JPH06240383A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPH06240383A
JPH06240383A JP3211793A JP3211793A JPH06240383A JP H06240383 A JPH06240383 A JP H06240383A JP 3211793 A JP3211793 A JP 3211793A JP 3211793 A JP3211793 A JP 3211793A JP H06240383 A JPH06240383 A JP H06240383A
Authority
JP
Japan
Prior art keywords
furnace
reinforcing material
metal
composite material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3211793A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakao
靖宏 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3211793A priority Critical patent/JPH06240383A/en
Publication of JPH06240383A publication Critical patent/JPH06240383A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain an excellent composite reinforcing material without pretreating the material by impregnating the reinforcing material compact of inorg. short fiber, whisker, etc., with the molten metal having a specified content of group IIA element in a nitrogen atmosphere. CONSTITUTION:The inorg. short fiber, whisker or grain or their mixture is formed into a reinforcing material compact 1. A crucible 3 contg. the compact and a matrix metal 2 contg. >=0.4wt.% of group IIA element is set in a furnace, and the furnace is evacuated to remove oxygen. The atmosphere in the furnace is then replaced by a gaseous mixture contg. <=3vol.% oxygen or <=40vol.% Ar, the furnace is returned to normal pressure, the gaseous mixture ia allowed to flow through the furnace, the metal 2 is kept melted for a specified time, and then the furnace is cooled. The Al2O3, SiO2 TiO2, etc., on the surface of the reinforcing material activated by gaseous nitrogen at high temp. are reduced to metallic Al, Si, Ti, etc., by the group IIA element having a lower standard free energy of formation than the metal forming the oxide, and the wettability with the molten metal is remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合材料の製造方法に
関し、特に強化材成形体とマトリックス金属からなり、
マトリックス金属の溶湯を実質的に加圧しない鋳造法に
よる複合材料を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite material, and in particular, it comprises a reinforcement molding and a matrix metal,
The present invention relates to a method for producing a composite material by a casting method which does not substantially pressurize a molten matrix metal.

【0002】[0002]

【従来の技術】従来、強化材とマトリックス金属とから
なる複合材料は、高加圧下で無機質の強化材にマトリッ
クス金属の溶湯を含浸して成形していた。しかし、この
加圧による成形は、設備が大きくなりまたエネルギーの
消費量も大きいことから、非加圧成形法が指向されてい
た。ところが、本来マトリックス金属溶湯と無機質強化
材との濡れ性は悪いが、加圧しないことによってこの濡
れ性がますます低下し、良好な複合材を得ることは困難
であった。
2. Description of the Related Art Conventionally, a composite material composed of a reinforcing material and a matrix metal has been formed by impregnating an inorganic reinforcing material with a molten metal of the matrix metal under high pressure. However, since the molding by pressure requires large equipment and consumes a large amount of energy, a non-pressure molding method has been aimed at. However, although the wettability between the molten matrix metal and the inorganic reinforcing material is originally poor, this wettability is further reduced by not applying pressure, and it has been difficult to obtain a good composite material.

【0003】上記濡れ性の問題を解決しようとする技術
が、例えば特公昭63−54055号公報等に記載され
ている。この技術は、強化材である耐熱性非金属無機繊
維の表面を、ほう素及びケイ素で被覆して濡れ性を改善
しようとするものである。
A technique for solving the problem of wettability is described in, for example, Japanese Patent Publication No. 63-54055. This technique is intended to improve the wettability by coating the surface of a heat-resistant non-metal inorganic fiber which is a reinforcing material with boron and silicon.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記公報の技
術は強化材の前処理による方法であるため、製造工程数
が増えて効率が良くなかった。本発明は、従来の技術が
有するこのような問題点を解決するためになされたもの
であり、その目的とするところは、強化材の前処理なし
で、しかも非加圧下に優秀な複合材料を製造する方法を
提供しようとするものである。
However, since the technique of the above publication is a method by pretreatment of the reinforcing material, the number of manufacturing steps is increased and the efficiency is not good. The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object thereof is to provide an excellent composite material without pretreatment of a reinforcing material and without applying pressure. It is intended to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
発明は、無機質の短繊維、ウィスカ、粒子、若しくはこ
れらの混合物を成形して強化材成形体とし、この強化材
成形体に、少なくとも0.4重量%のIIA族元素を含有
するマトリックス金属の溶湯を窒素雰囲気下で含浸さ
せ、その後冷却して複合材料を製造する方法である。
In order to solve the above problems, the present invention provides a reinforcing material molded body by molding inorganic short fibers, whiskers, particles, or a mixture thereof. This is a method for producing a composite material by impregnating a molten metal of a matrix metal containing 0.4% by weight of a group IIA element under a nitrogen atmosphere and then cooling.

【0006】本発明の方法においては、前記溶湯の含浸
は、酸素が3容量%以下若しくはアルゴンが40容量%
以下の窒素雰囲気中で行われることが好ましい。
In the method of the present invention, the molten metal is impregnated with 3% by volume or less of oxygen or 40% by volume of argon.
It is preferable to carry out in the following nitrogen atmosphere.

【0007】[0007]

【作用】本発明の製造方法においては、少なくとも0.
4重量%のIIA族元素を含有するマトリックス金属の溶
湯を強化材に接触させる。すると、高温で窒素ガスによ
り活性化された強化材表面のAl23、SiO2、Ti
2、炭化ケイ素、窒化ケイ素等は、これらを構成する
金属よりも標準生成自由エネルギーの低い上記IIA族元
素によって還元されて金属Al、Si、Ti等となる。従
って、マトリックス金属溶湯との濡れ性が著しく向上す
る。
In the manufacturing method of the present invention, at least 0.
A matrix metal melt containing 4 wt% Group IIA element is contacted with the reinforcement. Then, Al 2 O 3 , SiO 2 , and Ti on the surface of the reinforcing material activated by nitrogen gas at a high temperature.
O 2 , silicon carbide, silicon nitride, etc. are reduced to the metals Al, Si, Ti, etc. by the group IIA element whose standard free energy of formation is lower than that of the metal constituting them. Therefore, the wettability with the molten matrix metal is significantly improved.

【0008】また、強化材へのマトリックス金属溶湯の
含浸は、窒素雰囲気下で行われるため、前記IIA族元素
等が雰囲気の酸素で酸化されることなく、上記還元を効
率良く行うことができる。
Further, since the reinforcement material is impregnated with the molten matrix metal in a nitrogen atmosphere, the above-mentioned reduction can be efficiently carried out without the group IIA element or the like being oxidized by oxygen in the atmosphere.

【0009】[0009]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。ここにおいて図1は本発明に係る複合材料の製造方
法の一例を示す斜視図である。同図において、強化材成
形体1及びインゴット形態のマトリックス金属2がカー
ボンボンド坩堝3(主成分SiC)に収められている。
Embodiments of the present invention will be described below with reference to the drawings. Here, FIG. 1 is a perspective view showing an example of a method for producing a composite material according to the present invention. In the figure, a reinforcing material compact 1 and a matrix metal 2 in the form of an ingot are contained in a carbon bond crucible 3 (main component SiC).

【0010】強化材成形体1は、無機質の短繊維、ウィ
スカ、粒子、若しくはこれらの混合物を成形してなるも
のであり、このような素材としては例えば単結晶アルミ
ナ、多結晶のアルミナ、チタニア、炭化ケイ素、ジルコ
ニア等、ウィスカ状のアルミナ、窒化ケイ素、炭化ケイ
素等が使用できる。これら強化材を成形するには、例え
ば上記素材を水に分散させ、これを吸引圧縮する手段が
ある。
The reinforcing material molded body 1 is formed by molding inorganic short fibers, whiskers, particles, or a mixture thereof. Examples of such a material include single crystal alumina, polycrystalline alumina, titania, Silicon carbide, zirconia, etc., whisker-like alumina, silicon nitride, silicon carbide, etc. can be used. To form these reinforcing materials, for example, there is a means of dispersing the above material in water and suction-compressing the material.

【0011】また、マトリックス金属2は、アルミニウ
ム、ケイ素、チタン等の金属に、少なくとも0.4重量
%、好ましくは1.0〜5.0重量%のIIA族元素を含
有させたものである。この量が0.4重量%未満では、
強化材表面の金属酸化物等を十分に還元できないため濡
れ性が改善されず複合化率が低くなる。なお、前記IIA
族元素とは、Be、Mg、Ca、Sr、Ba、Raの各金属元
素を意味する。また、複合化率とは、製造された複合材
から切り出した断面を光学顕微鏡及び走査型電子顕微鏡
(SEM)を併用して観察し、強化材成形体1中、微小
孔(ミクロポア)等の空隙が全くない部分の占める割合
を示したものである。すなわち、強化材成形体1中のど
こにも空隙が全く見られない場合には複合化率100
%、強化材成形体1中の半分に空隙が見られれば複合化
率50%である。
The matrix metal 2 is a metal such as aluminum, silicon or titanium containing at least 0.4% by weight, preferably 1.0 to 5.0% by weight of a Group IIA element. If this amount is less than 0.4% by weight,
Since the metal oxides and the like on the surface of the reinforcing material cannot be reduced sufficiently, the wettability is not improved and the composite rate becomes low. The IIA
The group element means each metal element of Be, Mg, Ca, Sr, Ba and Ra. In addition, the composite ratio is a cross section cut out from the manufactured composite material, observed by using an optical microscope and a scanning electron microscope (SEM) together, and in the reinforcing material molded body 1, voids such as micropores (micropores). It shows the proportion of the part that does not have at all. That is, when no void is found anywhere in the reinforcing material molded body 1, the composite rate is 100.
%, And if voids are found in half of the reinforcing material molded body 1, the composite rate is 50%.

【0012】本発明に係る複合材料を製造するには、前
記強化材成形体1及びマトリックス金属2を入れた坩堝
3を炉内に設置し、酸素を除去するために減圧する。そ
の後、窒素ガスあるいは窒素、アルゴン混合ガスで炉内
を置換しながら常圧に戻す。そして、窒素ガスあるいは
窒素及びアルゴン混合ガス気流を炉内に流しながら徐々
に昇温し、マトリックス金属2の溶融温度を超えるまで
加熱する。マトリックス金属2が溶融した(溶湯となっ
た)状態で数分〜1時間程度保持し、その後炉を冷却し
凝固した複合材料を取り出す。
To manufacture the composite material according to the present invention, the crucible 3 containing the reinforcing material compact 1 and the matrix metal 2 is placed in a furnace and decompressed to remove oxygen. Then, the inside of the furnace is replaced with nitrogen gas or a mixed gas of nitrogen and argon, and the pressure is returned to normal pressure. Then, the temperature is gradually raised while flowing a nitrogen gas or a mixed gas flow of nitrogen and argon into the furnace, and the temperature is raised until the melting temperature of the matrix metal 2 is exceeded. The matrix metal 2 is held in a molten (melted) state for several minutes to 1 hour, and then the furnace is cooled to take out the solidified composite material.

【0013】上記炉内に酸素が存在していると、強化材
成形体1表面の還元を十分に行うことができない。従っ
て、窒素雰囲気下で酸素は3容量%以下、更には1容量
%以下とすることが好ましい。酸素の割合が3容量%を
超えると、濡れ性が低下して前記複合化率の急激な低下
を招くことがある。また、コストの面から前記のように
窒素ガスを窒素及びアルゴンの混合ガスとしてもよい。
但し、アルゴンガスは40容量%以下、更には10容量
%以下とすることが好ましい。このアルゴンの割合が4
0容量%を超えると、強化材表面を活性化する窒素ガス
の割合が相対的に低下するため、濡れ性が低下して前記
複合化率の急激な低下を招くことがある。
If oxygen is present in the furnace, the surface of the reinforcing material molded body 1 cannot be sufficiently reduced. Therefore, it is preferable that the oxygen content be 3% by volume or less, further preferably 1% by volume or less in a nitrogen atmosphere. If the proportion of oxygen exceeds 3% by volume, the wettability may be lowered and the composite rate may be rapidly lowered. Further, from the viewpoint of cost, the nitrogen gas may be a mixed gas of nitrogen and argon as described above.
However, the argon gas content is preferably 40% by volume or less, more preferably 10% by volume or less. The ratio of this argon is 4
If it exceeds 0% by volume, the proportion of nitrogen gas that activates the surface of the reinforcing material is relatively decreased, so that the wettability may be decreased and the composite ratio may be rapidly decreased.

【0014】以下に、本発明の実施例を更に詳細に説明
する。実施例1 アルミナ繊維(「サフィール」;ICI社製)を水に分
散させ、これを吸引圧縮して直径50mm×厚さ60m
mの円筒形の強化材成形体1を作成した。この強化材成
形体1のアルミナ繊維は全容積の17%を占めていた。
The embodiments of the present invention will be described in more detail below. Example 1 Alumina fibers (“Safir”; manufactured by ICI) are dispersed in water and suction-compressed to obtain a diameter of 50 mm and a thickness of 60 m.
A cylindrical reinforcing material molded body 1 of m was prepared. The alumina fibers of the reinforcing material molded body 1 occupied 17% of the total volume.

【0015】また、マトリックス金属2用の合金とし
て、Mg(5重量%)−Al(95重量%)合金インゴッ
ト1000gを用意し、前記強化材成形体1とともにカ
ーボンボンド坩堝3内にセットした。そして、この坩堝
3をマッフル炉に入れ、10-4Torrまで減圧してエ
アーを除去した後、高純度(酸素含有率10ppm以
下)窒素ガスで置換しながら常圧(1気圧)に戻した。
このときの炉内の酸素含量も10ppm以下であった。
As the alloy for the matrix metal 2, 1000 g of Mg (5 wt%)-Al (95 wt%) alloy ingot was prepared and set in the carbon bond crucible 3 together with the reinforcing material compact 1. Then, the crucible 3 was put into a muffle furnace, and after decompressing it to 10 -4 Torr to remove air, it was returned to normal pressure (1 atm) while being replaced with high-purity (oxygen content of 10 ppm or less) nitrogen gas.
The oxygen content in the furnace at this time was also 10 ppm or less.

【0016】上記窒素雰囲気下のマッフル炉を、窒素ガ
ス(5l/分)を流しながら、1分間に3℃の割合で昇
温して900℃まで上昇させた。このときのマトリック
ス金属2は溶湯状態であり、強化材成形体1中にこの溶
湯が浸透した。そして900℃で30分間保持した後に
炉を冷却した。このときの加熱時間−炉内温度線図を模
式的に図2に示す。こうして得られた複合材料を切り出
し、その断面を光学顕微鏡とSEMとによって観察した
ところ、ミクロポア等の空隙は全く認められず、複合化
率は100%であった。
The muffle furnace under the nitrogen atmosphere was heated to 900 ° C. at a rate of 3 ° C. per minute while flowing nitrogen gas (5 l / min). At this time, the matrix metal 2 was in a molten state, and the molten metal penetrated into the reinforcing material molded body 1. The furnace was cooled after holding at 900 ° C. for 30 minutes. The heating time-in-furnace temperature diagram at this time is schematically shown in FIG. When the composite material thus obtained was cut out and its cross section was observed with an optical microscope and SEM, no voids such as micropores were observed and the composite ratio was 100%.

【0017】実施例2,3、比較例1,2 実施例1におけるマッフル炉内を、下記不活性ガスで置
換し 窒素:アルゴン(容量%)=80:60(実施例2) 60:40( 〃 3) 50:50(比較例1) 0:100( 〃 2) 昇温中に流すガスもこの不活性ガスを用いた以外は実施
例1と同様にして複合材料を製造した。これらの結果を
図3に示した。同図から明らかなように、実施例2(図
中の点a)及び実施例3(同、点b)により形成した複
合材料には空隙を有する部分が多少見られたが、複合化
率はそれぞれ98%、90%であり、十分に実用に耐え
得るものであった。一方、比較例1(同、点c)及び比
較例2(同、点d)により形成した複合材料は複合化率
がそれぞれ10%、0%と極端に悪かった。
The muffle furnace in Examples 2 and 3 and Comparative Examples 1 and 2 was replaced with the following inert gas: nitrogen: argon (volume%) = 80:60 (Example 2) 60:40 ( 〃 3) 50:50 (Comparative Example 1) 0: 100 (〃 2) A composite material was produced in the same manner as in Example 1 except that this inert gas was used as the gas flowing during the temperature rise. The results are shown in FIG. As is clear from the figure, the composite material formed in Example 2 (point a in the figure) and Example 3 (point b in the figure) had some voids, but the composite ratio was The values were 98% and 90%, respectively, which were sufficiently practical. On the other hand, the composite materials formed in Comparative Example 1 (the same point c) and Comparative Example 2 (the same point d) had extremely poor composite rates of 10% and 0%, respectively.

【0018】実施例4、比較例3 実施例1におけるマッフル炉内を、窒素:酸素(容量
%)=97:3のガスで置換するか(実施例4)、また
は置換せず大気のままとし(比較例3)、昇温中に流す
ガスもこのガスまたは大気を用いた以外は実施例1と同
様にして複合材料を製造した。これらの結果を図4に示
した。同図から明らかなように、実施例4(図中の点
e)の複合材料の複合化率は90%であった。また、比
較例3(同、点f)の場合は複合化率が0%であった。
Example 4, Comparative Example 3 The inside of the muffle furnace in Example 1 was replaced with a gas of nitrogen: oxygen (volume%) = 97: 3 (Example 4), or the atmosphere was not replaced. (Comparative Example 3) A composite material was produced in the same manner as in Example 1 except that this gas or the atmosphere was also used as the gas flowing during the temperature rise. The results are shown in FIG. As is clear from the figure, the composite rate of the composite material of Example 4 (point e in the figure) was 90%. Further, in the case of Comparative Example 3 (same as above, point f), the composite rate was 0%.

【0019】実施例5,6、比較例4 実施例1の合金インゴットに代えて、下記組成 Ca(0.5重量%)−Al(99.5重量%)……実施
例5 Ca(0.4重量%)−Al(99.6重量%)…… 〃
6 Ca(0.3重量%)−Al(99.7重量%)……比較
例4 の合金インゴットとした以外は実施例1と同様にして複
合材料を形成した。この結果を図5に示す。実施例5
(図中の点g)及び実施例6(同、点h)によって形成
した複合材料には空隙は全く見られず、複合化率はとも
に100%であった。しかし、比較例4の複合材料は複
合化率が40%と低く不良であった。
Examples 5, 6 and Comparative Example 4 Instead of the alloy ingot of Example 1, the following composition Ca (0.5% by weight) -Al (99.5% by weight) ... Example 5 Ca (0. 4% by weight) -Al (99.6% by weight) .... 〃
6 Ca (0.3% by weight) -Al (99.7% by weight) ... A composite material was formed in the same manner as in Example 1 except that the alloy ingot of Comparative Example 4 was used. The result is shown in FIG. Example 5
No void was observed in the composite material formed by (point g in the figure) and Example 6 (same as point h), and the composite rate was 100%. However, the composite material of Comparative Example 4 had a low composite rate of 40% and was unsatisfactory.

【0020】[0020]

【発明の効果】以上説明したように本発明の製造方法に
よれば、強化材成形体に、少なくとも0.4重量%のII
A族元素を含有するマトリックス金属の溶湯を窒素雰囲
気下で含浸させるため、強化材成形体とマトリックス金
属との濡れ性が向上し、そのため加圧することなく空隙
のない複合材料を製造方法することができる。また、溶
湯の含浸を、酸素が3容量%以下若しくはアルゴンが4
0容量%以下の窒素雰囲気中で行えば、上記濡れ性が一
層向上する。
As described above, according to the manufacturing method of the present invention, at least 0.4% by weight of II is added to the reinforcing material molded body.
Since the molten metal of the matrix metal containing the group A element is impregnated in a nitrogen atmosphere, the wettability between the reinforcing material molded body and the matrix metal is improved, and therefore a composite material having no voids can be produced without pressurization. it can. Further, the impregnation of the molten metal should be 3 vol% or less for oxygen or 4 for argon.
The wettability is further improved by carrying out in a nitrogen atmosphere of 0% by volume or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合材料の製造方法の一例を示す
斜視図
FIG. 1 is a perspective view showing an example of a method for manufacturing a composite material according to the present invention.

【図2】実施例1に係る加熱時間−炉内温度線図2 is a heating time-in-furnace temperature diagram according to Example 1. FIG.

【図3】アルゴンガスの複合化率に対する影響を表わ
す、複合化率−ガス混合比線図
FIG. 3 is a composite ratio-gas mixing ratio diagram showing the influence of argon gas on the composite ratio.

【図4】酸素含量の複合化率に対する影響を表わす複合
化率−酸素混入比線図
FIG. 4 is a composite ratio-oxygen mixture ratio diagram showing the effect of oxygen content on the composite ratio.

【図5】Alインゴット中のCa含有量の複合化率に対す
る影響を表わす複合化率−Ca添加量線図
FIG. 5 is a complex ratio-Ca addition amount diagram showing the influence of the Ca content in the Al ingot on the complex ratio.

【符号の説明】 1…強化材成形体、2…マトリックス金属、3…坩堝。[Explanation of Codes] 1 ... Reinforced material molded body, 2 ... Matrix metal, 3 ... Crucible.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無機質の短繊維、ウィスカ、粒子、若し
くはこれらの混合物を成形して強化材成形体とし、この
強化材成形体に、少なくとも0.4重量%のIIA族元素
を含有するマトリックス金属の溶湯を窒素雰囲気下で含
浸させ、その後冷却することを特徴とする複合材料の製
造方法。
1. An inorganic short fiber, whiskers, particles, or a mixture thereof is molded into a reinforcing material compact, and the reinforcing metal compact contains a matrix metal containing at least 0.4% by weight of a Group IIA element. 2. A method for producing a composite material, comprising impregnating the molten metal of No. 1 in a nitrogen atmosphere and then cooling.
【請求項2】 前記溶湯の含浸は、酸素が3容量%以下
若しくはアルゴンが40容量%以下の窒素雰囲気中で行
われることを特徴とする請求項1記載の複合材料の製造
方法。
2. The method for producing a composite material according to claim 1, wherein the impregnation of the molten metal is performed in a nitrogen atmosphere in which oxygen is 3% by volume or less or argon is 40% by volume or less.
JP3211793A 1993-02-22 1993-02-22 Production of composite material Withdrawn JPH06240383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3211793A JPH06240383A (en) 1993-02-22 1993-02-22 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3211793A JPH06240383A (en) 1993-02-22 1993-02-22 Production of composite material

Publications (1)

Publication Number Publication Date
JPH06240383A true JPH06240383A (en) 1994-08-30

Family

ID=12349961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3211793A Withdrawn JPH06240383A (en) 1993-02-22 1993-02-22 Production of composite material

Country Status (1)

Country Link
JP (1) JPH06240383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151777A (en) * 2004-12-01 2006-06-15 Kyocera Corp Ceramic-metal compound material, its forming process, and conductive member using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151777A (en) * 2004-12-01 2006-06-15 Kyocera Corp Ceramic-metal compound material, its forming process, and conductive member using the same
JP4693399B2 (en) * 2004-12-01 2011-06-01 京セラ株式会社 Method for producing ceramic-metal composite

Similar Documents

Publication Publication Date Title
US5595616A (en) Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
US4847044A (en) Method of fabricating a metal aluminide composite
US4657876A (en) Composite by infiltration
JP2001181767A (en) High strength aluminum alloy
EP0192040B1 (en) Fluoride infiltrated carbide or nitride composite
AU594815B2 (en) Modified ceramic structures and methods of making the same
US6082436A (en) Method of centrifugally casting reinforced composite articles
US4941918A (en) Sintered magnesium-based composite material and process for preparing same
US5308806A (en) Method for improving refractory metal fiber reinforced molybdenum disilicide composites
NO176391B (en) Process for manufacturing a metal matrix composite
JP2774125B2 (en) Self-supporting ceramic composite material and method of manufacturing the same
US5295528A (en) Centrifugal casting of reinforced articles
US5292692A (en) Method for improving ceramic fiber reinforced molybdenum disilicide composites
JPH06240383A (en) Production of composite material
US5229165A (en) Plasma sprayed continuously reinforced aluminum base composites
JPH03103334A (en) Fiber-reinforced metal
EP0424220B1 (en) Oxynitride glass compositions, their precursors and their application for making glass-ceramics compositions and composite materials
US5697421A (en) Infrared pressureless infiltration of composites
US5556486A (en) Composite material having an intermetallic matrix of AlNi reinforced by silicon carbide particles
JPS6225737B2 (en)
JPS6140740B2 (en)
JP4048581B2 (en) Method for producing aluminum matrix composite material
JPH07310131A (en) Production of mg-base composite material
US4837053A (en) Diffusion barrier for high temperature composites
JPH10102161A (en) Preform, metal-base composite material using the same and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509