JPH06243777A - Cold cathode - Google Patents

Cold cathode

Info

Publication number
JPH06243777A
JPH06243777A JP16393A JP16393A JPH06243777A JP H06243777 A JPH06243777 A JP H06243777A JP 16393 A JP16393 A JP 16393A JP 16393 A JP16393 A JP 16393A JP H06243777 A JPH06243777 A JP H06243777A
Authority
JP
Japan
Prior art keywords
emitter
gate
insulating layer
electrode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16393A
Other languages
Japanese (ja)
Other versions
JP2697538B2 (en
Inventor
Hideo Makishima
秀男 巻島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16393A priority Critical patent/JP2697538B2/en
Publication of JPH06243777A publication Critical patent/JPH06243777A/en
Application granted granted Critical
Publication of JP2697538B2 publication Critical patent/JP2697538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type

Abstract

PURPOSE:To reduce an influence of gate electric potential change between adjacent individual cathode segments by providing a shielding electrode between plural micro-cold cathodes, which consists of an emitter and a gate provided around the emitter, so as to surround the cold cathodes. CONSTITUTION:A shielding electrode 5 is separated from a gate 4 in a groove 6 part of an insulating layer 3 and each of the gates 4 is also separated from each other. The fixed voltage, for example, 100V on the basis of an emitter 2 on a semiconductor base plate 1, is always impressed to the electrode 5. When proper wiring is inserted to the gate 4, and for example, a control voltage varying 0-100V on the basis of the emitter 2 is impressed, a current emitted from the emitter 2 is varied. Even when the distance between adjacent emitters 2 is as extremely snort, as 10mum or less, the electrode 5 between the emitters 2 works as a shield, so that an influence on an emission electron beam orbit due to a change in an adjacent electric field is reduced to the extent that can be ignored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子放出源となる冷陰極
に関し、特に独立に放出電流を制御できる複数の電子ビ
ームを形成する冷陰極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold cathode that serves as an electron emission source, and more particularly to a cold cathode that forms a plurality of electron beams whose emission currents can be independently controlled.

【0002】[0002]

【従来の技術】図6は真空マイクロエレクトロニクス技
術を用いた微小冷陰極の中でスピントタイプと呼ばれる
従来の冷陰極の断面図である(Journal of
Applied Physics,Vol.47,N
o.12,pp−5248〜5263,1976.)。
半導体基板1の上に先端が尖ったエミッタ2および絶縁
層3、ゲート4が作られている。エミッタ2と、絶縁層
3とゲート4の開口で微小冷陰極が構成される。絶縁層
溝6の部分でゲート4は隣のゲート4と電気的に分離さ
れている。ゲート4にはエミッタ2およびこれと同じ電
位の半導体基板1を基準として正の電圧が印加されてい
る。エミッタ2の先端は極めて鋭く作られているので、
この部分には高い電界が加わる。ゲート4に印加された
電圧に応じた量の電子がエミッタ2から放出される。
2. Description of the Related Art FIG. 6 is a cross-sectional view of a conventional cold cathode called Spindt type among micro cold cathodes using vacuum microelectronics (Journal of).
Applied Physics, Vol. 47, N
o. 12, pp-5248-5263, 1976. ).
An emitter 2 having a sharp tip, an insulating layer 3, and a gate 4 are formed on a semiconductor substrate 1. The emitter 2, the insulating layer 3 and the opening of the gate 4 form a micro cold cathode. The gate 4 is electrically separated from the adjacent gate 4 at the insulating layer trench 6. A positive voltage is applied to the gate 4 with the emitter 2 and the semiconductor substrate 1 having the same potential as the reference as a reference. Since the tip of the emitter 2 is made extremely sharp,
A high electric field is applied to this part. An amount of electrons corresponding to the voltage applied to the gate 4 is emitted from the emitter 2.

【0003】1個のエミッタ2から放出される電流は多
くても5〜50μA程度であるので、電子管の陰極とし
て使用するために平面上に多数のエミッタ2を並べてい
る。このような陰極においては、単独あるいは複数のエ
ミッタ2を単位として独立に制御すれば従来の熱陰極で
は実現できないかあるいは実現が困難である機能を容易
に持たせることができる(特開昭55−25910、特
開昭57−38528)。たとえば、単数あるいは複数
のエミッタ2を単位として、独立に制御できるゲート4
とこのエミッタを組み合わせた陰極セグメントを多数直
線的に並べて陰極とし、これをCRT(受像管)中に収
め、多数の陰極セグメントの並んだ方向と垂直方向に走
査し、同時に各陰極セグメントのゲート4の電圧を制御
すれば陰極セグメント数に応じた走査線を同時に表示で
きる。
Since the current emitted from one emitter 2 is about 5 to 50 μA at the maximum, a large number of emitters 2 are arranged on a plane for use as a cathode of an electron tube. In such a cathode, it is possible to easily provide a function that cannot be realized by the conventional hot cathode or is difficult to realize by controlling independently by one or a plurality of emitters 2 as a unit (JP-A-55-55). 25910, JP-A-57-38528). For example, a gate 4 that can be independently controlled in units of one or more emitters 2
A large number of cathode segments in which this emitter is combined are arranged linearly to form a cathode, which is housed in a CRT (picture tube) and scanned in the direction perpendicular to the direction in which the many cathode segments are lined up, and at the same time, the gate 4 of each cathode segment. If the voltage is controlled, the scanning lines corresponding to the number of cathode segments can be displayed simultaneously.

【0004】図7(a),(b)は従来技術の他の例
(特開平3−250534)である。図7において、1
01は基板、102はエミッタ、103は絶縁体、10
4はゲート、105は電子コレクタ電極、106は発光
体薄膜、107は電子シールド、108は透明封止体
で、101から107までが一つの単位発光体になる。
エミッタ102から放出された電子はゲート104に印
加した電圧で制御されて4個の電子コレクタ電極105
の内の一つに到達し、その上の発光体薄膜106を発光
させる。
FIGS. 7A and 7B show another example of the prior art (Japanese Patent Laid-Open No. 3-250534). In FIG. 7, 1
01 is a substrate, 102 is an emitter, 103 is an insulator, 10
4 is a gate, 105 is an electron collector electrode, 106 is a light emitter thin film, 107 is an electron shield, 108 is a transparent encapsulant, and 101 to 107 are one unit light emitter.
The electrons emitted from the emitter 102 are controlled by the voltage applied to the gate 104, and the four electron collector electrodes 105
One of the above is reached and the light-emitting body thin film 106 above it is caused to emit light.

【0005】図7に示す従来例では電子ビームの方向を
180度変えているので、ゲート104や電子コレクタ
電極105の電圧の微妙な変化によって、電子ビームが
正しく目標の電子コレクタ電極105に到達しない恐れ
がある。これを防ぐために、電子シールド107は負電
位のバリアを形成して、目標の電子コレクタ電極105
から外れそうになった電子を追い返す働きをする。ま
た、隣り合った単位発光体のゲート104の間には、発
光体薄膜106を発光させ、さらに、エミッタ102の
先端から電子を電界放出させる強い電界で加速された電
子ビームの方向をさらに変えて引き付けるに十分な電圧
が印加されている電子コレクタ電極が2個存在するの
で、隣り合った単位発光体のゲート104の電圧変化が
電子ビーム軌道に与える影響はきわめて小さいと予想さ
れる。したがって、電子シールド107にはゲート10
4の電圧変化の遮蔽効果はない。
In the conventional example shown in FIG. 7, since the direction of the electron beam is changed by 180 degrees, the electron beam does not correctly reach the target electron collector electrode 105 due to a slight change in the voltage of the gate 104 or the electron collector electrode 105. There is a fear. In order to prevent this, the electron shield 107 forms a barrier of negative potential, and the target electron collector electrode 105 is formed.
It works to repel the electrons that are about to come off. Further, between the gates 104 of the adjacent unit light emitters, the light emitter thin film 106 emits light, and the direction of the electron beam accelerated by a strong electric field that causes field emission of electrons from the tip of the emitter 102 is further changed. Since there are two electron collector electrodes to which a sufficient voltage is applied to attract, it is expected that the change in voltage of the gates 104 of the adjacent unit light emitters has an extremely small effect on the electron beam trajectory. Therefore, the electron shield 107 has a gate 10
There is no shielding effect for the voltage change of No. 4.

【0006】[0006]

【発明が解決しようとする課題】図6に示す従来例の構
造において、エミッタ2より電流を取り出す時には、ゲ
ート4の電位をエミッタ2(半導体基板1)を基準とし
て20〜100Vの正の電圧を印加し、電流を取り出さ
ない時にはゲート2の電位をエミッタ4と同程度かこれ
より僅かに正の電圧を印加する。いま、ある陰極セグメ
ント(第1陰極セグメント)から電流を取出している
時、隣の陰極セグメント(第2陰極セグメント)からの
電流をオン・オフすると、すぐ近くのゲート4電位が2
0〜100V近く変化するため、第1陰極セグメントか
らの電子ビームはこの影響を受けCRTスクリーン上で
の位置が変化する。したがって、走査線およびこの走査
線をもとに形成されるCRTスクリーン上のパターンに
は歪みが生じる。
In the structure of the conventional example shown in FIG. 6, when the current is taken out from the emitter 2, the potential of the gate 4 is set to a positive voltage of 20 to 100 V with reference to the emitter 2 (semiconductor substrate 1). When the current is applied and the current is not taken out, the potential of the gate 2 is applied to the same level as that of the emitter 4 or slightly positive voltage. Now, when current is taken from a certain cathode segment (first cathode segment) and the current from the adjacent cathode segment (second cathode segment) is turned on / off, the gate 4 potential in the immediate vicinity becomes 2
Since the voltage varies from 0 to 100 V, the electron beam from the first cathode segment is affected by this, and the position on the CRT screen changes. Therefore, the scan line and the pattern formed on the CRT screen based on the scan line are distorted.

【0007】図7に示す従来例は、前述のように隣り合
った単位発光体のゲート104の間には電子コレクタ電
極105が2個介在して相当離れているので、隣り合っ
た単位発光体のゲートの電圧変化が電子ビームに与える
影響は極めて小さいと予想される。したがって、この従
来例には隣接発光体のゲートの電圧変化の電子ビームへ
の影響を遮蔽するために電子シールドを設けるという技
術思想はない。
In the conventional example shown in FIG. 7, since two electron collector electrodes 105 are interposed between the gates 104 of the adjacent unit light emitters and are considerably separated from each other, the adjacent unit light emitters are separated from each other. It is expected that the influence of the voltage change of the gate on the electron beam is extremely small. Therefore, in this conventional example, there is no technical idea of providing an electron shield in order to shield the influence of the voltage change of the gate of the adjacent light emitter on the electron beam.

【0008】[0008]

【課題を解決するための手段】本発明においては、各陰
極セグメントの電流制御用電極であるゲートとゲートの
間に一定電位の遮蔽電極を設置して、きわめて近い距離
にある隣接の陰極セグメントのゲート電位変化が電子ビ
ーム軌道に与える影響を減少させる。
SUMMARY OF THE INVENTION In the present invention, a shield electrode having a constant potential is installed between the gates, which are the current control electrodes of each cathode segment, so that the cathode segments of adjacent cathode segments located at an extremely short distance can be separated from each other. It reduces the influence of the gate potential change on the electron beam trajectory.

【0009】[0009]

【作用】本発明においては、各陰極セグメントのゲート
とゲートの間に一定電位の電極を設置している。このた
め、隣の陰極セグメントの放出電流を制御しても、注目
する陰極セグメントからの電子ビームの軌道は影響を受
けにくくなり、これをCRTに適用すれば表示画面上で
安定で歪みのない走査線あるいはパターンを実現でき
る。
In the present invention, a constant potential electrode is provided between the gates of the cathode segments. Therefore, even if the emission current of the adjacent cathode segment is controlled, the trajectory of the electron beam from the cathode segment of interest is less affected, and if this is applied to the CRT, stable and distortion-free scanning on the display screen is achieved. Lines or patterns can be realized.

【0010】[0010]

【実施例】次に本発明について図面を参照して詳細に説
明する。図1は本発明の第1の実施例を示す陰極で、図
1(a)は平面図、図1(b)は断面図である。図1に
おいて、1は半導体基板、2はエミッタ、3は絶縁層、
4はゲート、5は遮蔽電極、6は絶縁層溝である。図1
に示す実施例において、遮蔽電極5と絶縁層溝6が付加
されているところが図6に示す従来の技術とは異なる。
遮蔽電極5は絶縁層溝6の部分でゲート4から分離さ
れ、同時に各ゲート4も互いに分離されている。遮蔽電
極5には常に一定の電圧たとえばエミッタ2を基準とし
て100Vが印加されている。ゲート4には適当な配線
を通して制御電圧が印加されており、この電圧をたとえ
ばエミッタ2を基準として0〜100Vの範囲で変える
とエミッタ2から放出される電流が変化する。隣合った
陰極セグメントのエミッタ2の間の距離は10μm以下
の極めて近い距離に位置する場合がある。
The present invention will be described in detail with reference to the drawings. FIG. 1 is a cathode showing a first embodiment of the present invention, FIG. 1 (a) is a plan view and FIG. 1 (b) is a sectional view. In FIG. 1, 1 is a semiconductor substrate, 2 is an emitter, 3 is an insulating layer,
Reference numeral 4 is a gate, 5 is a shield electrode, and 6 is an insulating layer groove. Figure 1
The embodiment shown in FIG. 6 differs from the conventional technique shown in FIG. 6 in that a shield electrode 5 and an insulating layer groove 6 are added.
The shield electrode 5 is separated from the gate 4 at the insulating layer groove 6, and at the same time, the gates 4 are also separated from each other. A constant voltage, for example 100V with reference to the emitter 2, is always applied to the shield electrode 5. A control voltage is applied to the gate 4 through an appropriate wiring, and if this voltage is changed in the range of 0 to 100 V with the emitter 2 as a reference, the current emitted from the emitter 2 changes. The distance between the emitters 2 of adjacent cathode segments may be located very close, less than 10 μm.

【0011】ところが、2つのエミッタ2の間には電位
が一定の遮蔽電極5があるため、この遮蔽電極5が2つ
のゲート4の間を分けるシールドとして働き、隣のゲー
ト4の電圧が変化してもエミッタ2付近の電界の変化は
小さくなる。この結果、エミッタ2から放出される電子
ビームの軌道が受ける影響は無視できる程度に小さくす
ることが可能になる。遮蔽電極5に印加する一定の電圧
は、スクリーン上において許容できる歪み量、隣合った
微小冷陰極の間隔、電子ビーム電流を制御するために必
要なゲート4の電圧変化などの要因で決定される設計要
素である。この本実施例の冷陰極をCRTの電子銃の陰
極として用いれば、表示画面上で常に安定した歪のない
走査パターンが得られる。
However, since there is a shield electrode 5 having a constant potential between the two emitters 2, this shield electrode 5 acts as a shield that separates the two gates 4, and the voltage of the adjacent gate 4 changes. However, the change in the electric field near the emitter 2 is small. As a result, the influence of the trajectory of the electron beam emitted from the emitter 2 can be reduced to a negligible level. The constant voltage applied to the shield electrode 5 is determined by factors such as the amount of strain that can be tolerated on the screen, the interval between adjacent micro cold cathodes, and the voltage change of the gate 4 necessary for controlling the electron beam current. It is a design element. If the cold cathode of this embodiment is used as the cathode of the electron gun of a CRT, a stable and distortion-free scanning pattern can be obtained on the display screen.

【0012】なお、図1における絶縁層溝6は半導体基
板1上のエミッタ2が形成される開口部分をエッチング
にて形成する時に同時に作られたもので、溝を構成する
ことによってゲート4と遮蔽電極5の間の耐圧を改善す
る効果を持つが必ずしも絶縁層を溝状に加工する必要は
ない。また、半導体基板1の代わりに金属基板を用いて
も同様の機能の冷陰極を作成できる。
The insulating layer groove 6 shown in FIG. 1 is formed at the same time when the opening portion for forming the emitter 2 on the semiconductor substrate 1 is formed by etching. By forming the groove, the insulating layer groove 6 and the gate 4 are shielded. Although it has the effect of improving the breakdown voltage between the electrodes 5, it is not always necessary to process the insulating layer into a groove shape. Further, a cold cathode having the same function can be prepared by using a metal substrate instead of the semiconductor substrate 1.

【0013】図2(a)〜(d)には、図1に示す第1
の実施例の冷陰極の製作方法の一例を示す。はじめに、
図2(a)に示すようにシリコンの半導体基板1を熱酸
化しその表面にシリコン酸化物の絶縁層3を作り、次
に、絶縁層3の上にゲート金属層11を蒸着あるいはス
パッタ等の手段で積層する。次に、図2(b)に示すよ
うに、リソグラフィの手段によってゲート金属層11の
一部を除去し、ゲート金属層11からゲート4と遮蔽電
極5を形成し、さらにゲート4と遮蔽電極5をマスクと
してエッチングによって絶縁層3の一部を除去する。次
に、図2(c)に示すようにリソグラフィ法によって、
ゲート4と遮蔽電極5の間の溝6を覆うようにレジスト
13を残し、さらに、蒸着装置内において半導体基板1
の斜め方向から蒸発物が飛来するように半導体基板1を
斜め方向に設定し、かつ回転させ、斜め蒸着金属層12
を形成する。次に、図2(d)に示すように半導体基板
1に対し真上からエミッタ金属を蒸着させると、斜め蒸
着金属層12の上にエミッタ金属層14が積層されると
同時に斜め蒸着金属層14に形成された開口を通して半
導体基板1の上には先端が細くなっていくエミッタ2が
作られる。最後にレジスト13、斜め蒸着金属層12、
エミッタ金属層14を除去すれば図1に示す構造の冷陰
極が得られる。
2 (a) to 2 (d), the first shown in FIG.
An example of a method of manufacturing the cold cathode of the embodiment will be described. First,
As shown in FIG. 2A, the silicon semiconductor substrate 1 is thermally oxidized to form a silicon oxide insulating layer 3 on its surface, and then a gate metal layer 11 is formed on the insulating layer 3 by vapor deposition or sputtering. Laminate by means. Next, as shown in FIG. 2B, a part of the gate metal layer 11 is removed by means of lithography, the gate 4 and the shield electrode 5 are formed from the gate metal layer 11, and the gate 4 and the shield electrode 5 are further formed. Part of the insulating layer 3 is removed by etching using the as a mask. Next, as shown in FIG. 2C, by a lithographic method,
The resist 13 is left so as to cover the groove 6 between the gate 4 and the shield electrode 5, and the semiconductor substrate 1 is further set in the vapor deposition apparatus.
The semiconductor substrate 1 is set in an oblique direction and rotated so that the evaporation material may come from the oblique direction of the obliquely-deposited metal layer 12
To form. Next, as shown in FIG. 2D, when the emitter metal is vapor-deposited from directly above the semiconductor substrate 1, the emitter metal layer 14 is laminated on the obliquely vapor-deposited metal layer 12, and at the same time, the obliquely vapor-deposited metal layer 14 is formed. An emitter 2 having a tapered tip is formed on the semiconductor substrate 1 through the opening formed in. Finally, the resist 13, the obliquely evaporated metal layer 12,
By removing the emitter metal layer 14, the cold cathode having the structure shown in FIG. 1 is obtained.

【0014】本発明の第2の実施例の平面図を図3
(a)に、断面図を図3(b)に示す。図3において、
7は第2絶縁層で、8は第2絶縁層7上に作られた遮蔽
電極である。図1に示す第1の実施例と同様に、各ゲー
ト4は互いに絶縁されており、図には示さないが適当な
配線を通して電圧が独立に印加される。遮蔽電極8には
エミッタ2を基準としてたとえば100Vの一定電圧が
印加されている。この実施例においては、遮蔽電極8が
第2絶縁層7の上に積層された立体構造となっているの
でより高い遮蔽効果が実現され、隣のゲート4の電圧の
影響は小さくなり、電子ビームの軌道に与える影響は小
さくなる。
FIG. 3 is a plan view of the second embodiment of the present invention.
A sectional view is shown in FIG. In FIG.
Reference numeral 7 is a second insulating layer, and 8 is a shield electrode formed on the second insulating layer 7. Similar to the first embodiment shown in FIG. 1, the gates 4 are insulated from each other, and the voltages are independently applied through appropriate wirings although not shown. A constant voltage of, for example, 100 V is applied to the shield electrode 8 with the emitter 2 as a reference. In this embodiment, since the shield electrode 8 has a three-dimensional structure in which the shield electrode 8 is laminated on the second insulating layer 7, a higher shield effect is realized, the influence of the voltage of the adjacent gate 4 is reduced, and the electron beam is emitted. Has less effect on the orbit.

【0015】本発明の第3の実施例の平面図を図4
(a)に、断面図を図4(b)に示す。図4は9個の微
小冷陰極を一組みの陰極セグメントとして縦および横に
並べたもので、縦および横に時分割的に駆動することに
よって各陰極セグメントは独立にアクセスできる。ある
いは、縦方向には時分割的に駆動し、横方向は同時に駆
動することもできる。このような構造の陰極をCTRに
組み込むことによって複雑な機能を実現できる。
FIG. 4 is a plan view of the third embodiment of the present invention.
A cross-sectional view is shown in FIG. FIG. 4 shows nine minute cold cathodes arranged vertically and horizontally as a set of cathode segments, and each cathode segment can be independently accessed by time-divisionally driving vertically and horizontally. Alternatively, it is possible to drive them in a time division manner in the vertical direction and simultaneously in the horizontal direction. By incorporating the cathode having such a structure in the CTR, a complicated function can be realized.

【0016】図4において、9は半導体基板1の上に形
成した絶縁体層、10は電極Cである。この電極C10
は縦方向に分離されている。この第3の実施例において
は、ゲート4は図4(a)上で縦に並んだ複数の陰極セ
グメントに対して共通の電極になっている。一方、半導
体基板1の上に一面に絶縁体層9を形成することによっ
て、横に並んだ陰極セグメントのエミッタ2は他の段の
横に並んだ陰極セグメントに対して互いに電気的に分離
されている。各陰極セグメントのエミッタは電極C10
の上に形成されている。エミッタ2から電流を取り出さ
ないとき、エミッタ2はゲート4と同程度か僅かに負の
電圧が印加され、エミッタ2から電流を取り出すときエ
ミッタ2はゲート4よりも約100V負の電圧を印加す
る。遮蔽電極5には陰極全面にわたって常に100Vの
電圧が印加されているので、横に並んだ陰極セグメント
を同時に駆動しても、各陰極セグメントのエミッタ2か
ら放出された電子ビーム軌道は常に一定に保たれる。
In FIG. 4, 9 is an insulator layer formed on the semiconductor substrate 1, and 10 is an electrode C. This electrode C10
Are vertically separated. In this third embodiment, the gate 4 is a common electrode for a plurality of vertically arranged cathode segments in FIG. 4 (a). On the other hand, by forming the insulator layer 9 on one surface of the semiconductor substrate 1, the emitters 2 of the side-by-side cathode segments are electrically separated from the side-by-side cathode segments of the other stages. There is. The emitter of each cathode segment is electrode C10.
Is formed on. When the current is not taken out from the emitter 2, the emitter 2 is applied with the same or slightly negative voltage as the gate 4, and when the current is taken out from the emitter 2, the emitter 2 applies a negative voltage of about 100 V to the gate 4. Since a voltage of 100 V is constantly applied to the shield electrode 5 over the entire surface of the cathode, the electron beam trajectories emitted from the emitters 2 of the cathode segments are always kept constant even if the cathode segments arranged side by side are simultaneously driven. Be drunk

【0017】なお、第3の実施例では半導体基板1の上
に絶縁層9を設け、その上に設けた電極C10の上にエ
ミッタ2等を構成する構造を示したが、半導体基板1と
絶縁体層9の代わりに直接ガラス基板のような絶縁物基
板の上に作ることもできる。また、電極Cは横方向に分
離して設け、遮蔽電極をこれに直交するように設けても
よい。
In the third embodiment, the insulating layer 9 is provided on the semiconductor substrate 1, and the emitter 2 and the like are formed on the electrode C10 provided thereon. Instead of the body layer 9, it can be directly formed on an insulating substrate such as a glass substrate. Further, the electrodes C may be provided separately in the lateral direction, and the shield electrode may be provided so as to be orthogonal to this.

【0018】本発明の第4の実施例を図5に示す。図5
はMIM(金属−絶縁物−金属)型の冷陰極の例で、1
5は絶縁基板、16は導電体層、17a,17bは金属
電極である。金属電極17および絶縁層3の一部に他と
比較して薄くなっている部分があり、導電体層16と金
属電極17の間に電圧を印加すると、この薄い部分から
トンネル効果によって電子が放出される。図には示さな
いが金属電極17aと17bはそれぞれ独立に電圧が印
加できるようになっている。遮蔽電極8には一定電圧が
加えられており、放出電流制御のため、金属電極17に
印加する電圧を変えても隣の金属電極17(微小冷陰
極)から放出される電子ビームの軌道は影響を受けな
い。
A fourth embodiment of the present invention is shown in FIG. Figure 5
Is an example of a cold cathode of MIM (metal-insulator-metal) type, and 1
Reference numeral 5 is an insulating substrate, 16 is a conductor layer, and 17a and 17b are metal electrodes. A part of the metal electrode 17 and the insulating layer 3 is thinner than the others, and when a voltage is applied between the conductor layer 16 and the metal electrode 17, electrons are emitted from the thin part by a tunnel effect. To be done. Although not shown in the figure, the metal electrodes 17a and 17b can be independently applied with a voltage. Since a constant voltage is applied to the shield electrode 8, the trajectory of the electron beam emitted from the adjacent metal electrode 17 (micro cold cathode) is affected even if the voltage applied to the metal electrode 17 is changed to control the emission current. Do not receive

【0019】なお、第1、第2、第4の実施例では単一
の微小冷陰極を互いに分離する例を示したが、複数の微
小冷陰極を一括して放出電流を制御する場合には、これ
を単位としてこの周囲に一定電圧の遮蔽電極を配置する
ことにより全く同様の効果を得ることができる。
In the first, second and fourth embodiments, an example in which a single micro cold cathode is separated from each other has been shown, but in the case of collectively controlling the emission current of a plurality of micro cold cathodes. By using this as a unit and disposing a shield electrode of a constant voltage around this, the same effect can be obtained.

【0020】また、実施例では電子放出源として電界放
出型素子、MIM型素子を示したが、MIS型素子、P
N接合素子、ショットキー接合素子等を用いても本発明
が適用できることは明らかである。
Further, although the field emission type element and the MIM type element are shown as the electron emission sources in the embodiments, the MIS type element and the P type element are used.
It is obvious that the present invention can be applied by using an N junction element, a Schottky junction element and the like.

【0021】さらに、CRTに限らず、複数の互いに独
立に電流量が制御される電子ビームを利用したデバイス
ならびに装置に使用しても同様な効果が得られ、本発明
の思想が適用できることは明らかである。
Further, it is apparent that the same effect can be obtained and the idea of the present invention can be applied not only to a CRT but also to a device and a device using a plurality of electron beams whose current amounts are independently controlled. Is.

【0022】[0022]

【発明の効果】以上説明したように、本発明の冷陰極に
おいては、エミッタから放出される電子ビームの軌道は
極めて近接して隣合ったエミッタあるいはエミッタ群を
制御する電圧の影響を受けないので、この冷陰極をCR
Tに適用すれば、表示画面上で常に安定した歪みのない
走査線あるいは走査線で作られるパターンを得ることが
できる。
As described above, in the cold cathode of the present invention, the trajectories of the electron beams emitted from the emitters are extremely close to each other and are not affected by the voltage for controlling the adjacent emitters or groups of emitters. , This cold cathode CR
When applied to T, it is possible to obtain a stable scan line or a pattern formed by scan lines that is always stable on the display screen.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は本発明の第1の実施例を示す
冷陰極の平面図と断面図である。
1A and 1B are a plan view and a cross-sectional view of a cold cathode showing a first embodiment of the present invention.

【図2】(a)〜(d)は本発明の第1の実施例を示す
冷陰極の製作プロセスの断面図である。
2A to 2D are cross-sectional views of a manufacturing process of a cold cathode showing a first embodiment of the present invention.

【図3】(a),(b)は本発明の第2の実施例を示す
冷陰極の平面図と断面図である。
3 (a) and 3 (b) are a plan view and a cross-sectional view of a cold cathode showing a second embodiment of the present invention.

【図4】(a),(b)は本発明の第3の実施例を示す
冷陰極の平面図と断面図である。
4A and 4B are a plan view and a sectional view of a cold cathode showing a third embodiment of the present invention.

【図5】本発明の第4の実施例を示す冷陰極の断面図で
ある。
FIG. 5 is a cross-sectional view of a cold cathode showing a fourth embodiment of the present invention.

【図6】(a),(b)は従来例を示す平面図と断面図
である。
6A and 6B are a plan view and a cross-sectional view showing a conventional example.

【図7】(a),(b)は従来の他の例を示す平面図と
断面図である。
7A and 7B are a plan view and a cross-sectional view showing another conventional example.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 エミッタ 3 絶縁層 4 ゲート 5,8 遮蔽電極 6 絶縁層溝 7 第2絶縁層 9 絶縁体層 10 電極C 11 ゲート金属層 12 斜め蒸着金属層 13 レジスト 14 エミッタ金属層 15 絶縁基板 16 導電体層 17 金属電極 101 基板 102 エミッタ 103 絶縁体 104 ゲート 105 電子コレクタ電極 106 発光体薄膜 107 電子シールド 108 透明封止体 1 Semiconductor Substrate 2 Emitter 3 Insulating Layer 4 Gate 5,8 Shielding Electrode 6 Insulating Layer Groove 7 Second Insulating Layer 9 Insulating Layer 10 Electrode C 11 Gate Metal Layer 12 Obliquely Evaporated Metal Layer 13 Resist 14 Emitter Metal Layer 15 Insulating Substrate 16 Conductor layer 17 Metal electrode 101 Substrate 102 Emitter 103 Insulator 104 Gate 105 Electron collector electrode 106 Light emitter thin film 107 Electronic shield 108 Transparent encapsulant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性の基板上に設けたエミッタとこの
エミッタの周囲の基板上に絶縁層を介して設けたゲート
とを有する複数の微小冷陰極の間に前記微小冷陰極を取
り囲むように遮蔽電極を設けたことを特徴とする冷陰
極。
1. A micro cold cathode is surrounded by a plurality of micro cold cathodes having an emitter provided on a conductive substrate and a gate provided on the substrate around the emitter via an insulating layer. A cold cathode comprising a shield electrode.
【請求項2】 導電性の基板に設けたエミッタとこのエ
ミッタの周囲の基板上に絶縁層を介して設けたゲートと
を有する複数の微小冷陰極の間に前記絶縁層の上に積層
した第2の絶縁層を介して遮蔽電極を設けたことを特徴
とする冷陰極。
2. A plurality of micro cold cathodes having an emitter provided on a conductive substrate and a gate provided on the substrate around the emitter via an insulating layer, and laminated on the insulating layer. A cold cathode comprising a shielding electrode provided via a second insulating layer.
【請求項3】 導電性基板上に絶縁層を介して縦または
横方向に分離された金属層を設け、この金属層上に多数
の微小冷陰極を設け、これら微小冷陰極を複数個ずつ前
記金属層に直交するように設けた遮蔽電極によって分離
したことを特徴とする冷陰極。
3. A metal layer vertically or laterally separated via an insulating layer on a conductive substrate, a large number of micro cold cathodes are provided on the metal layer, and a plurality of these micro cold cathodes are provided. A cold cathode characterized by being separated by a shield electrode provided so as to be orthogonal to the metal layer.
【請求項4】 絶縁基板上に導電体層と絶縁層を積層し
て設け、この絶縁層上に複数の金属電極を設け、これら
の金属電極の周囲に第2の絶縁層を介して遮蔽電極を設
け、かつ前記金属電極の下の一部の絶縁層が薄くされて
いることを特徴とする冷陰極。
4. A conductive layer and an insulating layer are laminated on an insulating substrate, a plurality of metal electrodes are provided on the insulating layer, and a shield electrode is provided around these metal electrodes with a second insulating layer interposed therebetween. And a part of the insulating layer below the metal electrode is thinned.
JP16393A 1993-01-05 1993-01-05 Cold cathode Expired - Lifetime JP2697538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16393A JP2697538B2 (en) 1993-01-05 1993-01-05 Cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16393A JP2697538B2 (en) 1993-01-05 1993-01-05 Cold cathode

Publications (2)

Publication Number Publication Date
JPH06243777A true JPH06243777A (en) 1994-09-02
JP2697538B2 JP2697538B2 (en) 1998-01-14

Family

ID=11466371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16393A Expired - Lifetime JP2697538B2 (en) 1993-01-05 1993-01-05 Cold cathode

Country Status (1)

Country Link
JP (1) JP2697538B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688041U (en) * 1993-05-28 1994-12-22 双葉電子工業株式会社 Electron emitting device and image display device using the electron emitting device
EP0840345A1 (en) * 1996-11-01 1998-05-06 Nec Corporation Field-emission cathode capable of forming an electron beam having a high current density and a little ripple
JP2006134794A (en) * 2004-11-09 2006-05-25 Sony Corp Field emission element, its method for manufacture and image display device using field emission element
KR100814851B1 (en) * 2006-09-12 2008-03-20 삼성에스디아이 주식회사 Light emission device and liquid crystal display with the light emission device as backlight unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121454A (en) * 1977-03-31 1978-10-23 Toshiba Corp Electron source of thin film electric field emission type and its manufacture
JPH0428138A (en) * 1990-05-23 1992-01-30 Matsushita Electric Ind Co Ltd Electron emission element and manufacture thereof
JPH04133235A (en) * 1990-09-25 1992-05-07 Canon Inc Mim type electron emitting element and its manufacture
JPH04137332A (en) * 1990-09-28 1992-05-12 Canon Inc Electron beam generator and image display using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121454A (en) * 1977-03-31 1978-10-23 Toshiba Corp Electron source of thin film electric field emission type and its manufacture
JPH0428138A (en) * 1990-05-23 1992-01-30 Matsushita Electric Ind Co Ltd Electron emission element and manufacture thereof
JPH04133235A (en) * 1990-09-25 1992-05-07 Canon Inc Mim type electron emitting element and its manufacture
JPH04137332A (en) * 1990-09-28 1992-05-12 Canon Inc Electron beam generator and image display using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688041U (en) * 1993-05-28 1994-12-22 双葉電子工業株式会社 Electron emitting device and image display device using the electron emitting device
EP0840345A1 (en) * 1996-11-01 1998-05-06 Nec Corporation Field-emission cathode capable of forming an electron beam having a high current density and a little ripple
US5929557A (en) * 1996-11-01 1999-07-27 Nec Corporation Field-emission cathode capable of forming an electron beam having a high current density and a low ripple
JP2006134794A (en) * 2004-11-09 2006-05-25 Sony Corp Field emission element, its method for manufacture and image display device using field emission element
KR100814851B1 (en) * 2006-09-12 2008-03-20 삼성에스디아이 주식회사 Light emission device and liquid crystal display with the light emission device as backlight unit

Also Published As

Publication number Publication date
JP2697538B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US5243252A (en) Electron field emission device
US5266155A (en) Method for making a symmetrical layered thin film edge field-emitter-array
US6326725B1 (en) Focusing electrode for field emission displays and method
JP2809129B2 (en) Field emission cold cathode and display device using the same
JPS60241626A (en) Display unit having electron current generating semiconductor device
JPH0326493B2 (en)
JP2964155B2 (en) Electron beam generator, cathode ray tube and display using the same
JPH07105831A (en) Equipment and method for focusing electron-beam and deflecting it
US5345141A (en) Single substrate, vacuum fluorescent display
KR100661142B1 (en) Electron emission device and field emission display
US5920151A (en) Structure and fabrication of electron-emitting device having focus coating contacted through underlying access conductor
KR100242038B1 (en) Field emission cold cathode and display device using the same
JPH10125215A (en) Field emission thin film cold cathode, and display device using it
JP2697538B2 (en) Cold cathode
US6013974A (en) Electron-emitting device having focus coating that extends partway into focus openings
JP2002520770A (en) Field emission element
JP4204075B2 (en) Electron emission device with focusing coating and flat panel display device having the same
US5920296A (en) Flat screen having individually dipole-protected microdots
KR940009191B1 (en) Flat type cool crt
KR100278745B1 (en) Field emission display device having acceleration electrode and manufacturing method thereof
JPH0794124A (en) Display device
JPH02250247A (en) Flat plate type image display device
JPH05205665A (en) Image display device
JPH05198278A (en) Flat panel type display device
JPH02250246A (en) Image forming device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819