 5 shows the voltage applied to the charging member. For the sake of explanation, if we assume a voltage waveform in which a sine wave of VP-P is superimposed on the VDC DC component, Vm when a pulsating voltage is applied.
ax・Vmin is

【0037】[0037]

【数3】 と表わされる。[Math 3] It is expressed as

【0038】Vmax の電圧が印加された時、感光体
は前述の(3) 式によって
When a voltage of Vmax is applied, the photoreceptor is

【0039】[0039]

【数4】 の表面電位に帯電される。[Math 4] charged to a surface potential of

【0040】この後、上記表面電位に対して帯電部材へ
の印加電圧値が電圧値中最小値すなわちVmin にな
った時、その差が帯電開始電圧値VTHを越えると過剰
な感光体上の電荷は帯電部材側へ逆転移する。
After that, when the voltage value applied to the charging member with respect to the above-mentioned surface potential reaches the minimum value among the voltage values, that is, Vmin, and the difference exceeds the charging start voltage value VTH, an excessive charge on the photoreceptor is generated. is reversely transferred to the charging member side.

【0041】帯電部材と感光体との間の電荷の転移・逆
転移が両者ともVTHの閾値を有して行われるという事
は、電荷の転移が両者間の空隙間電圧によって決定され
ることから方向的に等価と考えられることになる。
The fact that the charge transfer and reverse transfer between the charging member and the photoreceptor are both carried out with a threshold value of VTH is because the charge transfer is determined by the gap voltage between the two. They can be considered directionally equivalent.

【0042】したがって、電荷の逆転移が生じるために
は、
Therefore, in order for charge reverse transfer to occur,

【0043】[0043]

【数5】 となり、前述の実験式と一致する結果が得られる。[Math 5] Therefore, a result consistent with the above-mentioned experimental formula is obtained.

【0044】つまり、たとえば感光体へ局部的に過剰な
電荷がのって高電位になっても上述の電荷の逆転移によ
り一様化される。
In other words, even if, for example, an excessive charge is locally placed on the photoreceptor and the potential becomes high, it is made uniform by the above-mentioned reverse transfer of charge.

【0045】帯電部材と感光体との間に前述の電圧によ
る振動電界が形成される事により両者間で電荷の転移・
逆転移が生じるが、VTHという値により電荷の転移過
程が決まる、すなわちVTH以上の電位差がある定まっ
た距離間で生じると電荷転移が起こるとすると、帯電部
材と感光体が近接した領域では感光体の電位は図6に示
すように矩形波に似た形状で振動する。図からわかるよ
うに振幅が
[0045] By forming an oscillating electric field between the charging member and the photoreceptor due to the voltage described above, charge transfer and transfer occurs between the two.
Reverse transition occurs, but the charge transfer process is determined by the value of VTH.In other words, charge transfer occurs when a potential difference greater than VTH occurs over a certain distance.In the area where the charging member and the photoreceptor are close, The potential oscillates in a shape similar to a rectangular wave as shown in FIG. As you can see from the figure, the amplitude is

【0046】[0046]

【数6】 帯電開始電圧値とは帯電部材を被帯電体に使用位置で対
向配設し、被帯電体と帯電部材との間に直流電圧を印加
して被帯電体の帯電が開始するときの、被帯電体と帯電
部材との間の印加直流電圧値である。
[Equation 6] What is the charging start voltage value? When the charging member is placed opposite the charged object at the use position and a DC voltage is applied between the charged object and the charging member, the charging of the charged object starts. is the DC voltage value applied between the object to be charged and the charging member.

【0047】VTHに関してはその定義上電荷の転移の
生じる最近接距離での電位差であり、本来は距離に依存
するものであり、帯電部材と感光体のギャップが大きい
と電荷の転移を生じるために必要なVTHも大きくなら
なければならない。図10に示すパッシェンの曲線位置
も距離の増加にしたがって空隙破壊電圧の増加現象を示
している。
Regarding VTH, by definition it is a potential difference at the closest distance where charge transfer occurs, and it originally depends on the distance, and if the gap between the charging member and the photoreceptor is large, charge transfer occurs. The required VTH must also be large. The position of the Paschen curve shown in FIG. 10 also shows an increase in the gap breakdown voltage as the distance increases.

【0048】したがって帯電部材2と感光体1が、その
感光体の回動下流方向へ徐々に遠のく構成、すなわち図
1・図2に示すように帯電部材と感光体との距離が大き
くなっていく構成においては、第6図に示した振幅
Therefore, the charging member 2 and the photoreceptor 1 are configured to gradually move away from each other in the downstream direction of rotation of the photoreceptor, that is, the distance between the charging member and the photoreceptor increases as shown in FIGS. 1 and 2. In the configuration, the amplitude shown in Figure 6

【0
049】
0
049]

【数7】 感光体電位はその離間行程で上記振幅中VTHの増加に
したがいその振幅は0に収束する。
[Equation 7] The amplitude of the photoreceptor potential converges to 0 as VTH increases during the separation process.

【0050】電荷の転移・逆転移の生じなくなった十分
離れた領域においては感光体表面電位は印加電圧値中V
P−P には依存せずほぼVDC値に安定する。
In a sufficiently distant region where charge transfer/reverse transfer does not occur, the photoreceptor surface potential is V within the applied voltage value.
It does not depend on P-P and stabilizes at approximately the VDC value.

【0051】[0051]

【発明の効果】以上説明したように本発明に依れば、被
帯電体面を接触帯電方法により帯電ムラなく均一に帯電
処理することが可能となる。
As described above, according to the present invention, it is possible to uniformly charge the surface of a charged object by a contact charging method without charging unevenness.

【0052】さらには、前述のごとく被帯電体と帯電部
材間で電荷の転移・逆転移が生じていると考えられ、帯
電前の被帯電体の電位に依存せず所望の電位を高精度で
得ることができる(図7のグラフ参照)。すなわちコロ
ナ放電器で用いるグリッドに似た効果もあり、電子写真
で言う静電潜像変動にともなう画像変動といった現象の
ない安定した帯電プロセスが可能となる。
Furthermore, as mentioned above, it is thought that charge transfer/reverse transfer occurs between the charged body and the charging member, and it is possible to set the desired potential with high precision without depending on the potential of the charged body before charging. (See the graph in FIG. 7). In other words, it has an effect similar to that of a grid used in a corona discharger, and enables a stable charging process without phenomena such as image fluctuations caused by electrostatic latent image fluctuations in electrophotography.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  被帯電体としての感光ドラムの一部とその
面に接触させた接触帯電用の電圧印加導電性ローラを示
す図
[Fig. 1] A diagram showing a part of a photosensitive drum as an object to be charged and a voltage-applying conductive roller for contact charging that is in contact with the surface of the photosensitive drum.

【図2】  (a)・(b)は夫々導電性ローラの構成
例の横断面図、(c)・(d)は夫々導電性パッド部材
の構成例の横断面図
[Figure 2] (a) and (b) are cross-sectional views of an example of the configuration of a conductive roller, and (c) and (d) are cross-sectional views of an example of the configuration of a conductive pad member, respectively.

【図3】  OPC感光ドラムとa−Si感光ドラムに
ついての印加電圧VP−P 値と感光体帯電電位Vとの
関係グラフ
[Figure 3] Relationship graph between applied voltage VP-P value and photoconductor charging potential V for OPC photoconductor drum and a-Si photoconductor drum

【図4】  OPC感光ドラムとa−Si感光ドラムに
ついての印加電圧VP−P値と感光体帯電電位Vとの関
係グラフ
[Figure 4] Relationship graph between applied voltage VP-P value and photoconductor charging potential V for OPC photoconductor drum and a-Si photoconductor drum

【図5】  導電性ローラへの印加電圧波形例[Figure 5] Example of applied voltage waveform to conductive roller

【図6】
  導電性部材と感光体の近接した領域での感光体電位
の振動状態を示すグラフ
[Figure 6]
A graph showing the oscillation state of the photoreceptor potential in a region where the conductive member and the photoreceptor are close to each other.

【図7】  OPC感光ドラムについての帯電前電位と
帯電後電位の関係グラフ
[Figure 7] Relationship graph between pre-charging potential and post-charging potential for OPC photosensitive drum

【図8】  OPC感光ドラムとa−Si感光ドラムに
ついての直流印加電圧VDCと感光体帯電電位Vとの関
係グラフ
[Figure 8] Relationship graph between DC applied voltage VDC and photoconductor charging potential V for OPC photoconductor drum and a-Si photoconductor drum

【図9】  感光体層−導電性ローラ間の空隙ギャップ
模型図
[Figure 9] Model diagram of the air gap between the photoreceptor layer and the conductive roller

【図10】  パッシェンの曲線と空隙電圧の関係グラ
[Figure 10] Relationship graph between Paschen's curve and air gap voltage

【図11】  OPC感光ドラムとa−Si感光ドラ
ムについての直流印加電圧VDCと感光体帯電電位Vと
の関係グラフ
[Figure 11] Relationship graph between DC applied voltage VDC and photoconductor charging potential V for OPC photoconductor drum and a-Si photoconductor drum

【符号の説明】[Explanation of symbols]

1  被帯電体としての感光ドラム 2  帯電部材 3  電圧印加源 1 Photosensitive drum as a charged object 2 Charging member 3 Voltage application source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被帯電体表面に当接させた導電性部材
に電圧を印加して帯電を行う接触帯電方法において、前
記導電性部材は被帯電体表面に当接する面領域と、それ
に引続いて被帯電体の面移動方向下流側に向うに従って
被帯電体面から徐々に離間する面領域を具備させ、該導
電性部材に対して帯電開始電圧の2倍以上のピーク間電
圧を有する脈流電圧を印加することにより該部材の前記
離間面領域と被帯電体面間で振動電界を形成させ帯電を
行わせることを特徴とする接触帯電方法。
1. In a contact charging method in which charging is performed by applying a voltage to a conductive member brought into contact with the surface of the charged object, the conductive member has a surface area that contacts the surface of the charged object, and pulsating current voltage having a peak-to-peak voltage of twice or more the charging start voltage for the electrically conductive member; A contact charging method characterized in that charging is performed by forming an oscillating electric field between the separated surface area of the member and the surface of the object to be charged by applying .
JP7832391A 1991-03-19 1991-03-19 Contact electrostatic charging method Pending JPH04218076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7832391A JPH04218076A (en) 1991-03-19 1991-03-19 Contact electrostatic charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7832391A JPH04218076A (en) 1991-03-19 1991-03-19 Contact electrostatic charging method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29842086A Division JPS63149668A (en) 1986-12-15 1986-12-15 Contact electric charging method

Publications (1)

Publication Number Publication Date
JPH04218076A true JPH04218076A (en) 1992-08-07

Family

ID=13658753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7832391A Pending JPH04218076A (en) 1991-03-19 1991-03-19 Contact electrostatic charging method

Country Status (1)

Country Link
JP (1) JPH04218076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075745A (en) * 1993-06-17 1995-01-10 Sharp Corp Electrifying device
JP2006267739A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075745A (en) * 1993-06-17 1995-01-10 Sharp Corp Electrifying device
JP2006267739A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Image forming apparatus
JP4543989B2 (en) * 2005-03-24 2010-09-15 富士ゼロックス株式会社 Image forming apparatus

Similar Documents

Publication Publication Date Title
JPH0352058B2 (en)
JPS63149669A (en) Contact electric charging method
US4851960A (en) Charging device
USRE35581E (en) Charging device
JPH04358175A (en) Electrifier
JPH04218076A (en) Contact electrostatic charging method
JPH09134053A (en) Image forming device
JP2623681B2 (en) Contact charging device
JPH05307279A (en) Electrostatic charging method
JPH0416867A (en) Contact electrostatic charging device
JPH03101764A (en) Contact electrostatic charging method
JPH04240671A (en) Electrostatic charging device and image forming device provided therewith
JPH04301861A (en) Contact electrifier
JPH0430186A (en) Contact electrifier
JPH03249775A (en) Brush electrostatic charging device and destaticizing device
JP3261746B2 (en) Charging device and image forming device
JPH04245265A (en) Electrifier and image forming device with it
JPH04240670A (en) Electrostatic charging device and image forming device provided therewith
JPH05100545A (en) Electrifying method and device
JPH06130732A (en) Electrostatic charging method
JP3618881B2 (en) Charging device and image forming apparatus
JPH03100674A (en) Electrifier
JPH01102587A (en) Developing device
JPH1115234A (en) Electrifying device and image forming device
US20050089346A1 (en) Spaced biased roll charging member having clipped AC input voltage