JPH06243951A - Electrode for ionizer - Google Patents

Electrode for ionizer

Info

Publication number
JPH06243951A
JPH06243951A JP4868593A JP4868593A JPH06243951A JP H06243951 A JPH06243951 A JP H06243951A JP 4868593 A JP4868593 A JP 4868593A JP 4868593 A JP4868593 A JP 4868593A JP H06243951 A JPH06243951 A JP H06243951A
Authority
JP
Japan
Prior art keywords
discharge electrode
corona discharge
discharge
ionizer
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4868593A
Other languages
Japanese (ja)
Inventor
Shigeru Kaminouchi
茂 上ノ内
Tsutomu Matsumoto
力 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tekko Co Ltd
Original Assignee
Tokyo Tekko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tekko Co Ltd filed Critical Tokyo Tekko Co Ltd
Priority to JP4868593A priority Critical patent/JPH06243951A/en
Publication of JPH06243951A publication Critical patent/JPH06243951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE:To form an oxide film when corona discharge is caused by using electrically conductive oxide, and restrain creation of a scattering material without causing a cycle of dielectric breakdown. CONSTITUTION:A discharge electrode 10 for an ionizer has a cylindrical base part 11 and a conical tip part 12. The base part 11 is connected to a connector of an ionizer. When high voltage is impressed upon the outer peripheral surface of the base part 11 from the connector, corona discharge is caused on the tip of the discharge electrode, and a molecule in the air is ionized. In this case, the discharge electrode 10 is formed of a sintered body (ceramic) of titanium oxide having oxygen deficiency, and has electrical conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオナイザーに用いら
れる電極に関する。
FIELD OF THE INVENTION The present invention relates to electrodes used in ionizers.

【0002】[0002]

【従来の技術】米国特許3,585,448号に開示さ
れているように、イオナイザーは放電電極を有してい
る。この放電電極に高電圧を付与することにより、放電
電極の先端でコロナ放電を起こさせ、この先端近傍の空
気の分子をイオン化させる。これらイオンは空気中に浮
遊し、物体の表面に生じた静電気を除去する。すなわ
ち、上記浮遊イオンのうち静電気と極性が異なるイオン
が、この静電気と結び付いて静電気を中和するのであ
る。上記放電電極は、一般的に、導電性に優れたステン
レス、タングステン、チタン等の金属材料により形成さ
れている。
BACKGROUND OF THE INVENTION As disclosed in U.S. Pat. No. 3,585,448, an ionizer has a discharge electrode. By applying a high voltage to this discharge electrode, a corona discharge is caused at the tip of the discharge electrode, and air molecules near the tip are ionized. These ions float in the air and remove the static electricity generated on the surface of the object. That is, among the floating ions, ions having a polarity different from that of the static electricity are combined with the static electricity to neutralize the static electricity. The discharge electrode is generally formed of a metal material having excellent conductivity such as stainless steel, tungsten and titanium.

【0003】[0003]

【発明が解決しようとする課題】上記放電電極の先端
は、コロナ放電によって消耗する。換言すれば、放電電
極の先端から放電電極を構成する物質が飛散する。この
飛散物質は室内環境に悪影響を及ぼすことがある。例え
ば、上記イオナイザーを半導体製造工場のクリーンルー
ム内で用いると、上記飛散物質が半導体に混入したり付
着し、半導体の品質低下を招く。本発明者は研究の結
果、この飛散の主たるメカニズムを突き止めることがで
きた。すなわち、放電電極の先端の金属がコロナ放電に
伴う熱で酸化され、酸化膜を形成する。次にこの酸化膜
がコロナ放電に伴う絶縁破壊により空中に飛散する。こ
の酸化膜形成と絶縁破壊の繰り返しにより飛散物質が生
成され続けるのである。
The tip of the discharge electrode is consumed by corona discharge. In other words, the substance forming the discharge electrode is scattered from the tip of the discharge electrode. This scattered substance may adversely affect the indoor environment. For example, when the ionizer is used in a clean room of a semiconductor manufacturing factory, the scattered substances are mixed or adhered to the semiconductor, resulting in deterioration of semiconductor quality. As a result of research, the present inventor was able to find out the main mechanism of this scattering. That is, the metal at the tip of the discharge electrode is oxidized by the heat accompanying the corona discharge to form an oxide film. Next, this oxide film is scattered in the air due to dielectric breakdown due to corona discharge. By repeating the oxide film formation and the dielectric breakdown, scattered substances are continuously generated.

【0004】[0004]

【課題を解決するための手段】この発明の要旨は、導電
性酸化物からなるイオナイザー用電極にある。
The gist of the present invention resides in an ionizer electrode made of a conductive oxide.

【0005】[0005]

【作用】導電性酸化物を用いるため、コロナ放電に伴う
酸化膜形成,絶縁破壊のサイクルが生じず、飛散物質の
生成を抑制することができる。
Since the conductive oxide is used, the cycle of oxide film formation and dielectric breakdown due to corona discharge does not occur, and the generation of scattered substances can be suppressed.

【0006】[0006]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1に示すように、イオナイザー用放電電極1
0は、円柱形状の基部11と、円錐形状の先端部12と
を備えている。この基部11は、イオナイザーのコネク
タに接続される。このコネクタから基部11の外周面に
高電圧が印加されると、この放電電極10の先端でコロ
ナ放電が生じ、空気中の分子がイオン化される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a discharge electrode 1 for an ionizer
Reference numeral 0 has a columnar base portion 11 and a conical tip portion 12. This base 11 is connected to the connector of the ionizer. When a high voltage is applied to the outer peripheral surface of the base portion 11 from this connector, corona discharge occurs at the tip of the discharge electrode 10 and the molecules in the air are ionized.

【0007】上記放電電極10は酸素欠損を有する酸化
チタンの焼結体すなわちセラミックによって形成され、
導電性を有している。なお、酸素欠損を有する酸化チタ
ンとは、正規の酸化チタン(TiO2)に比べて酸素の
量が少ない酸化チタンを意味する。上記放電電極10の
組成の具体例を述べると、酸素欠損を有する酸化チタン
が99.8重量%(以下、単に%と記載する)、H2Oが
0.04%、SiO2が0.02%、Na2Oが0.005
%、Fe23が0.003%、Al23が0.002%
である。この組成の材料の体積抵抗率は10Ω・cmよ
り小さい。
The discharge electrode 10 is made of a titanium oxide sintered body having oxygen deficiency, that is, a ceramic,
It has conductivity. The titanium oxide having oxygen deficiency means titanium oxide having a smaller amount of oxygen than regular titanium oxide (TiO 2 ). As a specific example of the composition of the discharge electrode 10, titanium oxide having oxygen deficiency is 99.8% by weight (hereinafter, simply referred to as%), H 2 O is 0.04%, and SiO 2 is 0.02. %, Na 2 O is 0.005
%, Fe 2 O 3 is 0.003%, Al 2 O 3 is 0.002%
Is. The volume resistivity of the material having this composition is smaller than 10 Ω · cm.

【0008】上記組成の放電電極10をイオナイザーに
装着して陽極,陰極としてそれぞれ用い、高い直流電圧
(20KV)をパルス幅0.2sec,周期0.4sec
で印加してコロナ放電を生じさせ、これを180時間継
続して行った。その後で、放電電極10の先端の表面状
態を観察したところ、満足すべきものであった。詳述す
ると、図2は、上記放電電極10を陽極として用いた場
合の電子顕微鏡写真であり、(A)はコロナ放電前の状
態を示し、(B)はコロナ放電後の状態を示す。図2か
ら明らかなように、放電電極10の表面はコロナ放電に
よって若干荒らされ、先端から物質の飛散があったが、
表面状態はまだ良好であり、飛散量が極めて微量であり
許容すべきものであった。図3は上記放電電極10を陰
極として用いた場合の電子顕微鏡写真であり、(A)は
コロナ放電前の状態を示し、(B)はコロナ放電後の状
態を示す。図3から明らかなように、コロナ放電後の放
電電極10の表面は、陽極として用いた場合よりも良好
であり、飛散量はほとんどゼロに等しい。
The discharge electrode 10 having the above composition was attached to an ionizer and used as an anode and a cathode, respectively, and a high DC voltage (20 KV) was applied for a pulse width of 0.2 sec and a period of 0.4 sec.
Was applied to generate corona discharge, which was continuously performed for 180 hours. After that, when the surface condition of the tip of the discharge electrode 10 was observed, it was satisfactory. More specifically, FIG. 2 is an electron micrograph when the discharge electrode 10 is used as an anode, (A) shows a state before corona discharge, and (B) shows a state after corona discharge. As is clear from FIG. 2, the surface of the discharge electrode 10 was slightly roughened by the corona discharge, and the substance was scattered from the tip,
The surface condition was still good, and the amount of scattering was extremely small, which was acceptable. 3A and 3B are electron micrographs when the discharge electrode 10 is used as a cathode. FIG. 3A shows a state before corona discharge, and FIG. 3B shows a state after corona discharge. As is clear from FIG. 3, the surface of the discharge electrode 10 after corona discharge is better than when used as the anode, and the amount of scattering is almost equal to zero.

【0009】上記図2,図3から、本発明の放電電極1
0によれば、コロナ放電によるスパッタリングで飛散物
質が生じるものの、その量はわずかであり、酸化膜形
成、酸化膜の絶縁破壊のサイクルによる飛散物質発生が
無いことが分かる。なお、表面の荒れを判断し易いよう
に、放電電極10は予め鏡面仕上げしたが、通常の使用
に際しては鏡面仕上げをしなくてもよい。
From the above FIGS. 2 and 3, the discharge electrode 1 of the present invention is shown.
According to 0, although the scattered substance is generated by the sputtering due to the corona discharge, the amount thereof is small, and it is understood that the scattered substance is not generated by the cycle of oxide film formation and dielectric breakdown of the oxide film. The discharge electrode 10 is mirror-finished in advance so that the surface roughness can be easily determined, but the mirror-finish may not be performed during normal use.

【0010】図4,図5は比較例としてのタングステン
製放電電極の電子顕微鏡写真である。図4(A)は陽極
として用いた場合のコロナ放電前の状態を示し、図4
(B)はコロナ放電後の状態を示す。図4から明らかな
ように、放電電極の表面はコロナ放電によって著しく荒
らされており、先端から室内環境に悪影響を及ぼす量の
物質の飛散があったことが分かる。図5(A)は陰極と
して用いた場合のコロナ放電前の状態を示し、図5
(B)はコロナ放電後の状態を示す。図5から明らかな
ように、陰極で用いた場合でも、放電電極の表面はかな
り荒らされており、無視できない量の物質の飛散があっ
たことが分かる。これは、主に酸化膜形成、酸化膜の絶
縁破壊のサイクルに起因している。
4 and 5 are electron micrographs of a tungsten discharge electrode as a comparative example. FIG. 4A shows a state before corona discharge when used as an anode.
(B) shows the state after corona discharge. As is clear from FIG. 4, the surface of the discharge electrode was significantly roughened by the corona discharge, and it was found that the amount of the substance that had an adverse effect on the indoor environment was scattered from the tip. FIG. 5A shows a state before corona discharge when used as a cathode.
(B) shows the state after corona discharge. As is clear from FIG. 5, even when used as a cathode, the surface of the discharge electrode was considerably roughened, and it was found that a considerable amount of substance was scattered. This is mainly due to the cycle of oxide film formation and oxide film dielectric breakdown.

【0011】本発明は上記実施例に制約されず、種々の
態様が可能である。例えば、導電性酸化物として、チタ
ン酸バリウム(BaTi03)、酸化鉛(Pb23),
酸化錫(SnO2)、酸化亜鉛(ZnO)のセラミック
を用いることができる。ただし、これら材料には、酸素
欠損または不純物混入により導電性が付与されている。
また、酸素欠損がなくても導電性を有する酸化物、例え
ばTi23,Fe34等のセラミックを用いてもよい。
また、これらすべての酸化物は、セラミックではなく、
単結晶であってもよい。
The present invention is not limited to the above embodiment, and various modes are possible. For example, as the conductive oxide, barium titanate (BaTi0 3 ), lead oxide (Pb 2 O 3 ),
Ceramics of tin oxide (SnO 2 ) and zinc oxide (ZnO) can be used. However, conductivity is imparted to these materials due to oxygen deficiency or inclusion of impurities.
Further, an oxide having conductivity without oxygen deficiency, for example, a ceramic such as Ti 2 O 3 or Fe 3 O 4 may be used.
Also, all these oxides are not ceramic,
It may be a single crystal.

【0012】[0012]

【発明の効果】以上説明したように、導電性酸化物を用
いるため、コロナ放電に伴う酸化膜形成,絶縁破壊のサ
イクルが生じず、飛散物質の生成を抑制することができ
る。
As described above, since the conductive oxide is used, the cycle of oxide film formation and dielectric breakdown due to corona discharge does not occur, and the generation of scattered substances can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる放電電極の全体を示す側面図で
ある。
FIG. 1 is a side view showing an entire discharge electrode according to the present invention.

【図2】本発明に係わる導電性酸化チタン製の放電電極
を陽極として用いた場合の先端表面組織を示す電子顕微
鏡写真であり、(A)はコロナ放電前の状態、(B)は
コロナ放電を継続して実行した後の状態である。
FIG. 2 is an electron micrograph showing a tip surface texture when a conductive titanium oxide discharge electrode according to the present invention is used as an anode, (A) showing a state before corona discharge, and (B) showing a corona discharge. This is the state after continuously executing.

【図3】本発明に係わる導電性酸化チタン製の放電電極
を陰極として用いた場合の先端の表面組織を示す電子顕
微鏡写真であり、(A)はコロナ放電前の状態、(B)
はコロナ放電を継続して実行した後の状態である。
FIG. 3 is an electron micrograph showing the surface texture of the tip when a discharge electrode made of a conductive titanium oxide according to the present invention is used as a cathode, (A) a state before corona discharge, and (B).
Is the state after continuous execution of corona discharge.

【図4】比較例としてのタングステン製放電電極を陽極
として用いた場合の先端表面組織を示す電子顕微鏡写真
であり、(A)はコロナ放電前の状態、(B)はコロナ
放電を継続して実行した後の状態である。
FIG. 4 is an electron micrograph showing a tip surface texture when a tungsten discharge electrode is used as an anode as a comparative example. (A) shows a state before corona discharge, and (B) shows corona discharge continuously. This is the state after execution.

【図5】比較例としてのタングステン製放電電極を陰極
として用いた場合の先端表面組織を示す電子顕微鏡写真
であり、(A)はコロナ放電前の状態、(B)はコロナ
放電を継続して実行した後の状態である。
FIG. 5 is an electron micrograph showing a tip surface texture when a tungsten discharge electrode is used as a cathode as a comparative example, (A) shows a state before corona discharge, and (B) shows corona discharge continuously. This is the state after execution.

【符号の説明】[Explanation of symbols]

10 放電電極 10 Discharge electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性酸化物からなるイオナイザー用電
極。
1. An ionizer electrode comprising a conductive oxide.
【請求項2】 上記導電性酸化物が酸素欠損のある酸化
チタン製セラミックである請求項1のイオナイザー用電
極。
2. The electrode for an ionizer according to claim 1, wherein the conductive oxide is a titanium oxide ceramic having oxygen deficiency.
JP4868593A 1993-02-15 1993-02-15 Electrode for ionizer Pending JPH06243951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4868593A JPH06243951A (en) 1993-02-15 1993-02-15 Electrode for ionizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4868593A JPH06243951A (en) 1993-02-15 1993-02-15 Electrode for ionizer

Publications (1)

Publication Number Publication Date
JPH06243951A true JPH06243951A (en) 1994-09-02

Family

ID=12810176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4868593A Pending JPH06243951A (en) 1993-02-15 1993-02-15 Electrode for ionizer

Country Status (1)

Country Link
JP (1) JPH06243951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104141A1 (en) * 2009-03-12 2010-09-16 国立大学法人 熊本大学 Lower order titanium oxide and process for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334890A (en) * 1991-05-10 1992-11-20 Showa Denko Kk Discharge electrode needle and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334890A (en) * 1991-05-10 1992-11-20 Showa Denko Kk Discharge electrode needle and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104141A1 (en) * 2009-03-12 2010-09-16 国立大学法人 熊本大学 Lower order titanium oxide and process for producing same
CN102348836A (en) * 2009-03-12 2012-02-08 国立大学法人熊本大学 Lower order titanium oxide and process for producing same
JP5505738B2 (en) * 2009-03-12 2014-05-28 国立大学法人 熊本大学 Low-order titanium oxide and method for producing the same
TWI513661B (en) * 2009-03-12 2015-12-21 Univ Kumamoto Nat Univ Corp Process for manufacturing low-level titanium oxide
US9302917B2 (en) 2009-03-12 2016-04-05 National University Corporation Kumamoto University Low valence titanium oxides and method of producing the same

Similar Documents

Publication Publication Date Title
US7359176B2 (en) Board for ion generation and ion generating apparatus
US8067892B2 (en) Method of forming a corona electrode substantially of chemical vapor deposition silicon carbide and a method of ionizing gas using the same
JPH0721668B2 (en) Removal / charging method
JPH06243951A (en) Electrode for ionizer
DE4114769A1 (en) Corona discharge element - having high melting point linear semiconductor electrode
JP2005056607A (en) Ion generator and air conditioner using the same
JP2007217263A (en) Cylindrical electrode for ozone generation
JP4127524B2 (en) Ion generator and electrical apparatus equipped with the same
WO2004063818A1 (en) Electron emission device having cleaning function
JP2009026717A (en) Discharge device, and ion generating device
JP2550625B2 (en) Ozone generator
JP2020024845A (en) Method for controlling ionic wind generator
JP4811725B2 (en) Ion generator and static eliminator
JP3475244B2 (en) Corona discharge device
JP2010170937A (en) Discharge electrode for ionizer
JPH01246104A (en) Discharge body for generating ozone
JP3328856B2 (en) Discharger and recording head using the same
JP2585694B2 (en) Ozonizer and ozone generation method
JP4179470B2 (en) Electron-emitting device and method for manufacturing electron-emitting device
JPS62141570A (en) Electrostatic charging and charge removing method
JP3054504B2 (en) Ion generation electrode structure
JP2628865B2 (en) Ozonizer electrode
JPH03226995A (en) Electric type ionizer using very fine wire
JP2008123763A (en) Ion generating element, ion generating device, and electric apparatus
JPH02245236A (en) Electrode for electric-discharge reactor