JPH06241832A - Electromagnetic-induction linear scale - Google Patents

Electromagnetic-induction linear scale

Info

Publication number
JPH06241832A
JPH06241832A JP3100193A JP3100193A JPH06241832A JP H06241832 A JPH06241832 A JP H06241832A JP 3100193 A JP3100193 A JP 3100193A JP 3100193 A JP3100193 A JP 3100193A JP H06241832 A JPH06241832 A JP H06241832A
Authority
JP
Japan
Prior art keywords
coil
slider
scale
exciting
linear scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3100193A
Other languages
Japanese (ja)
Inventor
Yasumasa Watanabe
泰正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3100193A priority Critical patent/JPH06241832A/en
Publication of JPH06241832A publication Critical patent/JPH06241832A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an absolute electromagnetic-induction linear scale wherein the displacement of a slider can be measured wish high resolution without adjusting a zero point in a measurement. CONSTITUTION:In an electromagnetic-induction linear scale, a scale 1 on which exciting coils have been mounted and a slider 2 on which two sets of detection coils 4, 5 have been mounted in such a way that their phases are dislocated by a 1/4 pitch are arranged so as to be faced, and the linear displacement of the slider is measured. A first exciting coil 7 as well as a second exciting coil 8 and a third exciting coil 9 in which the distribution of coil-side lengths is changed relatively along the lengthwise direction of the scale 1 and which have been arranged by setting a phase difference of 180 deg. between both are mounted on the scale 1. Step positional information which has been found from induced voltages of the detection coils 4, 5 with reference to the second and third exciting coils 8, 9 is added to inside-pitch positional information which has been found from an induced voltage with reference to the first exciting coil 7. The displacement (absolute position) from the reference point of the slider 2 is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、インダクトシン(商品
名)として知られている電磁誘導式リニアスケールに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction type linear scale known as Inductosyn (trade name).

【0002】[0002]

【従来の技術】直線変位のディデタル変換器として、イ
ンダクトシン(商品名)と呼ばれる電磁誘導式リニアス
ケールが知られている。次に、従来における前記磁気誘
導式リニアスケールの構成,並びに動作原理を図5
(a)〜(c)で説明する。まず、(a)図において、
1は測定長に対応した長さのスケール、2はスケール1
に沿って矢印X方向に移動するスライダであり、スケー
ル1には等ピッチPでジグザクに配列した励磁コイル3
が、またスライダ2には相互間に空間的な位相を1/4
ピッチずらしてピッチPにジグザグ配列した2組の検出
コイル4,5が搭載されている。
2. Description of the Related Art An electromagnetic induction type linear scale called Inductosyn (trade name) is known as a linear displacement digital converter. Next, the configuration of the conventional magnetic induction type linear scale and its operating principle are shown in FIG.
This will be described in (a) to (c). First, in FIG.
1 is the scale of the length corresponding to the measurement length, 2 is the scale 1
Is a slider that moves in the direction of the arrow X along the axis of the scale 1. The scale 1 has exciting coils 3 arranged in a zigzag pattern at an equal pitch P.
However, the slider 2 has a spatial phase of 1/4 between them.
Two sets of detection coils 4 and 5 which are arranged in a zigzag pattern at a pitch P by shifting the pitch are mounted.

【0003】ここで、励磁コイル3を交流電源6により
周波数f1 で励磁した状態でスライダ2をX方向に変位
させると、検出コイル4,5には(b)図のようにスラ
イダ2の変位に対応して正弦波状に変化する電圧Va,
Vbが誘起する。したがって、誘起電圧Va,Vbの波
数を検出コイルの後段に接続した信号処理回路でカウン
トすれば、励磁コイル3のピッチPと検出コイル4,5
より出力した誘起電圧の波数nから、コイルピッチPの
整数倍に相当するスライダ2のステップ位置X1が、X1
=P×nとして求められる。また、誘起電圧VaとV
bの間には電気角で90度の位相差があるので、その正
弦,余弦の出力電圧からスライダ2の移動方向が判別で
きるほか、前記の誘起電圧VaとVbを合成して信号処
理することにより、1ピッチ分の変位を多分割したピッ
チ内位置の情報が得られる。ここで、スライダのピッチ
内位置をΔX、前記電圧VaとVbのベクトル和をV、
θを1ピッチ内での位相とすれば、(c)図から、 Va=V cosθ,Vb=V sinθ,θ=(ΔX/P)×
360゜ として与えられるので、電圧Va,Vbの値からピッチ
内位置ΔXを求めることができる。例えばコイルのピッ
チP=1mmとして、電気角360゜を1000分割する
と、ΔXに対して1μmの分解能が得られることにな
る。これにより、スライダ2の直線変位(基準点からの
絶対位置)XをX=X1 +ΔXとして求めることができ
る。
Here, when the slider 2 is displaced in the X direction while the exciting coil 3 is excited by the AC power source 6 at the frequency f 1 , the detecting coils 4 and 5 are displaced as shown in FIG. A voltage Va that changes sinusoidally in response to
Vb is induced. Therefore, if the wave numbers of the induced voltages Va and Vb are counted by the signal processing circuit connected to the subsequent stage of the detection coil, the pitch P of the exciting coil 3 and the detection coils 4, 5 are counted.
From the wave number n of the induced voltage output from the output, the step position X1 of the slider 2 corresponding to an integral multiple of the coil pitch P is X1.
= P × n. In addition, induced voltages Va and V
Since there is a phase difference of 90 degrees in electrical angle between b, the moving direction of the slider 2 can be discriminated from the output voltage of the sine and cosine, and the induced voltages Va and Vb are combined to perform signal processing. As a result, the information on the in-pitch position obtained by multi-dividing the displacement for one pitch can be obtained. Here, the position in the pitch of the slider is ΔX, the vector sum of the voltages Va and Vb is V,
Assuming that θ is a phase within one pitch, from the diagram (c), Va = V cos θ, Vb = V sin θ, θ = (ΔX / P) ×
Since it is given as 360 °, the in-pitch position ΔX can be obtained from the values of the voltages Va and Vb. For example, when the coil pitch P = 1 mm and the electrical angle 360 ° is divided into 1000, a resolution of 1 μm can be obtained for ΔX. As a result, the linear displacement (absolute position from the reference point) X of the slider 2 can be obtained as X = X1 + ΔX.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記した磁
気誘導式リニアスケールは、インクリメンタル型(ある
点からのスライダの変位増加,減少分を出力する形式)
であることから、実際にスライダの変位(基準点からの
絶対位置)を測定する場合には、測定の都度スライダを
基準点に合わせる零点調整が必要でその取扱いが厄介で
あるほか、分解能を高めるようにコイルピッチPを小さ
くすると、それだけスライダの変位量に対する波のカウ
ント数が増加するために出力信号の高速処理が難しくな
る。
By the way, the above-mentioned magnetic induction type linear scale is an incremental type (a type which outputs the displacement increase / decrease of the slider from a certain point).
Therefore, when actually measuring the displacement of the slider (absolute position from the reference point), it is necessary to adjust the zero point each time the measurement is made to adjust the slider to the reference point, which is troublesome to handle and increases the resolution. When the coil pitch P is reduced as described above, the number of wave counts with respect to the amount of displacement of the slider increases, and thus high-speed processing of the output signal becomes difficult.

【0005】本発明は上記の点にかんがみなされたもの
であり、その目的は前記課題を解決し、測定時に零点調
整を行うことなく、スライダの変位(絶対位置)を高い
分解能で測定できるようにしたアブソリュート型の磁気
誘導式リニアスケールを提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to solve the above problems and to measure the displacement (absolute position) of a slider with high resolution without performing zero adjustment during measurement. It is to provide the absolute type magnetic induction type linear scale.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁気誘導式リニアスケールは、スケールに
第1の励磁コイルと、スケールの長手方向に沿ってコイ
ル辺長の分布を相対的に変え、かつ相互間に位相差を設
定して配列した第2,第3の励磁コイルを搭載し、第
2,第3の励磁コイルの励磁周波数に対応する検出コイ
ルの誘起電圧から得たコイルピッチの整数倍に相当する
ステップ位置の情報と、第1の励磁コイルの励磁周波数
に対応する検出コイルの誘起電圧から得たピッチ内位置
の情報とを加算してスライダの変位を測定するよう構成
するものとする。
In order to achieve the above object, the magnetic induction type linear scale of the present invention has a first exciting coil relative to the scale and a coil side length distribution along the longitudinal direction of the scale. 2nd and 3rd exciting coils which are arranged so that the phase difference between them is changed and arranged, and obtained from the induced voltage of the detecting coil corresponding to the exciting frequency of the 2nd and 3rd exciting coils. The displacement of the slider is measured by adding the information on the step position corresponding to an integral multiple of the coil pitch and the information on the in-pitch position obtained from the induced voltage of the detection coil corresponding to the excitation frequency of the first excitation coil. Shall be configured.

【0007】また、前記リニアスケールの具体的な手段
として次記のような構成がある。 (1)第2の励磁コイルと第3の励磁コイルとの間に電
気角で180度の位相差を設定する。 (2)第2の励磁コイルと第3の励磁コイルとの間に電
気角で90度の位相差を設定する。
Further, as a concrete means of the linear scale, there is the following structure. (1) A phase difference of 180 degrees in electrical angle is set between the second exciting coil and the third exciting coil. (2) A phase difference of 90 degrees in electrical angle is set between the second exciting coil and the third exciting coil.

【0008】(3)スケールに搭載した各励磁コイル,
およびスライダに搭載した各検出コイルを、磁性板を基
板としてその上に積層してパターン形成した薄膜コイル
として構成する。 (4)前項(3)において、薄膜コイルの周域に薄膜磁
性層を形成する。
(3) Each exciting coil mounted on the scale,
Also, each detection coil mounted on the slider is formed as a thin film coil in which a magnetic plate is used as a substrate and is laminated thereon to form a pattern. (4) In the above item (3), a thin film magnetic layer is formed in the peripheral region of the thin film coil.

【0009】[0009]

【作用】前記構成において、スケールに搭載した第1の
励磁コイルを周波数f1 で励磁し、第2, 第3の励磁コ
イルを周波数f2 で励磁すると、スライダに搭載した検
出コイルには第1の励磁コイルに対応した周波数f1
誘起電圧と、第2,第3の励磁コイル(励磁周波数
2 )に対応した電圧とが同時に誘起される。ここで、
第2の励磁コイルと第3の励磁コイルとの間で磁束を互
いに打ち消し合うようコイル相互間に電気角で180゜
の位相差(励磁電流の流れる方向を逆にする)を設定し
ておけば、スライダの検出コイルには励磁コイルのコイ
ル辺長分布の差に応じた電圧が誘起される。しかも、第
2,第3の励磁コイルはコイル辺長の分布をスケールの
長手方向に沿って相対的に変え、検出コイルの誘起電圧
がスライダのステップ位置によって変化するように関係
づけられているので、これによりその誘起電圧の値から
直ちにスライダのステップ位置(基準点からのコイルピ
ッチ数に相応した位置)が求められる。つまり、図5で
述べた従来の構成のように、検出コイルからの出力信号
の波数をカウントしたり、零点調整を行う必要なしに、
スライダのステップ位置を即時に求めることができる。
In the above structure, when the first exciting coil mounted on the scale is excited at the frequency f 1 and the second and third exciting coils are excited at the frequency f 2 , the first detecting coil mounted on the slider becomes the first The induced voltage of frequency f 1 corresponding to the exciting coil and the voltage corresponding to the second and third exciting coils (exciting frequency f 2 ) are simultaneously induced. here,
If a phase difference of 180 ° in electrical angle (reversing the flowing direction of the exciting current) is set between the coils so that the magnetic fluxes cancel each other out between the second exciting coil and the third exciting coil. A voltage corresponding to the difference in the coil side length distribution of the exciting coil is induced in the detection coil of the slider. Moreover, since the second and third exciting coils relatively change the distribution of the coil side length along the longitudinal direction of the scale, the induced voltage of the detecting coil is related so as to change depending on the step position of the slider. As a result, the step position of the slider (the position corresponding to the coil pitch number from the reference point) can be immediately obtained from the value of the induced voltage. That is, unlike the conventional configuration described in FIG. 5, it is not necessary to count the wave number of the output signal from the detection coil or perform zero adjustment.
The step position of the slider can be obtained immediately.

【0010】一方、第2の励磁コイルと第3の励磁コイ
ルとの間に電気角で90゜の位相差を設定しておけば、
先記の図5で述べたと同様な動作原理でスライダの検出
コイルに誘起した電圧の位相を利用して前記したステッ
プ位置情報の検出精度をより一層高めることが可能であ
る。また、前記と同時にスライダの検出コイルには第1
の励磁コイル(励磁周波数f1 )に対応した電圧が誘起
されので、これを基に図5と同様な動作原理でピッチ内
位置の情報が求められる。したがって、スライダの後段
に接続した信号処理回路のフィルタで周波数f1 の出力
信号と、周波数f2 の出力信号とを分離してピッチ内位
置の情報とステップ位置の情報とを別々検出した上で、
スライダ位置とピッチ内位置を加算することにより、ス
ライダの直線変位(絶対位置)を瞬時に測定することが
できる。
On the other hand, if a phase difference of 90 ° in electrical angle is set between the second exciting coil and the third exciting coil,
It is possible to further improve the detection accuracy of the above step position information by utilizing the phase of the voltage induced in the detection coil of the slider based on the same operation principle as described in FIG. 5 above. At the same time as above, the first detection coil of the slider is
Since the voltage corresponding to the exciting coil (exciting frequency f 1 ) is induced, the information on the in-pitch position can be obtained based on this by the same operation principle as in FIG. Therefore, after the output signal of the frequency f 1 and the output signal of the frequency f 2 are separated by the filter of the signal processing circuit connected to the latter stage of the slider, the information on the pitch position and the information on the step position are detected separately. ,
By adding the slider position and the in-pitch position, the linear displacement (absolute position) of the slider can be instantaneously measured.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、各実施例の図中で図4に対応する同一部材
には同じ符号が付してある。 実施例1:まず、図1において、互いに向かい合って近
接したスケール1とスライダ2にたいし、スライダ2に
は図5と同様に空間的に1/4ピッチずらした2組の検
出コイル4と5が搭載されている。一方、スケール1に
は図5の励磁コイル3と同様に等ピッチPでジグザグ配
列した第1の励磁コイル7のほかに、同一平面上に並ぶ
第2,第3の励磁コイル8,9が搭載されている。ここ
で、第2の励磁コイル8と第3の励磁コイル9のパター
ンは、図示のようにスケール1の長手方向に沿ってコイ
ル辺長L1, L2の分布が相対的に変わるようにパターン化
(図示例では励磁コイル8と9との間の境界線が斜め直
線になっている)して配列してあり、かつ励磁コイル8
と9は互いに磁束を打ち消し合うように、電気角で18
0゜の位相差(励磁電流の流れる方向を逆にする)を設
定している。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings of each embodiment, the same members corresponding to those in FIG. 4 are designated by the same reference numerals. Embodiment 1 First, in FIG. 1, two sets of detection coils 4 and 5 are spatially displaced from each other by 1/4 pitch in the same manner as in FIG. Is installed. On the other hand, in addition to the first exciting coil 7 arranged in a zigzag at the equal pitch P on the scale 1 as in the exciting coil 3 of FIG. 5, second and third exciting coils 8 and 9 arranged on the same plane are mounted. Has been done. Here, the patterns of the second exciting coil 8 and the third exciting coil 9 are patterned so that the distribution of the coil side lengths L1 and L2 relatively changes along the longitudinal direction of the scale 1 as shown in the figure ( In the illustrated example, the boundary line between the exciting coils 8 and 9 is an oblique straight line), and the exciting coils 8 are arranged.
And 9 have an electrical angle of 18 so that they cancel each other's magnetic flux.
A phase difference of 0 ° (reversing the flowing direction of the exciting current) is set.

【0012】かかる構成で、第1の励磁コイル7を周波
数f1 ,第2,第3の励磁コイル8,9を周波数f2
交流で励磁した状態でスライダ2を移動すると、スライ
ダ2の検出コイル4,5には、第1の励磁コイル7によ
る誘起電圧Va-1,Vb-1(周波数f1 )と同時に、第
2,第3の励磁コイル8,9による誘起電圧Va-2,V
b-2(周波数f2 )が発生する。ここで、誘起電圧Va
-2,Vb-2は励磁コイル8と9とのコイル辺長L1, L2の
差に応じた電圧値となり、励磁コイル8と9の配列が図
1で示すような幾何学的パターンである場合には、図2
で表すように誘起電圧はスライダ2の変位Xに対して位
置の2乗に比例して変化する。なお、励磁コイル8と9
のパターンを変えることにより、図2と異なった特性の
誘起電圧Va-2,Vb-2が得られる。
With this structure, when the slider 2 is moved while the first exciting coil 7 is excited by the alternating current of the frequency f 1 and the second and third exciting coils 8 and 9 of the frequency f 2 , the slider 2 is detected. The coils 4 and 5 have induced voltages Va-1 and Vb-1 (frequency f 1 ) generated by the first exciting coil 7 and induced voltages Va-2 and V generated by the second and third exciting coils 8 and 9 at the same time.
b-2 (frequency f 2 ) is generated. Here, the induced voltage Va
-2, Vb-2 is a voltage value according to the difference between the coil side lengths L1 and L2 between the exciting coils 8 and 9, and the arrangement of the exciting coils 8 and 9 has a geometric pattern as shown in FIG. In Figure 2
As indicated by, the induced voltage changes in proportion to the displacement X of the slider 2 in proportion to the square of the position. Exciting coils 8 and 9
The induced voltages Va-2 and Vb-2 having characteristics different from those in FIG. 2 can be obtained by changing the pattern.

【0013】したがって、スライダ2の後段に接続した
信号処理回路(図示せず)にて、検出コイル4,5の出
力信号をフィルタにより周波数f1 の電圧Va-1,Vb
-1と周波数f2 の電圧Va-2,Vb-2とに分離した上
で、一方の誘起電圧Va-1,Vb-1を図4で述べたと同
様に信号処理することにより、コイルピッチPの1ピッ
チ分を多分割したピッチ内位置ΔXの情報が得られる。
また、誘起電圧Va-2,Vb-2の何れか一方のピーク電
圧値を基に、図2の関係からコイルピッチPの整数倍に
相当するスライダ2の基準点からのステップ位置X1(図
5で述べた波数をカンウトして得たステップ位置に対応
する)の情報が得られる。そして、ステップ位置X1 の
情報とピッチ内位置ΔXの情報を加算することにより、
スライダ2の変位X(絶対位置)をX=X1 +ΔXとし
て瞬時に測定することができる。しかも、この場合には
零点調整が不要であるのは勿論のこと、図5で述べたよ
うな波数のカウントの必要がないので出力信号を高速処
理できる。
Therefore, in the signal processing circuit (not shown) connected to the latter stage of the slider 2, the output signals of the detection coils 4 and 5 are filtered by the voltages Va-1 and Vb of the frequency f 1.
-1 and the voltages Va-2 and Vb-2 of the frequency f 2 are separated, and one of the induced voltages Va-1 and Vb-1 is processed in the same manner as described with reference to FIG. The information of the in-pitch position ΔX obtained by multi-dividing one pitch is obtained.
Further, based on the peak voltage value of either one of the induced voltages Va-2 and Vb-2, the step position X1 from the reference point of the slider 2 corresponding to the integral multiple of the coil pitch P (see FIG. (Corresponding to the step position obtained by counting the wave number described in 1)) is obtained. Then, by adding the information of the step position X1 and the information of the in-pitch position ΔX,
The displacement X (absolute position) of the slider 2 can be instantaneously measured with X = X1 + ΔX. Moreover, in this case, it is of course not necessary to adjust the zero point, and since it is not necessary to count the wave number as described in FIG. 5, the output signal can be processed at high speed.

【0014】次に、前記スケール1に搭載した各励磁コ
イル7,8,9の製造プロセスを図3に示す。 (1)まず、寸法20×5×0.1mmの短冊形の磁性板
(例えば珪素鋼板)を磁性基板10として、その上面側
に絶縁層として膜厚0.2μmのアルミ酸化膜11をスパ
ッタ法により成膜する。((a)図参照) (2)続いて、アルミ酸化膜11の上に導体層として膜
厚10μmの銅12を蒸着する。((b)図参照) (3)次に、銅11の上に膜厚0.2μmのシリコン酸化
膜を成膜してフォトプロセスにより所定パターンのエッ
チングマスクを作り、さらにイオンビームエッチングを
施して図1に示した励磁コイル8,9をパターン形成す
る。((c)図参照) (4)さらに、励磁コイル8,9の上にポリイミド樹脂
13を塗布してその表面を平坦に仕上げる。((d)図
参照) (5)次に、ポリイミド13の層の上に膜厚10μmの
銅を蒸着して積層し、さらに前記工程(3)と同様にし
て図1における励磁コイル7をパターン形成する。
((e)図参照) (6)最後に保護層として励磁コイル7の上に膜厚0.2
μmのシリコン酸化膜14をスパッタ法で形成し、さら
に各コイル端部のシリコン酸化膜をドライエッチングに
より除去して端子部を形成し、ここに金メッキを施した
上で金線のワイヤ15をボンディングする。((f)図
参照) なお、図1におけるスライダ2の検出コイル4,5も前
記と同様な手法で構築する。このように半導体製造プロ
セスの技術を応用してスケール1,スライダ2の各コイ
ルを構築することにより、コイルピッチを微細化して分
解能の高いリニアスケールを製作することができる。
Next, FIG. 3 shows a manufacturing process of the exciting coils 7, 8 and 9 mounted on the scale 1. (1) First, a rectangular magnetic plate (for example, a silicon steel plate) having a size of 20 × 5 × 0.1 mm is used as a magnetic substrate 10, and an aluminum oxide film 11 having a thickness of 0.2 μm is formed as an insulating layer on the upper surface side of the magnetic substrate 10. To form a film. (See FIG. 5A) (2) Subsequently, copper 12 having a film thickness of 10 μm is deposited on the aluminum oxide film 11 as a conductor layer. (See Fig. (B)) (3) Next, a silicon oxide film having a thickness of 0.2 µm is formed on the copper 11, an etching mask having a predetermined pattern is formed by a photo process, and ion beam etching is further performed. The exciting coils 8 and 9 shown in FIG. 1 are patterned. (See FIG. 7C) (4) Further, the polyimide resin 13 is applied on the exciting coils 8 and 9 to finish the surface flat. (Refer to FIG. (D)) (5) Next, copper of 10 μm in thickness is vapor-deposited and laminated on the layer of polyimide 13, and the exciting coil 7 in FIG. 1 is patterned in the same manner as in the step (3). Form.
(See Fig. (E)) (6) Finally, a film thickness of 0.2 on the excitation coil 7 as a protective layer.
A silicon oxide film 14 having a thickness of μm is formed by a sputtering method, and further, the silicon oxide film at the end of each coil is removed by dry etching to form a terminal portion, which is then plated with gold and then a wire 15 of a gold wire is bonded. To do. (Refer to the figure (f)) In addition, the detection coils 4 and 5 of the slider 2 in FIG. 1 are constructed by the same method as described above. By constructing each coil of the scale 1 and the slider 2 by applying the technique of the semiconductor manufacturing process as described above, it is possible to miniaturize the coil pitch and manufacture a linear scale having high resolution.

【0015】実施例2:次に、前記実施例1と異なる実
施例を図4に示す。すなわち、この実施例ではスケール
1に搭載した第2,第3の励磁コイル8,9(図1参
照)について、励磁コイル8と9とを同じ面上で相対的
に1/4ピッチずらして配列し、両コイルの間に電気角
で90゜の位相差を設定したものである。このように第
2の励磁コイル8と第3の励磁コイル9との間に電気角
で90゜の位相角を設定して配置することにより、励磁
コイル8,9に誘起した電圧(実施例1で述べた誘起電
圧Va-2,Vb-2に対応する)の間の位相を利用(図5
で述べたと同じ動作原理)してステップ位置情報の検出
精度をさらに高めることができる。
Second Embodiment Next, an embodiment different from the first embodiment is shown in FIG. That is, in this embodiment, with respect to the second and third exciting coils 8 and 9 (see FIG. 1) mounted on the scale 1, the exciting coils 8 and 9 are arranged on the same plane with a relative shift of 1/4 pitch. However, a phase difference of 90 ° in electrical angle is set between both coils. As described above, by arranging the second exciting coil 8 and the third exciting coil 9 with a phase angle of 90 ° in electrical angle, the voltage induced in the exciting coils 8 and 9 (Example 1) Using the phase between the induced voltages Va-2 and Vb-2 described in (see FIG. 5).
It is possible to further improve the detection accuracy of the step position information by performing the same operation principle as described above.

【0016】さらに、この実施例では薄膜コイルとして
作られた励磁コイル8,9の周域に薄膜磁性層16が形
成されている。かかる構成により、磁性層16がスケー
ル1とスライダ2との間の磁気結合度を高めるヨークの
役目を果たすので、スライダ側に搭載した検出コイルの
誘起電圧が増大する。なお、図4の構成をスケール上に
構築するには、図3で述べた製造プロセスにおける工程
(4)でポリイミド樹脂の代わりにシリコン酸化膜を励
磁コイル8,9の上に薄くスパッタ法で形成し、さらに
その上に磁性材のパーマロイをスパッタ法により10μ
m厚に成膜してコイル導体間に残る凹溝にパーマロイを
充填した後、その表面を研削して励磁コイル8,9の導
体面を露出させるとともに、コイルの周域に薄膜磁性層
16を形成する。その後に層間絶縁層としてシリコン酸
化膜を0.2μm厚にスパッタし、その絶縁層の上に図3
の製造プロセスと同様に第1の励磁コイル7を構築して
スケール1を完成する。
Further, the thin film magnetic layer 16 is formed in the peripheral region of the exciting coils 8 and 9 which are formed as thin film coils in this embodiment. With this configuration, the magnetic layer 16 serves as a yoke that enhances the degree of magnetic coupling between the scale 1 and the slider 2, so that the induced voltage of the detection coil mounted on the slider side increases. In order to construct the structure of FIG. 4 on a scale, a silicon oxide film is formed on the exciting coils 8 and 9 in place of polyimide resin by a thin sputtering method in the step (4) in the manufacturing process described in FIG. Then, a magnetic material, permalloy, is sputtered on top of it
After forming a film having a thickness of m and filling the concave groove remaining between the coil conductors with permalloy, the surface is ground to expose the conductor surfaces of the exciting coils 8 and 9, and the thin film magnetic layer 16 is formed in the peripheral region of the coils. Form. After that, a silicon oxide film is sputtered as an interlayer insulating layer to a thickness of 0.2 μm, and the silicon oxide film is sputtered on the insulating layer.
The scale 1 is completed by constructing the first excitation coil 7 in the same manner as in the manufacturing process of 1.

【0017】[0017]

【発明の効果】以上述べたように本発明の構成によれ
ば、スライダの変位測定に際して、従来のリニアスケー
ルのように零点調整,およびスライダの検出コイルに誘
起した電圧の波数をカウントしてステップ位置を求める
必要がなく、スケールに搭載した第1の励磁コイルに対
応した検出コイルの誘起電圧から得たピッチ内位置情報
と、これとは別に第2,第3の励磁コイルに対応した誘
起電圧から得たステップ位置情報とを加算するので、ス
ライダの基準位置からの直線変位(絶対位置)が瞬時に
測定可能なアブソリュート型の電磁誘導式リニアスケー
ルが提供できる。
As described above, according to the configuration of the present invention, when the displacement of the slider is measured, the zero point adjustment as in the conventional linear scale and the step of counting the wave number of the voltage induced in the detection coil of the slider are performed. Position information in the pitch obtained from the induced voltage of the detection coil corresponding to the first exciting coil mounted on the scale without the need to obtain the position, and the induced voltage corresponding to the second and third exciting coils separately from this Since the step position information obtained from the above is added, an absolute electromagnetic induction type linear scale capable of instantaneously measuring the linear displacement (absolute position) of the slider from the reference position can be provided.

【0018】しかも、ステップ位置を求めるのにスライ
ダの検出コイルに誘起した電圧の波数をカウントする必
要がないので、信号処理の高速化とともに、コイルピッ
チを十分微細化してスケールの分解能を高めることがで
きる。また、半導体プロセスの技術を応用して、スケー
ルの励磁コイル,スライダの検出コイルを薄膜コイルと
して構築することでパターン精度の高いリニアスケール
が製作できるほか、前記薄膜コイルの周域に薄膜磁性層
を形成することでスライダの検出コイルから大きな出力
信号が得られて有利となる。
Moreover, since it is not necessary to count the number of waves of the voltage induced in the detection coil of the slider in order to obtain the step position, the signal processing speed can be increased and the coil pitch can be sufficiently miniaturized to increase the resolution of the scale. it can. Further, by applying the semiconductor process technology, a linear scale with high pattern accuracy can be manufactured by constructing the excitation coil of the scale and the detection coil of the slider as a thin film coil, and a thin film magnetic layer is formed in the peripheral region of the thin film coil. By forming it, a large output signal is obtained from the detection coil of the slider, which is advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1によるリニアスケールを模式
的に表した構成図
FIG. 1 is a configuration diagram schematically showing a linear scale according to a first embodiment of the present invention.

【図2】図1の構成でステップ位置情報を得るための動
作原理図
FIG. 2 is an operation principle diagram for obtaining step position information with the configuration of FIG.

【図3】図1におけるスケールの製造プロセスの説明図
であり、(a)〜(f)は各工程での状態を表す図
FIG. 3 is an explanatory diagram of a manufacturing process of the scale in FIG. 1, and (a) to (f) are diagrams showing states in respective steps.

【図4】本発明の実施例2によるスケールの平面図FIG. 4 is a plan view of a scale according to a second embodiment of the present invention.

【図5】従来における電磁誘導式リニアスケールの構
成,動作の原理図であり、(a)は構成回路の模式図、
(b)はスライダの検出コイルに誘起した電圧とスライ
ダの変位との関係を表す図、(c)はピッチ内位置情報
を得るための説明図
FIG. 5 is a principle diagram of a configuration and an operation of a conventional electromagnetic induction type linear scale, (a) is a schematic diagram of a configuration circuit,
(B) is a diagram showing the relationship between the voltage induced in the detection coil of the slider and the displacement of the slider, and (c) is an explanatory diagram for obtaining in-pitch position information.

【符号の説明】[Explanation of symbols]

1 スケール 2 スライダ 4 検出コイル 5 検出コイル 7 第1の励磁コイル 8 第2の励磁コイル 9 第3の励磁コイル 10 磁性基板 16 磁性層 f1 第1の励磁コイルの励磁周波数 f2 第2,第3の励磁コイルの励磁周波数1 Scale 2 Slider 4 Detection Coil 5 Detection Coil 7 First Excitation Coil 8 Second Excitation Coil 9 Third Excitation Coil 10 Magnetic Substrate 16 Magnetic Layer f 1 Excitation Frequency of First Excitation Coil f 2 Second, Second Excitation frequency of the excitation coil of 3

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】測定長に対応した長さの励磁コイルを搭載
したスケールと、互いに位相を1/4ピッチずらした2
組の検出コイルを搭載したスライダとを向かい合わせに
近接配備し、前記検出コイルの誘起電圧を基にスライダ
の直線変位を測定する電磁誘導式リニアスケールにおい
て、スケールには第1の励磁コイルと、スケールの長手
方向に沿ってコイル辺長の分布を相対的に変え、かつ相
互間に位相差を設定して配列した第2,第3の励磁コイ
ルを搭載し、第2,第3の励磁コイルの励磁周波数に対
応する検出コイルの誘起電圧から得たコイルピッチの整
数倍に相当するステップ位置の情報と、第1の励磁コイ
ルの励磁周波数に対応する検出コイルの誘起電圧から得
たピッチ内位置の情報とを加算してスライダの変位を測
定することを特徴とする電磁誘導式リニアスケール。
1. A scale equipped with an exciting coil having a length corresponding to a measurement length, and a scale having a phase shifted by 1/4 pitch from each other.
In an electromagnetic induction linear scale in which a slider equipped with a pair of detection coils is arranged in close proximity to each other, and the linear displacement of the slider is measured based on the induced voltage of the detection coil, the scale includes a first excitation coil, The second and third exciting coils are arranged so that the distribution of the coil side lengths is relatively changed along the longitudinal direction of the scale and the phase difference is set between the second and third exciting coils. Information on the step position corresponding to an integral multiple of the coil pitch obtained from the induced voltage of the detection coil corresponding to the excitation frequency of, and the position within the pitch obtained from the induced voltage of the detection coil corresponding to the excitation frequency of the first excitation coil An electromagnetic induction type linear scale characterized in that the displacement of the slider is measured by adding the above information.
【請求項2】請求項1記載のリニアスケールにおいて、
第2の励磁コイルと第3の励磁コイルとの間に電気角で
180度の位相差を設定したことを特徴とする電磁誘導
式リニアスケール。
2. The linear scale according to claim 1, wherein
An electromagnetic induction type linear scale characterized in that a phase difference of 180 degrees in electrical angle is set between the second exciting coil and the third exciting coil.
【請求項3】請求項1記載のリニアスケールにおいて、
第2の励磁コイルと第3の励磁コイルとの間に電気角で
90度の位相差を設定したことを特徴とする電磁誘導式
リニアスケール。
3. The linear scale according to claim 1, wherein
An electromagnetic induction type linear scale characterized in that a phase difference of 90 degrees in electrical angle is set between the second exciting coil and the third exciting coil.
【請求項4】請求項1記載のリニアスケールにおいて、
スケールの各励磁コイル,およびスライダの各検出コイ
ルが、磁性板を基板としてその上に積層してパターン形
成した薄膜コイルとしてなることを特徴とする電磁誘導
式リニアスケール。
4. The linear scale according to claim 1, wherein
An electromagnetic induction type linear scale characterized in that each exciting coil of the scale and each detecting coil of the slider are thin film coils formed by laminating a magnetic plate as a substrate on which a pattern is formed.
【請求項5】請求項4記載のリニアスケールにおいて、
薄膜コイルの周域に薄膜磁性層を形成したことを特徴と
する電磁誘導式リニアスケール。
5. The linear scale according to claim 4, wherein
An electromagnetic induction type linear scale characterized in that a thin film magnetic layer is formed around the thin film coil.
JP3100193A 1993-02-22 1993-02-22 Electromagnetic-induction linear scale Pending JPH06241832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100193A JPH06241832A (en) 1993-02-22 1993-02-22 Electromagnetic-induction linear scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100193A JPH06241832A (en) 1993-02-22 1993-02-22 Electromagnetic-induction linear scale

Publications (1)

Publication Number Publication Date
JPH06241832A true JPH06241832A (en) 1994-09-02

Family

ID=12319343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100193A Pending JPH06241832A (en) 1993-02-22 1993-02-22 Electromagnetic-induction linear scale

Country Status (1)

Country Link
JP (1) JPH06241832A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654009B2 (en) 2007-03-07 2010-02-02 Mitsubishi Heavy Industries Absolute value scale and absolute value calculating method
CN105675028A (en) * 2014-12-04 2016-06-15 赫克斯冈技术中心 Capacitive linear encoder
JP2017167142A (en) * 2016-03-15 2017-09-21 株式会社ミツトヨ Electromagnetic induction type absolute typ encoder
JP2017167141A (en) * 2016-03-15 2017-09-21 株式会社ミツトヨ Electromagnetic induction type absolute type position encoder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654009B2 (en) 2007-03-07 2010-02-02 Mitsubishi Heavy Industries Absolute value scale and absolute value calculating method
KR100956904B1 (en) * 2007-03-07 2010-05-11 미츠비시 쥬고교 가부시키가이샤 Absolute value scale and absolute value calculating method
EP1967825A3 (en) * 2007-03-07 2013-10-02 Mitsubishi Heavy Industries, Ltd. Absolute value scale and absolute value calculating method
CN105675028A (en) * 2014-12-04 2016-06-15 赫克斯冈技术中心 Capacitive linear encoder
EP3040688A3 (en) * 2014-12-04 2016-07-13 Hexagon Technology Center GmbH Capacitive linear encoder
US10132653B2 (en) 2014-12-04 2018-11-20 Hexagon Technology Center Gmbh Capacitive linear encoder
JP2017167142A (en) * 2016-03-15 2017-09-21 株式会社ミツトヨ Electromagnetic induction type absolute typ encoder
JP2017167141A (en) * 2016-03-15 2017-09-21 株式会社ミツトヨ Electromagnetic induction type absolute type position encoder

Similar Documents

Publication Publication Date Title
US4429276A (en) Magnetoresistive displacement sensor and signal reprocessing circuits therefor
US5831431A (en) Miniaturized coil arrangement made by planar technology, for the detection of ferromagnetic materials
JP4615955B2 (en) Inductive displacement detector
US6429651B1 (en) Differential spiral magnetic field sensing device and magnetic field detection module using the same
US5838154A (en) Multilayered magnetic sensor having conductive layer within megnetic layer
US6411086B1 (en) Differential solenoidal magnetic field sensing device and method for manufacturing the same
EP1399748B1 (en) Semimanufacture for a sensor for measuring a magnetic field
JP3895556B2 (en) Rotation angle detection sensor
JP3367230B2 (en) Position detection device
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
JPH02275314A (en) Inductosyn substrate
JP3260921B2 (en) Movable body displacement detection device
JPH06130088A (en) Current sensor
JPH06241832A (en) Electromagnetic-induction linear scale
CN112857194B (en) Plane two-dimensional displacement sensor based on eddy current effect
JPS63253264A (en) Current detector
JP3004926B2 (en) Magnetic encoder
JP3969002B2 (en) Magnetic sensor
WO2003014757A1 (en) Magnetic field sensor
JPH11287669A (en) Magnetic field sensor
JPH10170619A (en) Magnetic sensor and alternating bias magnetic field impressing method therefor
JPH11173872A (en) Linear resolver signal generating method, and linear resolver
WO2002068979A1 (en) Improved polarity sensitive magnetic sensors
JP4913495B2 (en) Inductive displacement detector
CN112305469B (en) Giant magnetoresistance sensor with integrated annealing structure