JPH06241600A - Single/double absorption cold/hot water supply machine - Google Patents

Single/double absorption cold/hot water supply machine

Info

Publication number
JPH06241600A
JPH06241600A JP3150093A JP3150093A JPH06241600A JP H06241600 A JPH06241600 A JP H06241600A JP 3150093 A JP3150093 A JP 3150093A JP 3150093 A JP3150093 A JP 3150093A JP H06241600 A JPH06241600 A JP H06241600A
Authority
JP
Japan
Prior art keywords
solution
regenerator
liquid
pump
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3150093A
Other languages
Japanese (ja)
Other versions
JP2816791B2 (en
Inventor
Kazuyoshi Kuroyanagi
和好 黒柳
Kenji Onishi
健二 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP3150093A priority Critical patent/JP2816791B2/en
Publication of JPH06241600A publication Critical patent/JPH06241600A/en
Application granted granted Critical
Publication of JP2816791B2 publication Critical patent/JP2816791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To suppress an abrupt temperature drop of heat medium at the time of starting an operation by controlling a discharge amount of a solution pump for supplying dilute solution to a heat medium regenerator at the time of starting the operation. CONSTITUTION:Flow control means 30 for controlling a flow rate of a solution pump 5 for supplying dilute solution to a heat medium regenerator 7 is provided, and the pump 5 is controlled by an operation control program of an absorption hot water machine. A liquid level of a second liquid reservoir 7A of the regenerator 7 at the time of starting an operation is controlled by so controlling the pump 5 as to approach the ideal line lately as compared with a normal case. In this case, an inverter control for converting a frequency upon lapse of a time from the time of starting the operation conducts a frequency conversion upon lapse of the time from the time of starting the operation. A star-delta control for switching wirings of a motor for driving the pump 5 to star-delta connection conducts to approach the ideal line by switching at intervals of several tens seconds. Thus, the liquid level of the reservoir of the regenerator is smoothly raised, and heat exchanging is slowly conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱媒再生器を有する吸
収冷温水機に係り、運転開始時期に急激な熱媒体の温度
低下を抑制する一重二重吸収冷温水機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater having a heat-medium regenerator, and more particularly to a single-dip absorption chiller-heater which suppresses a sudden decrease in the temperature of the heat medium at the start of operation.

【0002】[0002]

【従来の技術】従来の一重二重吸収冷温水機の例を図4
を参照して説明する。図示の一重二重吸収冷温水機は、
高温再生器1と、高温再生器1に接続された分離器2
と、分離器2に加熱流体入り口を接続した高温溶液熱交
換器3と、高温溶液熱交換器3の加熱流体出口に中間濃
溶液管20を介して接続された低温再生器6と、低温再
生器6に冷媒蒸気通路7Dを介して接続された凝縮器8
と、凝縮器8の底部にU字形の液封部を備えた液冷媒管
22を介して接続された蒸発器9と、蒸発器9と同一容
器内に配置された吸収器10と、吸収器10の底部にそ
の吸入側を接続した溶液ポンプ5と、溶液ポンプ5の吐
出側に被加熱流体の入り口側を接続した低温溶液熱交換
器4と、低温溶液熱交換器4の被加熱流体の出口側に弁
B12と高温溶液熱交換器3の被加熱流体入り口側を連
通する管に介装された弁A11と、低温溶液熱交換器4
の出口側と低温再生器6とを連通する分岐管25とを含
んで構成されている。
2. Description of the Related Art FIG. 4 shows an example of a conventional single-double absorption water heater.
Will be described with reference to. The single double absorption cold water heater shown
High temperature regenerator 1 and separator 2 connected to high temperature regenerator 1
A high temperature solution heat exchanger 3 having a heating fluid inlet connected to the separator 2, a low temperature regenerator 6 connected to the heating fluid outlet of the high temperature solution heat exchanger 3 via an intermediate concentrated solution pipe 20, and a low temperature regeneration Condenser 8 connected to the condenser 6 via a refrigerant vapor passage 7D
An evaporator 9 connected to the bottom of the condenser 8 via a liquid refrigerant pipe 22 having a U-shaped liquid sealing portion, an absorber 10 arranged in the same container as the evaporator 9, and an absorber. Solution pump 5 having its suction side connected to the bottom of 10, low temperature solution heat exchanger 4 having the discharge side of solution pump 5 connected to the inlet side of the fluid to be heated, and the fluid to be heated of low temperature solution heat exchanger 4 The valve B12 on the outlet side and the valve A11 interposed in the pipe communicating the heated fluid inlet side of the high temperature solution heat exchanger 3, and the low temperature solution heat exchanger 4
Of the low temperature regenerator 6 and a branch pipe 25 which communicates with the low temperature regenerator 6.

【0003】低温再生器6内には仕切り壁6Aで区切ら
れた第1の液溜り6Bが形成され、第1の液溜り6B内
には加熱コイル6Cが配設されている。加熱コイル6C
の一端は分離器2に接続されてその気相側に開口し、他
端は隣接する凝縮器8内に開口している。
A first liquid pool 6B partitioned by a partition wall 6A is formed in the low temperature regenerator 6, and a heating coil 6C is arranged in the first liquid pool 6B. Heating coil 6C
Has one end connected to the separator 2 and opening to the gas phase side, and the other end opening to the adjacent condenser 8.

【0004】低温再生器6の上方に熱媒再生器7が設け
られている。低温再生器6の加熱コイル6Cの上方に第
2の液溜り7Aを設け、熱媒を通過させる温水コイル7
Bを第2の液溜り7A内に配置すると共に第2の液溜り
7Aの底部に開口7Cを設けて第2の液溜り7A内の液
体が第1の液溜り6Bに滴下するようにしている。開口
7Cが第2の液溜り7A内の液体を動力を用いることな
く第1の液溜り6Bに移送する。本図では、開口7Cは
その下端が第2の液溜り7Aの底面位置となっている
が、下端位置は必ずしも第2の液溜り7Aの底面位置で
なくても、第2の液溜り7A内に配置された温水コイル
7Bの伝熱面よりも下方であればよい。温水コイル7B
の両端は図示されていない熱媒供給源に接続されてい
る。中間濃溶液管20の低温再生器6側末端開口は、加
熱コイル6C上方に配置され、末端開口から流出する中
間濃溶液は第1の液溜り6Bに流入するようになってい
る。
A heat medium regenerator 7 is provided above the low temperature regenerator 6. A second liquid pool 7A is provided above the heating coil 6C of the low temperature regenerator 6, and the hot water coil 7 that allows the heat medium to pass therethrough.
B is arranged in the second liquid pool 7A, and an opening 7C is provided at the bottom of the second liquid pool 7A so that the liquid in the second liquid pool 7A can be dripped into the first liquid pool 6B. . The opening 7C transfers the liquid in the second liquid pool 7A to the first liquid pool 6B without using power. In this figure, the lower end of the opening 7C is the bottom position of the second liquid pool 7A, but the lower end position is not necessarily the bottom position of the second liquid pool 7A. It suffices if it is below the heat transfer surface of the hot water coil 7B arranged at. Hot water coil 7B
Both ends of are connected to a heat medium supply source (not shown). The end opening of the intermediate concentrated solution pipe 20 on the low temperature regenerator 6 side is arranged above the heating coil 6C, and the intermediate concentrated solution flowing out from the end opening flows into the first liquid pool 6B.

【0005】また、低温溶液熱交換器4の被加熱流体出
口側と低温再生器6の液溜りを連通する分岐管25に弁
C13を設け、弁C13入り口側の分岐管25に弁D1
4を介装した分岐管26を設けて分岐管26の末端を温
水コイル7Bの上方で開口させ、第2の液溜り7Aに希
溶液を導入可能にしている。なお弁A11は開度調整可
能としてある。
Further, a valve C13 is provided on a branch pipe 25 which connects the outlet side of the fluid to be heated of the low temperature solution heat exchanger 4 and the liquid pool of the low temperature regenerator 6, and a valve D1 is provided on the branch pipe 25 on the inlet side of the valve C13.
4 is provided so that the end of the branch pipe 26 is opened above the hot water coil 7B so that the dilute solution can be introduced into the second liquid pool 7A. The valve A11 is adjustable in opening.

【0006】凝縮器8内と吸収器10内にはそれぞれ冷
却水コイル8A、冷却水コイル10Aが配置され、蒸発
器9内には蒸発コイル9Aが配置されていて、液冷媒管
22の蒸発器9側の末端には、液冷媒管22から供給さ
れる液冷媒が蒸発コイル9A上に散布されるように図示
されていない液冷媒散布手段が配置されている。また、
蒸発コイル9Aは図示されていない冷熱負荷に接続され
ている。
A cooling water coil 8A and a cooling water coil 10A are arranged in the condenser 8 and the absorber 10, respectively. An evaporation coil 9A is arranged in the evaporator 9, and an evaporator of the liquid refrigerant pipe 22 is arranged. A liquid-refrigerant spraying means (not shown) is arranged at the end on the 9th side so that the liquid-coolant supplied from the liquid-refrigerant pipe 22 is sprayed onto the evaporation coil 9A. Also,
The evaporation coil 9A is connected to a cold load (not shown).

【0007】低温再生器6の第1の液溜り6Bと仕切り
壁6Aを隔てて隣接する区画の底部は低温溶液熱交換器
4の加熱流体入り口と濃溶液管21により連通され、低
温溶液熱交換器4の加熱流体出口には濃溶液管24が接
続されている。濃溶液管24の他端は吸収器10内の冷
却水コイル10A上方に配置された開口を備え、該開口
から流出した濃溶液が前記冷却水コイル10Aに散布さ
れるようになっている。また、濃溶液管24から分岐し
て吸収器10の底部に弁F16を介して濃溶を供給する
液管が設けられている。
The bottom of the compartment adjacent to the first liquid pool 6B of the low temperature regenerator 6 with the partition wall 6A communicated with the heating fluid inlet of the low temperature solution heat exchanger 4 by the concentrated solution pipe 21, and the low temperature solution heat exchange. A concentrated solution pipe 24 is connected to the heated fluid outlet of the vessel 4. The other end of the concentrated solution pipe 24 is provided with an opening arranged above the cooling water coil 10A in the absorber 10, and the concentrated solution flowing out from the opening is sprayed to the cooling water coil 10A. Further, a liquid pipe that branches from the concentrated solution pipe 24 and supplies the concentrated solution via the valve F16 is provided at the bottom of the absorber 10.

【0008】分岐管25の一端は低温溶液熱交換器4の
被加熱流体出口と弁B12の入り口を結ぶ管に接続さ
れ、他端は第1の液溜り6Bの底部に弁C13を介して
接続されている。また、高温溶液熱交換器3の被加熱流
体出口は高温再生器1に連通している。
One end of the branch pipe 25 is connected to a pipe connecting the heated fluid outlet of the low temperature solution heat exchanger 4 and the inlet of the valve B12, and the other end is connected to the bottom portion of the first liquid pool 6B via a valve C13. Has been done. The heated fluid outlet of the high temperature solution heat exchanger 3 communicates with the high temperature regenerator 1.

【0009】上記構成の装置において、まず、一重効用
運転モード(以下Sモードという)での冷媒及び吸収液
の動作を説明する。Sモードにおいては、弁B12、弁
C13を閉、弁D14が開に設定され、高温再生器1の
加熱源は停止され、温水コイル7Bには加熱用の温水が
循環される。溶液ポンプ5によって吸入・圧送された希
溶液は、低温溶液熱交換器4の被加熱流体側、分岐管2
5、26、弁D14を経て熱媒再生器7内の第2の液溜
り7Aに流入し、温水コイル7B内の温水により加熱さ
れる。該加熱により希溶液からは冷媒蒸気が発生し、該
冷媒蒸気は冷媒蒸気通路7Dを経て凝縮器8に流入す
る。凝縮器8に流入した冷媒蒸気は、凝縮器8内に配置
された冷却水コイル8A内を流れる冷却水に冷却・凝縮
されて液冷媒となり、液冷媒管22を経て蒸発コイル9
A上に散布される。また、冷却・凝縮した液冷媒を第3
の液溜り8Bに貯溜し液冷媒管23及び弁E15を介し
て蒸発器9の蒸発コイル9A上に散布する場合もある。
蒸発コイル9A上に散布された液冷媒は、蒸発コイル9
A内の流体の熱を奪って蒸発し、再び冷媒蒸気となって
吸収器10に流入する。一方、第2の液溜り7A内で冷
媒を蒸発させた希溶液は濃溶液となって開口7Cを経て
第1の液溜り6Bに流下し、ついで仕切り壁6Aを越え
て溢れだし、濃溶液管21、低温溶液熱交換器4の加熱
流体側、濃溶液管24を経て吸収器10に流入する。吸
収器10に流入した濃溶液は、吸収器10内の冷却水コ
イル10A上に散布され、冷却水コイル10A上に散布
された該濃溶液は、蒸発器9から吸収器10に流入して
くる冷媒蒸気を吸収して希溶液となる。希溶液生成過程
で発生する吸収熱は、冷却水コイル10A内を流れる冷
却水により取り去られる。生成された希溶液が吸収器1
0の底部に溜り、溶液ポンプ5で吸入・圧送されて前述
のサイクルを繰り返す。蒸発コイル9A内で熱を奪われ
た流体、通常は水が低温源として冷熱負荷に送られ利用
される。
The operation of the refrigerant and the absorbing liquid in the single-effect operation mode (hereinafter referred to as the S mode) in the apparatus having the above structure will be described first. In the S mode, the valves B12 and C13 are closed and the valve D14 is opened, the heating source of the high temperature regenerator 1 is stopped, and hot water for heating is circulated in the hot water coil 7B. The diluted solution sucked and pumped by the solution pump 5 is fed to the low-temperature solution heat exchanger 4 on the heated fluid side, the branch pipe 2
5, 26, and the valve D14, and flows into the second liquid pool 7A in the heat medium regenerator 7 and is heated by the hot water in the hot water coil 7B. By the heating, a refrigerant vapor is generated from the dilute solution, and the refrigerant vapor flows into the condenser 8 through the refrigerant vapor passage 7D. The refrigerant vapor flowing into the condenser 8 is cooled and condensed by the cooling water flowing in the cooling water coil 8A arranged in the condenser 8 to become the liquid refrigerant, and passes through the liquid refrigerant pipe 22 to the evaporation coil 9
Sprayed on A. In addition, the cooled and condensed liquid refrigerant is
It may be stored in the liquid pool 8B and sprayed on the evaporation coil 9A of the evaporator 9 via the liquid refrigerant pipe 23 and the valve E15.
The liquid refrigerant sprayed on the evaporation coil 9A is
The heat of the fluid in A is taken away to evaporate, and again becomes refrigerant vapor and flows into the absorber 10. On the other hand, the dilute solution obtained by evaporating the refrigerant in the second liquid pool 7A becomes a concentrated solution and flows down into the first liquid pool 6B through the opening 7C, and then overflows beyond the partition wall 6A to form a concentrated solution pipe. 21 and the heating fluid side of the low temperature solution heat exchanger 4 and the concentrated solution pipe 24, and then flows into the absorber 10. The concentrated solution that has flowed into the absorber 10 is sprayed onto the cooling water coil 10A inside the absorber 10, and the concentrated solution that has been sprayed onto the cooling water coil 10A flows from the evaporator 9 into the absorber 10. It absorbs the refrigerant vapor and becomes a dilute solution. The absorption heat generated in the dilute solution formation process is removed by the cooling water flowing in the cooling water coil 10A. The produced dilute solution is the absorber 1
It collects at the bottom of 0 and is sucked and pumped by the solution pump 5, and the above cycle is repeated. The fluid deprived of heat in the evaporation coil 9A, usually water, is sent to the cold load as a low temperature source and used.

【0010】次に、二重効用運転モード(以下Dモード
という)での冷媒及び吸収液の動作を説明する。このモ
ードにおいては、弁A11、B12、C13が開に、弁
D14が閉に、それぞれ設定され、温水コイル7Bへの
温水の流入が停止される。
Next, the operation of the refrigerant and the absorbing liquid in the double-effect operation mode (hereinafter referred to as D mode) will be described. In this mode, the valves A11, B12, C13 are set to open and the valve D14 is set to close, and the flow of hot water into the hot water coil 7B is stopped.

【0011】吸収器10で生成され溶液ポンプ5によっ
て吸入・圧送された希溶液は低温溶液熱交換器4の被加
熱流体側を通ったのち、その一部が分岐管25、弁C1
3を経て低温再生器6内の第1の液溜り6Bに流入し、
残部は弁A11、B12、高温溶液熱交換器3の被加熱
流体側を経て加熱されたのち、高温再生器1に流入す
る。高温再生器1に流入した希溶液は該高温再生器1内
で燃焼熱や伝熱等によって加熱され、分離器2で冷媒蒸
気と中間濃溶液に分離される。分離された中間濃溶液
は、高温溶液熱交換器3の加熱流体側を通り、該高温溶
液熱交換器3の被加熱流体側を通る希溶液を加熱したの
ち、中間濃溶液管20を経て低温再生器6の第1の液溜
り6Bに流入して、弁C13を経て該第1の液溜り6B
に流入して来る希溶液と混合される。
The dilute solution generated in the absorber 10 and sucked and pumped by the solution pump 5 passes through the heated fluid side of the low temperature solution heat exchanger 4, and a part of the diluted solution is branched pipe 25 and valve C1.
Through 3 into the first liquid pool 6B in the low temperature regenerator 6,
The remaining portion is heated through the valves A11, B12 and the heated fluid side of the high temperature solution heat exchanger 3, and then flows into the high temperature regenerator 1. The diluted solution flowing into the high temperature regenerator 1 is heated in the high temperature regenerator 1 by combustion heat, heat transfer, etc., and separated into a refrigerant vapor and an intermediate concentrated solution by the separator 2. The separated intermediate concentrated solution passes through the heating fluid side of the high temperature solution heat exchanger 3, heats the dilute solution passing through the heated fluid side of the high temperature solution heat exchanger 3, and then passes through the intermediate concentrated solution pipe 20 to reach a low temperature. After flowing into the first liquid pool 6B of the regenerator 6, the first liquid pool 6B is passed through the valve C13.
It is mixed with the dilute solution flowing into the.

【0012】他方、分離器2で分離された冷媒蒸気は低
温再生器6の第1の液溜り6B内に配設された加熱コイ
ル6Cに流入する。加熱コイル6Cに流入した冷媒蒸気
は、加熱コイル6Cを通過する際に第1の液溜り6B内
の希溶液と中間濃溶液の混合物を加熱して新たな冷媒蒸
気を発生させる。新たな冷媒蒸気は一部が凝縮液化され
た気液二相流となって冷媒蒸気通路7Dを経て凝縮器8
に流入する。この気液二相流となって凝縮器8に流入す
る冷媒は加熱コイル7Bを経て凝縮器8に流入する冷媒
蒸気とともに、冷却水コイル8Aにより冷却凝縮されて
全て液冷媒となる。
On the other hand, the refrigerant vapor separated by the separator 2 flows into the heating coil 6C arranged in the first liquid pool 6B of the low temperature regenerator 6. The refrigerant vapor flowing into the heating coil 6C heats the mixture of the dilute solution and the intermediate concentrated solution in the first liquid pool 6B when passing through the heating coil 6C to generate new refrigerant vapor. The new refrigerant vapor becomes a gas-liquid two-phase flow in which a part is condensed and liquefied, and then passes through the refrigerant vapor passage 7D to the condenser 8
Flow into. The refrigerant that becomes the gas-liquid two-phase flow and flows into the condenser 8 is cooled and condensed by the cooling water coil 8A together with the refrigerant vapor that flows into the condenser 8 through the heating coil 7B and becomes all liquid refrigerant.

【0013】この液冷媒は液冷媒管22により蒸発器9
に導かれ、蒸発コイル9A上に散布されて蒸発コイル9
A内の流体の熱を奪って蒸発し、再び冷媒蒸気となって
隣接する吸収器10に流入する。一方、第1の液溜り6
B内で冷媒を蒸発させた希溶液と中間濃溶液の混合物は
濃縮されて第1の液溜り6Bから仕切り壁6Aを越えて
溢れだし、濃溶液となって低温溶液熱交換器4の加熱流
体側を流れながら低温溶液熱交換器4の被加熱流体側を
流れる希溶液を加熱し、濃溶液管24を経て吸収器10
に流入する。吸収器10に流入した濃溶液は、吸収器1
0内の冷却水コイル10A上に散布され、蒸発器9から
吸収器10に流入してくる冷媒蒸気を吸収して希溶液と
なる。希溶液生成段階で発生する吸収熱は、冷却水コイ
ル10A内を流れる冷却水に取り去られる。生成された
希溶液は溶液ポンプ5によって吸入・圧送され、上述の
サイクルが繰り返される。蒸発コイル9A内で熱を奪わ
れた流体、通常は水が低温源として冷熱負荷で利用され
る。
The liquid refrigerant is supplied to the evaporator 9 by the liquid refrigerant pipe 22.
To the evaporation coil 9A
The heat of the fluid in A is taken to evaporate, and becomes a refrigerant vapor again and flows into the adjacent absorber 10. On the other hand, the first liquid pool 6
The mixture of the dilute solution and the intermediate concentrated solution in which the refrigerant is evaporated in B is concentrated and overflows from the first liquid pool 6B over the partition wall 6A to become a concentrated solution, which is a heating fluid for the low temperature solution heat exchanger 4. The dilute solution flowing on the heated fluid side of the low temperature solution heat exchanger 4 is heated while flowing through the side, and the absorber 10 is passed through the concentrated solution pipe 24.
Flow into. The concentrated solution flowing into the absorber 10 is absorbed by the absorber 1
The coolant vapor that has been sprayed on the cooling water coil 10A inside 0 and flows from the evaporator 9 into the absorber 10 becomes a dilute solution. The absorbed heat generated in the dilute solution generation stage is removed by the cooling water flowing in the cooling water coil 10A. The generated dilute solution is sucked and pumped by the solution pump 5, and the above cycle is repeated. The fluid deprived of heat in the evaporation coil 9A, usually water, is used as a low temperature source under cold load.

【0014】次に、一重二重効用運転モード(以下SD
モードという)での冷媒及び吸収液の動作を説明する。
このモードにおいては、弁B12、D14が開に、弁C
13が閉に、弁A11が所要の開度にそれぞれ設定さ
れ、温水コイル7Bへ低温熱交換器加熱用の温水が循環
される。溶液ポンプ5によって吸入・圧送された希溶液
は低温溶液熱交換器4の被加熱流体側を通って加熱され
たのち、その一部が分岐管25、26、弁D14を経て
熱媒再生器7内の第2の液溜り7Aに流入し、残部は弁
A11、B12、高温溶液熱交換器3の被加熱流体側を
経てさらに加熱されたのち、高温再生器1に流入する。
高温再生器1に流入した希溶液は高温再生器1内で加熱
され、分離器2で冷媒蒸気と中間濃溶液に分離される。
分離された中間濃溶液は、高温溶液熱交換器3の加熱流
体側を通り、高温溶液熱交換器3の被加熱流体側を通る
希溶液を加熱したのち、中間濃溶液管20を経て低温再
生器6の第1の液溜り6Bに流入する。一方、第2の液
溜り7Aに流入した希溶液は、温水コイル7B内を流れ
る温水に加熱されて新たな冷媒蒸気を発生させたのち、
中間濃溶液となって第1の液溜り6Bに流下し、高温溶
液熱交換器3の加熱流体側、中間濃溶液管20を経て第
1の液溜り6Bに流入してくる中間濃溶液に混合され
る。すなわち、第1の液溜り6Bには、低温熱交換器4
を出た希溶液の一部と、分離器2で分離された中間濃溶
液とが流入する。他方、分離器2で分離された冷媒蒸気
は加熱コイル6Cを経て凝縮器8に流入するが、加熱コ
イル6Cを通過中に第1の液溜り6B内の中間濃溶液を
加熱して新たな冷媒蒸気を発生させる。新たな冷媒蒸気
は第2の液溜り7Aで発生した冷媒蒸気とともに冷媒蒸
気通路7Dを経て凝縮器8に流入し、加熱コイル6Cを
経て凝縮器8に流入する冷媒蒸気とともに、冷却水コイ
ル8A内の冷却水に冷却・凝縮されて液冷媒となり、液
冷媒管22を経て蒸発コイル9A上に散布される。散布
された液冷媒は、蒸発コイル9A内の流体の熱を奪って
蒸発し、冷媒蒸気となって隣接する吸収器10に流入す
る。
Next, single-duplex operation mode (hereinafter SD
The operation of the refrigerant and the absorbing liquid in the mode) will be described.
In this mode, valves B12 and D14 are open and valve C is
13 is closed and the valve A11 is set to a required opening degree, and hot water for heating the low temperature heat exchanger is circulated to the hot water coil 7B. The diluted solution sucked in and pumped by the solution pump 5 is heated through the heated fluid side of the low temperature solution heat exchanger 4, and then a part of the diluted solution is passed through the branch pipes 25 and 26 and the valve D14 to generate the heat medium regenerator 7. It flows into the second liquid pool 7A inside, and the rest flows through the valves A11 and B12 and the heated fluid side of the high temperature solution heat exchanger 3 and is further heated, and then flows into the high temperature regenerator 1.
The dilute solution that has flowed into the high temperature regenerator 1 is heated in the high temperature regenerator 1 and separated in the separator 2 into a refrigerant vapor and an intermediate concentrated solution.
The separated intermediate concentrated solution passes through the heating fluid side of the high temperature solution heat exchanger 3, heats the dilute solution passing through the heated fluid side of the high temperature solution heat exchanger 3, and then low temperature regeneration is performed through the intermediate concentrated solution pipe 20. It flows into the first liquid pool 6B of the container 6. On the other hand, the dilute solution that has flowed into the second liquid pool 7A is heated by the hot water flowing in the hot water coil 7B to generate new refrigerant vapor,
It becomes an intermediate concentrated solution, flows down to the first liquid pool 6B, and is mixed with the intermediate concentrated solution flowing into the first liquid pool 6B through the intermediate fluid pipe 20 and the heating fluid side of the high temperature solution heat exchanger 3. To be done. That is, the low temperature heat exchanger 4 is provided in the first liquid pool 6B.
A part of the dilute solution that has exited and the intermediate concentrated solution separated by the separator 2 flow in. On the other hand, the refrigerant vapor separated by the separator 2 flows into the condenser 8 via the heating coil 6C, but while passing through the heating coil 6C, the intermediate concentrated solution in the first liquid pool 6B is heated to generate a new refrigerant. Generates steam. The new refrigerant vapor flows into the condenser 8 via the refrigerant vapor passage 7D together with the refrigerant vapor generated in the second liquid pool 7A, and together with the refrigerant vapor flowing into the condenser 8 via the heating coil 6C, inside the cooling water coil 8A. Is cooled and condensed by the cooling water of FIG. The dispersed liquid refrigerant deprives the heat of the fluid in the evaporation coil 9A and evaporates, and becomes a refrigerant vapor and flows into the adjacent absorber 10.

【0015】一方、前記第1の液溜り6B内で冷媒を蒸
発させた中間濃溶液は濃溶液となって第1の液溜り6B
から仕切り壁6Aを越えて溢れだし、熱媒溶液熱交換器
4の加熱流体側に流れ込む。低温溶液熱交換器4の加熱
流体側を流れながら低温溶液熱交換器4の被加熱流体側
を流れる希溶液を加熱した濃溶液は、濃溶液管24を経
て吸収器10内の冷却水コイル10A上に散布される。
冷却水コイル10A上に散布された濃溶液は、蒸発器9
から流入してきた冷媒蒸気を吸収して希溶液となる。希
溶液生成段階で発生する吸収熱は、冷却水コイル10A
内を流れる冷却水により取り去られる。生成された前記
希溶液は溶液ポンプ5によって吸入・圧送され、上述の
サイクルが繰り返される。
On the other hand, the intermediate concentrated solution obtained by evaporating the refrigerant in the first liquid pool 6B becomes a concentrated solution and becomes the first liquid pool 6B.
Overflows over the partition wall 6A and flows into the heating fluid side of the heat medium solution heat exchanger 4. The concentrated solution obtained by heating the dilute solution flowing through the heated fluid side of the low temperature solution heat exchanger 4 while flowing through the heated fluid side of the low temperature solution heat exchanger 4 passes through the concentrated solution pipe 24 and the cooling water coil 10A in the absorber 10 Sprinkled on top.
The concentrated solution sprinkled on the cooling water coil 10A is the evaporator 9
It absorbs the refrigerant vapor flowing in from and becomes a dilute solution. The absorption heat generated in the dilute solution generation stage is the cooling water coil 10A.
It is removed by the cooling water flowing inside. The diluted solution thus produced is sucked and pumped by the solution pump 5, and the above cycle is repeated.

【0016】本運転モードにおいて、第2の液溜り7A
で濃縮された吸収液と、第1の液溜り6Bで濃縮された
吸収液がそれぞれ別々に取り出され、管内で混合される
と、両者の濃度が異なるため混合中に吸収熱が発生し、
その熱で管内で蒸発が起こる場合がある。管内で蒸発が
起こると、管内の液の流れが阻害され、装置の安定な運
転が維持できなくなる。このため、第2の液溜り7Aで
濃縮された吸収液は第1の液溜り6Bに移され、ここで
混合熱を放出させ、濃溶液として配管内に送りこまれ
る。
In this operation mode, the second liquid pool 7A
The absorption liquid concentrated in 1. and the absorption liquid concentrated in the first liquid pool 6B are separately taken out and mixed in a pipe, so that heat of absorption is generated during mixing because the concentrations of both are different,
The heat may cause evaporation in the tube. If evaporation occurs in the pipe, the flow of the liquid in the pipe is obstructed, and stable operation of the device cannot be maintained. Therefore, the absorption liquid concentrated in the second liquid pool 7A is transferred to the first liquid pool 6B, where the heat of mixing is released and sent into the pipe as a concentrated solution.

【0017】[0017]

【発明が解決しようとする課題】従来の図4に示す冷媒
再生器7を備えた吸収冷温水機では、希溶液を貯溜する
第2の液溜り7Aを有し運転初期において低温の希溶液
が、短時間で第2の液溜り7Aの所定の液面高さまで到
達し、温水コイル7Bが希溶液に十分に浸漬され伝熱面
積が大きくなるので熱交換が良く行われ、熱媒体の温水
コイル7B出入口温度差が急激に増大して、一時的に過
負荷の状態になる。エンジン排熱を利用しているシステ
ムでは、熱媒体のエンジン側へ戻る温度が決められてお
り、熱媒体の温度が低下し過ぎるとシステムの熱バラン
スが崩れる。
The conventional absorption chiller-heater having the refrigerant regenerator 7 shown in FIG. 4 has the second liquid pool 7A for storing the dilute solution, and the low-temperature dilute solution is stored in the initial stage of the operation. In a short time, the predetermined liquid level of the second liquid pool 7A is reached, and the hot water coil 7B is sufficiently immersed in the dilute solution to increase the heat transfer area. The temperature difference between the inlet and outlet of 7B rapidly increases, and a temporary overload occurs. In a system that uses engine exhaust heat, the temperature at which the heat medium returns to the engine is determined, and if the temperature of the heat medium drops too much, the heat balance of the system will be lost.

【0018】また、特開昭58−203358号公報の
ように立ち上がり時の過負荷を防ぐために、熱媒体ポン
プの流量を制御する方法があるが、これでは吸収冷温水
機をユニットにした場合、冷温水機個々に熱媒体ポンプ
を設置して制御しなければならなくなり、システムの構
成や配管等が複雑になる。
Further, there is a method of controlling the flow rate of the heat medium pump in order to prevent an overload at the start-up, as disclosed in Japanese Patent Laid-Open No. 58-203358. A heat medium pump must be installed and controlled for each chiller / heater, which complicates the system configuration and piping.

【0019】本発明の目的は、太陽熱あるいは排熱を熱
源とする熱媒再生器を備えた一重二重効用吸収冷温水機
において、運転開始時の急激な熱媒体の温度低下を抑制
することにある。
An object of the present invention is to suppress a sharp temperature drop of the heat medium at the start of operation in a single-double-effect absorption chiller-heater equipped with a heat medium regenerator using solar heat or exhaust heat as a heat source. is there.

【0020】[0020]

【課題を解決するための手段】上記目的は、希溶液を加
熱する高温再生器と、該高温再生器で加熱された希溶液
を冷媒蒸気と中間濃溶液に分離する分離器と、該分離器
で分離された中間濃溶液を前記高温再生器からの冷媒蒸
気により加熱して冷媒蒸気を発生させ濃溶液を生成する
伝熱面を高温再生器に流入しない希溶液中に浸漬する第
1の液溜りと、該第1の液溜りの上方に配置し前記高温
再生器に流入しない希溶液の配管から分岐した液を他の
熱源により加熱して冷媒蒸気を発生させる伝熱面を前記
高温再生器に流入しない希溶液の濃縮液中に浸漬しその
底部に開口部を設けた第2の液溜りとを有する熱媒再生
器と、該熱媒再生器で発生した冷媒蒸気及びまたは前記
分離器で分離された冷媒蒸気を凝縮液化させ液冷媒とす
る凝縮器と、該液冷媒を蒸発させ低温媒体から蒸発熱を
奪って冷却する蒸発器と、前記濃溶液に前記蒸発器で発
生した冷媒蒸気を吸収させて希溶液を生成する吸収器
と、該吸収器で生成された希溶液を前記高温再生器及び
または熱媒再生器に圧送する溶液ポンプとを備えてなる
一重二重吸収冷温水機において、運転開始時期に前記熱
媒再生器に希溶液を供給する溶液ポンプの吐出量を制御
する手段を設けたことにより達成される。 上記目的
は、前記溶液ポンプの吐出量を制御する手段が、前記溶
液ポンプを駆動する電動機の回転を制御するインバータ
制御装置であることにより達成される。 上記目的は、
前記溶液ポンプの吐出量を制御する手段が、前記溶液ポ
ンプを駆動する電動機の結線をスター・デルタに切り替
える切替制御装置であることにより達成される。
The above object is to provide a high temperature regenerator for heating a dilute solution, a separator for separating the dilute solution heated by the high temperature regenerator into a refrigerant vapor and an intermediate concentrated solution, and the separator. The first liquid in which the intermediate concentrated solution separated in step (3) is heated by the refrigerant vapor from the high temperature regenerator to generate the refrigerant vapor to generate the concentrated solution and the heat transfer surface is immersed in the dilute solution that does not flow into the high temperature regenerator. The high temperature regenerator has a pool and a heat transfer surface which is disposed above the first liquid pool and which heats a liquid branched from a pipe of a dilute solution which does not flow into the high temperature regenerator by another heat source to generate a refrigerant vapor. Of a dilute solution that does not flow into the heat medium regenerator having a second liquid pool having an opening at its bottom and a refrigerant vapor generated in the heat medium regenerator and / or the separator. A condenser that condenses and liquefies the separated refrigerant vapor into a liquid refrigerant, and the liquid An evaporator that evaporates the medium to remove the heat of vaporization from the low-temperature medium to cool it, an absorber that absorbs the refrigerant vapor generated in the evaporator into the concentrated solution to form a dilute solution, and an absorber formed in the absorber. In a single-double absorption chiller-heater equipped with a solution pump that pressure-feeds a dilute solution to the high temperature regenerator and / or the heat medium regenerator, a solution pump for supplying the dilute solution to the heat medium regenerator at the start of operation. This is achieved by providing means for controlling the discharge amount. The above object is achieved by the means for controlling the discharge amount of the solution pump being an inverter control device for controlling the rotation of an electric motor for driving the solution pump. The above purpose is
The means for controlling the discharge rate of the solution pump is achieved by a switching control device that switches the connection of the electric motor that drives the solution pump to star-delta.

【0021】上記目的は、前記溶液ポンプの吐出量を制
御する手段が、前記溶液ポンプの吐出側配管に設けた流
量調節弁であることにより達成される。
The above object can be achieved by that the means for controlling the discharge amount of the solution pump is a flow control valve provided in the discharge side pipe of the solution pump.

【0022】[0022]

【作用】上記構成によれば、熱媒再生器に供給する希溶
液の流量を制御する事により、熱媒再生器の第2の液溜
りの液面が緩やかに上昇し、温水コイルの伝熱面積も緩
やかに増加し熱交換も緩慢に行われるので、運転開始時
に急激な熱媒体の温度低下を抑制することが出来る。
According to the above construction, by controlling the flow rate of the dilute solution supplied to the heat medium regenerator, the liquid level of the second liquid pool of the heat medium regenerator is gradually raised, and the heat transfer of the hot water coil is performed. Since the area gradually increases and the heat exchange is also performed slowly, it is possible to suppress a rapid temperature drop of the heat medium at the start of the operation.

【0023】[0023]

【実施例】以下、本発明の実施例を図を参照して説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0024】図1は本発明の実施例の構成を示すフロー
ダイアグラムである。
FIG. 1 is a flow diagram showing the configuration of the embodiment of the present invention.

【0025】従来技術を示す図4と同一の符号を付した
部分は、従来技術と同様であり説明を省略する。本実施
例と図4に示す従来技術との相違点は、熱媒再生器7に
希溶液を供給する溶液ポンプ5の流量を制御する流量制
御手段30を設けたことで、溶液ポンプ5の制御は吸収
冷温水機の運転制御プログラムに組み込んで行う。
The parts denoted by the same reference numerals as those in FIG. 4 showing the prior art are the same as those in the prior art, and the description thereof will be omitted. The difference between the present embodiment and the prior art shown in FIG. 4 is that the heat medium regenerator 7 is provided with the flow rate control means 30 for controlling the flow rate of the solution pump 5, and the solution pump 5 is controlled. Is incorporated into the operation control program of the absorption chiller-heater.

【0026】図2は本発明の実施例の熱媒再生器液面上
昇パタンを示す図表である。
FIG. 2 is a chart showing the liquid level rising pattern of the heat medium regenerator according to the embodiment of the present invention.

【0027】図2は、運転開始時の熱媒再生器7の第2
の液溜り7Aの液面上昇パタンを示し、点線は、従来の
液面生成線で通常約2分程度で定格液面まで上昇する。
しかし、本実施例における制御では、約5分を目安にし
実線がその理想線とする。運転開始時の、液面制御を理
想線に近くなるように溶液ポンプ5を制御する。
FIG. 2 shows the second part of the heat medium regenerator 7 at the start of operation.
The liquid level rising pattern of the liquid pool 7A is shown, and the dotted line is a conventional liquid level generation line, which normally rises to the rated liquid level in about 2 minutes.
However, in the control in the present embodiment, the solid line is the ideal line with a guideline of about 5 minutes. The solution pump 5 is controlled so that the liquid level control at the start of operation is close to the ideal line.

【0028】溶液ポンプ5を駆動する電動機の回転数を
制御するインバータ制御では、一点鎖線に示すように運
転開始時間からの時間経過に伴い周波数変換を行って制
御する。
In the inverter control for controlling the number of revolutions of the electric motor for driving the solution pump 5, frequency conversion is performed with the passage of time from the operation start time as shown by the alternate long and short dash line.

【0029】溶液ポンプ5を駆動する電動機の結線をス
ター・デルタに切り替えるスター・デルタ制御では、二
点鎖線に示すように数十秒間隔で切り換えて理想線に近
くなるように制御する。
In the star-delta control for switching the connection of the electric motor for driving the solution pump 5 to the star-delta, the control is performed at intervals of several tens of seconds as shown by the chain double-dashed line so as to be close to the ideal line.

【0030】また、オン−オフ制御もスター・デルタ制
御と同様に可能な方法である。
The on-off control is also a possible method like the star-delta control.

【0031】この溶液ポンプ5の制御は、吸収冷温水機
の運転開始時(一重二重効用あるいは、一重効用)のみ
に行い、開始後、ある時間経過したところで通常運転を
行う。なお、熱媒再生器7への希溶液流量の調整は、溶
液ポンプ5の制御の他に溶液流量調整弁を用いても良
い。
The solution pump 5 is controlled only when the operation of the absorption chiller-heater is started (single double effect or single effect), and normal operation is performed when a certain time has elapsed after the start. In addition to the control of the solution pump 5, a solution flow rate adjusting valve may be used to adjust the flow rate of the dilute solution to the heat medium regenerator 7.

【0032】図3は本発明の他の実施例の構成を示すフ
ローダイアグラムである。
FIG. 3 is a flow diagram showing the configuration of another embodiment of the present invention.

【0033】図3に示すように溶液ポンプ5の吐出側配
管に流量調節弁G17を設けている。
As shown in FIG. 3, a flow rate adjusting valve G17 is provided in the discharge side pipe of the solution pump 5.

【0034】運転初期では希溶液の温度は低い為、温水
コイル7Aと希溶液との熱交換面積が多ければ多いほ
ど、冷温水機からの熱媒体出口温度の低下割合が激しく
なる。このような構成により吸収冷温水機の運転開始時
に、熱媒再生器7への希溶液流入量を調整すれば、熱媒
再生器7の第2の液溜り7Aへ溶液は徐々に溜まるた
め、熱媒再生器7での熱交換量を抑制することができ、
熱媒体の出入口温度差の増大(過負荷)を防ぐことが出
来る。また、その時溶液は循環しているため、吸収冷温
水機にとって安定した運転開始ができる。
Since the temperature of the dilute solution is low at the beginning of the operation, the larger the heat exchange area between the hot water coil 7A and the dilute solution, the more severe the rate of decrease in the temperature of the heat medium outlet from the cold / hot water machine. With such a configuration, when the amount of the dilute solution flowing into the heat medium regenerator 7 is adjusted at the start of operation of the absorption chiller-heater, the solution gradually accumulates in the second liquid pool 7A of the heat medium regenerator 7, The heat exchange amount in the heat medium regenerator 7 can be suppressed,
It is possible to prevent an increase (overload) in the inlet / outlet temperature difference of the heat medium. Further, since the solution is circulated at that time, stable operation can be started for the absorption chiller-heater.

【0035】以上述べたように本実施例によれば、一重
二重効用吸収冷温水機あるいは、一重効用吸収冷温水機
とエンジン排熱を利用するシステムや蒸気焚き吸収冷温
水機を含んだシステムで、冷温水機の運転開始時におい
て急激な熱源媒体の温度低下を来たすことなく、円滑な
なシステムの運転ができる。
As described above, according to the present embodiment, the single-double-effect absorption chiller-heater, the system including the single-effect absorption chiller-heater and the system utilizing the engine exhaust heat, or the steam-fired absorption chiller-heater is included. Thus, a smooth system operation can be performed without causing a sudden temperature drop of the heat source medium at the start of operation of the chiller-heater.

【0036】更に、本実施例で述べた一重二重効用吸収
冷温水機の他に、一重効用吸収冷温水機、蒸気焚き吸収
冷温水機にも同様な効果がある。
Further, in addition to the single-double-effect absorption chiller-heater described in this embodiment, a single-effect absorption chiller-heater and a steam-fired absorption chiller-heater also have similar effects.

【0037】[0037]

【発明の効果】本発明によれば、熱媒再生器に供給する
希溶液の流量を制御する事により、熱媒再生器の第2の
液溜りの液面が緩やかに上昇し、熱交換も緩慢に行われ
るので、運転開始時に急激な熱媒体の温度低下を抑制す
る効果が得られる。
According to the present invention, by controlling the flow rate of the dilute solution supplied to the heat medium regenerator, the liquid level of the second liquid pool of the heat medium regenerator is gradually raised and heat exchange is also performed. Since the operation is performed slowly, the effect of suppressing a rapid temperature drop of the heat medium at the start of operation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成を示すフローダイアグラ
ムである。
FIG. 1 is a flow diagram showing a configuration of an exemplary embodiment of the present invention.

【図2】本発明の実施例の熱媒再生器液面上昇パタンを
示す図表である。
FIG. 2 is a chart showing a liquid level rising pattern of a heat medium regenerator according to an embodiment of the present invention.

【図3】本発明の他の実施例の構成を示すフローダイア
グラムである。
FIG. 3 is a flow diagram showing the configuration of another embodiment of the present invention.

【図4】従来の一重二重吸収冷温水機の構成を示すフロ
ーダイアグラムである。
FIG. 4 is a flow diagram showing the configuration of a conventional single-double absorption cold / hot water machine.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 3 高温溶液熱交換器 4 低温溶液熱交換器 5 溶液ポンプ 6 低温再生器 6A 仕切り壁 6B 第1の液溜り 6C 加熱コイル 7 熱媒再生器 7A 第2の液溜り 7B 温水コイル 7C 開口 7D 冷媒蒸気通路 8 凝縮器 8A 冷却水コイル 9 蒸発器 9A 蒸発コイル 10 吸収器 10A 冷却水コイル A11 弁 B12 弁 C13 弁 D14 弁 E15 弁 F16 弁 G17 流量調節弁 20 中間濃溶液管 21 濃溶液管 22 液冷媒管 23 液冷媒管 24 濃溶液管 25 分岐管 26 分岐管 30 流量制御手段 1 High Temperature Regenerator 2 Separator 3 High Temperature Solution Heat Exchanger 4 Low Temperature Solution Heat Exchanger 5 Solution Pump 6 Low Temperature Regenerator 6A Partition Wall 6B First Liquid Pool 6C Heating Coil 7 Heat Medium Regenerator 7A Second Liquid Pool 7B Hot water coil 7C Opening 7D Refrigerant vapor passage 8 Condenser 8A Cooling water coil 9 Evaporator 9A Evaporating coil 10 Absorber 10A Cooling water coil A11 valve B12 valve C13 valve D14 valve E15 valve F16 valve G17 Flow control valve 20 Intermediate concentrated solution pipe 21 Concentrated solution pipe 22 Liquid refrigerant pipe 23 Liquid refrigerant pipe 24 Concentrated solution pipe 25 Branch pipe 26 Branch pipe 30 Flow control means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希溶液を加熱する高温再生器と、 該高温再生器で加熱された希溶液を冷媒蒸気と中間濃溶
液に分離する分離器と、 該分離器で分離された中間濃
溶液を前記高温再生器からの冷媒蒸気により加熱して冷
媒蒸気を発生させ濃溶液を生成する伝熱面を高温再生器
に流入しない希溶液中に浸漬する第1の液溜りと、該第
1の液溜りの上方に配置し前記高温再生器に流入しない
希溶液の配管から分岐した液を他の熱源により加熱して
冷媒蒸気を発生させる伝熱面を前記高温再生器に流入し
ない希溶液の濃縮液中に浸漬しその底部に開口部を設け
た第2の液溜りとを有する熱媒再生器と、 該熱媒再生器で発生した冷媒蒸気及びまたは前記分離器
で分離された冷媒蒸気を凝縮液化させ液冷媒とする凝縮
器と、 該液冷媒を蒸発させ低温媒体から蒸発熱を奪って冷却す
る蒸発器と、 前記濃溶液に前記蒸発器で発生した冷媒蒸気を吸収させ
て希溶液を生成する吸収器と、 該吸収器で生成された希溶液を前記高温再生器及びまた
は熱媒再生器に圧送する溶液ポンプとを備えてなる一重
二重吸収冷温水機において、 運転開始時期に前記熱媒再生器に希溶液を供給する溶液
ポンプの吐出量を制御する手段を設けたことを特徴とす
る一重二重吸収冷温水機。
1. A high temperature regenerator for heating a dilute solution, a separator for separating the dilute solution heated by the high temperature regenerator into a refrigerant vapor and an intermediate concentrated solution, and an intermediate concentrated solution separated by the separator. A first liquid pool in which a heat transfer surface that is heated by the refrigerant vapor from the high temperature regenerator to generate a refrigerant vapor to generate a concentrated solution is immersed in a dilute solution that does not flow into the high temperature regenerator, and the first liquid. A concentrated solution of a dilute solution that does not flow into the high temperature regenerator having a heat transfer surface that is disposed above the pool and that heats the liquid branched from the pipe of the dilute solution that does not flow into the high temperature regenerator by another heat source to generate refrigerant vapor. A heat medium regenerator having a second liquid pool having an opening at the bottom thereof, and a refrigerant vapor generated in the heat medium regenerator and / or a refrigerant vapor separated in the separator is condensed and liquefied. And a condenser that serves as a liquid refrigerant, and a liquid refrigerant that evaporates the An evaporator that takes away the heat of evaporation to cool it, an absorber that absorbs the refrigerant vapor generated in the evaporator in the concentrated solution to produce a dilute solution, and a high temperature regenerator that dilutes the diluted solution produced in the absorber. And / or a single double absorption chiller-heater equipped with a solution pump for pressure-feeding the heat medium regenerator, a means for controlling the discharge rate of the solution pump for supplying the dilute solution to the heat medium regenerator at the start of operation. A single / double absorption cold / hot water machine characterized by being provided.
【請求項2】 前記溶液ポンプの吐出量を制御する手段
は、前記溶液ポンプを駆動する電動機の回転を制御する
インバータ制御装置であることを特徴とする請求項1に
記載の一重二重吸収冷温水機。
2. The single double absorption cold temperature according to claim 1, wherein the means for controlling the discharge amount of the solution pump is an inverter control device for controlling the rotation of an electric motor for driving the solution pump. Water machine.
【請求項3】 前記溶液ポンプの吐出量を制御する手段
は、前記溶液ポンプを駆動する電動機の結線をスター・
デルタに切り替える切替制御装置であることを特徴とす
る請求項1に記載の一重二重吸収冷温水機。
3. The means for controlling the discharge amount of the solution pump is configured to connect a wire of an electric motor for driving the solution pump.
The single double absorption cold / hot water machine according to claim 1, wherein the single / double absorption cold / hot water machine is a switching control device for switching to a delta.
【請求項4】 前記溶液ポンプの吐出量を制御する手段
は、前記溶液ポンプの吐出側配管に設けた流量調節弁で
あることを特徴とする請求項1に記載の一重二重吸収冷
温水機。
4. The single-double absorption chiller-heater according to claim 1, wherein the means for controlling the discharge amount of the solution pump is a flow control valve provided in the discharge side pipe of the solution pump. .
JP3150093A 1993-02-22 1993-02-22 Single / double absorption chiller / heater Expired - Fee Related JP2816791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150093A JP2816791B2 (en) 1993-02-22 1993-02-22 Single / double absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150093A JP2816791B2 (en) 1993-02-22 1993-02-22 Single / double absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH06241600A true JPH06241600A (en) 1994-08-30
JP2816791B2 JP2816791B2 (en) 1998-10-27

Family

ID=12332959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150093A Expired - Fee Related JP2816791B2 (en) 1993-02-22 1993-02-22 Single / double absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP2816791B2 (en)

Also Published As

Publication number Publication date
JP2816791B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JPH02306067A (en) Absorption type freezing
JPH0765816B2 (en) Adsorption refrigerator and its operating method
US20180051919A1 (en) Absorption heat pump and method for operating an absorption heat pump
JPH06241600A (en) Single/double absorption cold/hot water supply machine
JP2787182B2 (en) Single / double absorption chiller / heater
JPH074769A (en) Single and double effect absorption refrigerating device
JPH07269980A (en) Absorption type heat pump
JP4315855B2 (en) Absorption refrigerator
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
JPH05280825A (en) Absorption heat pump
JP2821724B2 (en) Single double effect absorption refrigerator
JPH08261591A (en) Vapor boiling absorption hot or chilled water generator and controlling method therefor
JP3754206B2 (en) Single double-effect absorption chiller / heater
JPH05126429A (en) Single/double effect absorption type water heater
JP4201418B2 (en) Control method of absorption chiller / heater
JP3108800B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JP3398832B2 (en) Control method of absorption chiller / heater
JP3084650B2 (en) Absorption chiller / heater and its control method
JP2009052811A (en) Exhaust heat drive-type absorption refrigerating device
JP4399660B2 (en) Hot water bottle absorption refrigerator
JP2538423B2 (en) Single-double-effect absorption refrigerator
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP3289236B2 (en) Absorption type cold heat generator
JPH0854153A (en) Single and double effect absorption type refrigerating machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees