JPH06240303A - Treatment of surface layer of alloy powder - Google Patents

Treatment of surface layer of alloy powder

Info

Publication number
JPH06240303A
JPH06240303A JP2561993A JP2561993A JPH06240303A JP H06240303 A JPH06240303 A JP H06240303A JP 2561993 A JP2561993 A JP 2561993A JP 2561993 A JP2561993 A JP 2561993A JP H06240303 A JPH06240303 A JP H06240303A
Authority
JP
Japan
Prior art keywords
powder alloy
hardness
powder
binder
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2561993A
Other languages
Japanese (ja)
Other versions
JP3049165B2 (en
Inventor
Keiji Mase
恵二 間瀬
Yoshio Miyasaka
四志男 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI KIHAN KK
Fuji Manufacturing Co Ltd
Original Assignee
FUJI KIHAN KK
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI KIHAN KK, Fuji Manufacturing Co Ltd filed Critical FUJI KIHAN KK
Priority to JP5025619A priority Critical patent/JP3049165B2/en
Publication of JPH06240303A publication Critical patent/JPH06240303A/en
Application granted granted Critical
Publication of JP3049165B2 publication Critical patent/JP3049165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the wear resistance and durability of the alloy powder by micronizing the structure close to the surface of the alloy powder to increase the density between green compacts, and reduce the deposition of a binder in the surface layer of the powder. CONSTITUTION:The alloy powder consists of plural various green compacts just like a sintered hard alloy consists of the green compacts of high-hardness WC and the green compact of Co as the binder. Shots of 40-200mum size having a hardness higher than that of the green compacts are shotted at a high speed of >=50m/sec over the surface of the alloy powder product by shot peening to heat the shotted surface of the alloy powder to a temp. above recrystallization temp. of the binder, hence the surface of the green compact is smoothed by the impact force of the succeeding shots, and the density between the green compacts is increased. The binder is not deposited on the surface of alloy powder even when the powder surface is coated by CVD.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超硬合金、サーメッ
ト、セラミックなどの粉末合金で成る工具類や機械部品
などの製品の表面層の処理法に関し、より詳しくは、サ
ンドブラストないしはショットピーニング加工において
ショット自体によって粉末合金の表面層の温度を上昇さ
せて、粉末合金を構成する各種圧粉体のうちの結合剤の
圧粉体を軟化させ且つショットの衝撃力により各種圧粉
体の結合の強化を図る粉末合金の表面層の処理方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating the surface layer of products such as tools and machine parts made of powdered alloys such as cemented carbide, cermet and ceramics. More specifically, in sandblasting or shot peening The shot itself raises the temperature of the surface layer of the powder alloy to soften the powder compact of the binder among the various powder compacts that make up the powder alloy and strengthen the bond of the various powder compacts by the impact force of the shot. The present invention relates to a method for treating a surface layer of a powdered alloy,

【0002】[0002]

【従来の技術】粉末合金は、金属の粉末や炭化物、窒化
物及び酸化物などの圧粉体を、それぞれの圧粉体の溶融
点以下の温度で圧縮成形し、焼結して製品に仕上げた合
金であり、高温に至るまで硬さ、強さが高く、耐摩耗性
に優れ、切削工具、塑性加工工具などに成形されてい
る。粉末合金の代表的なものとしては、超硬合金、サー
メット、セラミックなどがあり、合金鋼や高速度鋼に比
べて温度による硬さの低下が少ないので高速切削性に優
れた性能を発揮する。
2. Description of the Related Art Powder alloys are produced by compressing and compacting metal powders and powder compacts of carbides, nitrides and oxides at temperatures below the melting point of the respective powder compacts and sintering. It has high hardness and strength up to high temperatures, has excellent wear resistance, and is formed into cutting tools, plastic working tools, etc. Typical examples of powder alloys include cemented carbide, cermet, and ceramics, which exhibit excellent performance in high-speed machinability because hardness decreases less with temperature than alloy steel and high-speed steel.

【0003】超硬合金は、硬質高融点金属である炭化タ
ングステン(WC)の粉末の圧粉体を主成分とし、これ
にコバルト(Co)の粉末の圧粉体を結合剤として添加
し、圧縮成形したのち高温で焼結したものである。ま
た、前記主成分のWCのほかに、目的に応じて炭化チタ
ン(TiC),炭化タンタル(TaC)などの圧粉体を
配合し、これをTi,Co,C,TiNなどの結合剤で
焼結したものもある。
Cemented carbide has a powder compact of tungsten carbide (WC) which is a hard refractory metal as its main component, to which a powder compact of cobalt (Co) powder is added as a binder and compressed. It is formed and then sintered at high temperature. In addition to WC as the main component, a powder compact such as titanium carbide (TiC) or tantalum carbide (TaC) is blended according to the purpose, and this is burned with a binder such as Ti, Co, C or TiN. Some are tied.

【0004】サーメットは、セラミック(耐火物)とメ
タル(金属)を合わせた名称で、セラミックと超硬合金
の両方の特性を持った中間的なものであり、TiC−N
i−Mo2C系サーメットやAl23系サーメットなど
がある。TiC−Ni−Mo2C系サーメットは、高温
強度に優れる炭化チタン(TiC)の圧粉体に、Mo−
Niの合金の圧粉体を添加して焼結したものと、これに
靭性や耐熱性を与えるために窒化チタン(TiN)を加
えて焼結したものとがあり、前記Mo−Niの圧粉体の
Niが結合剤となる。このTiC−Ni−Mo2C系サ
ーメットは切削工具材として用いられており、WC系超
硬合金より靭性は劣るが、硬さ、耐摩耗性が大きく、高
速切削用に適する。
Cermet is a combination of ceramics (refractory material) and metal (metal), which is an intermediate material having both characteristics of ceramics and cemented carbide, and TiC-N.
There are i-Mo 2 C based cermets and Al 2 O 3 based cermets. TiC-Ni-Mo 2 C-based cermet, the powder compact of titanium carbide having excellent high temperature strength (TiC), Mo-
There are two types, one of which is sintered by adding a green compact of Ni alloy, and the other of which is sintered by adding titanium nitride (TiN) to give toughness and heat resistance. Ni of the body serves as a binder. The TiC-Ni-Mo 2 C cermet is used as a cutting tool material, inferior toughness than WC cemented carbide, but hardness, wear resistance is large, suitable for high-speed cutting.

【0005】また、粉末合金で成る工具類や機械部品な
どの製品には、CVDコーティング(化学蒸着)やPV
Dコーティング(物理蒸着)により、数μの硬質膜を前
記製品の表面に形成してより一層耐摩耗性の向上を図っ
ている。例えば、CVDコーティング又はPVDコーテ
ィングにより、アルミナ(Al23)と耐熱性に優れた
高強度特殊セラミックを主体とした複合セラミックの硬
質膜を粉末合金の表面に形成し、より一層炭化物相の微
細化を図った超微粒子合金が開発されている。この超微
粒子合金は低速域での切削やインコネルなどの難削材切
削において、前記CVDコーティングやPVDコーティ
ングをしない粉末合金より良好な耐摩耗性を有する。ま
た、粉末合金への前述のコーティングの他の例として、
粉末合金の表面に窒化チタン(TiN)の数μの硬質膜
を形成し、耐摩耗性、耐欠損性をより一層向上させてい
る。
Products such as tools and machine parts made of powder alloy are coated with CVD (chemical vapor deposition) or PV.
By D coating (physical vapor deposition), a hard film of several μ is formed on the surface of the product to further improve the wear resistance. For example, by CVD or PVD coating, a hard film of a composite ceramic mainly composed of alumina (Al 2 O 3 ) and a high-strength special ceramic having excellent heat resistance is formed on the surface of the powder alloy, and the carbide phase becomes finer. Ultrafine alloys have been developed. This ultra-fine particle alloy has better wear resistance than the above-mentioned powder alloy without CVD coating or PVD coating in cutting at low speed range or in cutting difficult-to-cut materials such as Inconel. Also, as another example of the aforementioned coating on the powder alloy,
A hard film of titanium nitride (TiN) with a thickness of several μm is formed on the surface of the powder alloy to further improve wear resistance and fracture resistance.

【0006】なお、前記PVDコーティングは380〜
600゜Cの低温コーティングで、CVDコーティング
は800〜1000゜Cの高温コーティングである。
The PVD coating is 380 to
With a low temperature coating of 600 ° C, the CVD coating is a high temperature coating of 800-1000 ° C.

【0007】[0007]

【発明が解決しようとする課題】従来の粉末合金で成る
工具類や機械部品などの製品においては、粉末合金自体
が各種の圧粉体を圧縮成形し高温で焼結したものである
ので、各圧粉体間に微小な空間が生じてしまう。例え
ば、超硬合金は、Ti,Co,C,TiNなどの結合剤
が完全に溶けてWCと結合しているのではなく、WCと
結合剤の接触部分が高温で圧着された状態であり、WC
と結合剤のそれぞれの比重と混合比と超硬合金の密度か
ら計算すると粉末合金全体の体積の約2〜5%はWCと
結合剤の個々の粒子間の微小な空間で占めている。粉末
合金の他の代表的なものであるサーメットも前述した超
硬合金と同様に各圧粉体間に微小な空間が生じる。この
微小な空間が粉末合金で成る工具類(例えば、バイトや
フライスのチップ)の刃先のへたりやチッピングの原因
となり粉末合金で成る製品の耐久性の低下をもたらすと
いう問題点があった。
In the conventional products such as tools and machine parts made of powder alloy, since the powder alloy itself is formed by compression molding various green compacts and sintering at high temperature, A minute space is created between the green compacts. For example, in the cemented carbide, the binder such as Ti, Co, C, and TiN is not completely melted and bonded to the WC, but the contact portion between the WC and the binder is pressed at a high temperature. WC
Calculating from the respective specific gravities and mixing ratios of the binder and the density of the cemented carbide, about 2 to 5% of the total volume of the powder alloy is occupied by minute spaces between the WC and the individual particles of the binder. Cermet, which is another typical powder alloy, also has a minute space between the green compacts as in the cemented carbide described above. There is a problem in that this minute space causes the settling of the edge of the tools made of the powder alloy (for example, the bite and the tip of the milling cutter) and chipping, and the durability of the product made of the powder alloy is deteriorated.

【0008】また、従来の粉末合金で成る製品の表面に
高温のCVDコーティングを行うとき、前記製品の表面
層に低硬度の結合剤が析出して、CVDコーティングの
効果を減少させるという問題点があった。
In addition, when a high temperature CVD coating is performed on the surface of a conventional powder alloy product, a low hardness binder is deposited on the surface layer of the product, which reduces the effect of the CVD coating. there were.

【0009】例えば、従来の超硬合金の表面に800〜
1000゜Cの高温のCVDコーティングを行なうと
き、結合剤であるCoの融点(1495゜C)よりかな
り低い温度700゜C程度以上で、超硬合金の表面層で
WCの硬度に比して低硬度のCoが析出するという現象
が発生する。
For example, the surface of a conventional cemented carbide is 800 to
When performing CVD coating at a high temperature of 1000 ° C, the temperature is considerably lower than the melting point (1495 ° C) of Co, which is a binder, at a temperature of about 700 ° C or higher, which is lower than the hardness of WC on the surface layer of the cemented carbide. A phenomenon that hardness Co precipitates occurs.

【0010】Coが超硬合金の表面に析出する理由は、
Coの熱膨張係数がWCの熱膨張係数に対して2.4倍
と大きいために、700゜C程度の温度におけるCoの
体積の膨張が、下記に示すように、WCの体積の膨張よ
り大きくなるので、超硬合金の表面層付近で膨張したC
oが逃げ場のある超硬合金の表面から外部へ出てしまう
ためであると考えられる。
The reason why Co precipitates on the surface of the cemented carbide is as follows.
Since the coefficient of thermal expansion of Co is as large as 2.4 times the coefficient of thermal expansion of WC, the expansion of the volume of Co at a temperature of about 700 ° C is larger than that of WC as shown below. Therefore, C expanded near the surface layer of the cemented carbide
It is considered that this is because o escapes from the surface of the cemented carbide where there is an escape.

【0011】これをさらに詳しく説明するために、常温
20゜C(t0゜C)に対する700゜C(t1゜C)お
よび1000゜C(t2゜C)におけるWCとCoのそ
れぞれの体積の膨張率を以下に示す。ただし、αは熱膨
張係数で、Coの熱膨張係数αは12.3/106、W
Cの熱膨張係数αは5.1/106である。
To explain this in more detail, the respective volumes of WC and Co at 700 ° C (t 1 ° C) and 1000 ° C (t 2 ° C) with respect to room temperature of 20 ° C (t 0 ° C). The expansion rate of is shown below. However, α is a thermal expansion coefficient, and Co has a thermal expansion coefficient α of 12.3 / 10 6 , W
The thermal expansion coefficient α of C is 5.1 / 10 6 .

【0012】700゜Cのとき、 Coの体積の膨張=〔1+α(t1−t0)〕3 =〔1+(12.3/106)x(700−20)〕3 =1.025 WCの体積の膨張=〔1+α(t1−t0)〕3 =〔1+(5.1/106)x(700−20)〕3 =1.01 したがって、常温20゜CのときのCoおよびWCのそ
れぞれの体積に対して、700゜CではWCの体積が1
%膨張するが、Coの体積は2.5%膨張する。
At 700 ° C. , Co volume expansion = [1 + α (t 1 −t 0 )] 3 = [1+ (12.3 / 10 6 ) × (700-20)] 3 = 1.025 WC Expansion of volume of [= 1 + α (t 1 −t 0 )] 3 = [1+ (5.1 / 10 6 ) x (700−20)] 3 = 1.01 Therefore, Co at room temperature of 20 ° C. and For each volume of WC, at 700 ° C the volume of WC is 1
%, But the volume of Co expands by 2.5%.

【0013】1000゜Cのとき、 Coの体積の膨張=〔1+α(t2−t0)〕3 =〔1+(12.3/106)x(1000−20)〕3 =1.037 WCの体積の膨張=〔1+α(t2−t0)〕3 =〔1+(5.1/106)x(1000−20)〕3 =1.015 したがって、常温20゜CのときのCoおよびWCのそ
れぞれの体積に対して、1000゜CではWCの体積が
1.5%膨張するが、Coの体積は3.7%膨張する。
At 1000 ° C., expansion of Co volume = [1 + α (t 2 −t 0 )] 3 = [1+ (12.3 / 10 6 ) × (1000-20)] 3 = 1.037 WC Expansion of the volume of [= 1 + α (t 2 −t 0 )] 3 = [1+ (5.1 / 10 6 ) × (1000−20)] 3 = 1.015 Therefore, Co at room temperature of 20 ° C. and For each volume of WC, at 1000 ° C., the volume of WC expands by 1.5%, but the volume of Co expands by 3.7%.

【0014】以上のように、700〜1000゜Cにお
いて、結合剤のCoの体積の膨張はWCの体積の膨張よ
り大きいために、超硬合金の表面に800〜1000゜
Cの高温のCVDコーティングを施すとき、WCの硬度
に比して低硬度のCoが超硬合金の表面に析出するの
で、超硬合金の表面層の硬度を低下させ、CVDコーテ
ィングによる本来の耐摩耗性を向上させる効果を減少さ
せてしまうという問題点があった。
As described above, since the expansion of the volume of Co of the binder is larger than that of WC at 700 to 1000 ° C, the surface of the cemented carbide is subjected to high temperature CVD coating at 800 to 1000 ° C. When Co. is applied, Co, which has a lower hardness than the hardness of WC, is deposited on the surface of the cemented carbide, so that the hardness of the surface layer of the cemented carbide is reduced and the original wear resistance of the CVD coating is improved. There was a problem in that

【0015】また、粉末合金の他の代表的なものである
サーメットに800〜1000゜Cの高温のCVDコー
ティングを行なう場合も、前述した超硬合金の場合と同
様に、TiCに比して低硬度の結合剤のNiがサーメッ
トの表面に析出する。
When cermet, which is another typical powder alloy, is subjected to high temperature CVD coating at 800 to 1000 ° C., it is lower than TiC as in the case of the cemented carbide described above. Ni, which is a hardness binder, is deposited on the surface of the cermet.

【0016】すなわち、高硬度のTiCは、融点が32
00゜C、熱膨張係数αが7.6/106であるのに対
して、結合剤のNiは、融点が1455゜C、熱膨張係
数αが13.3/106であるので、前述した超硬合金
の場合と同様の理由で、Niの融点(1455゜C)よ
りかなり低いCVDコーティングの温度範囲においてサ
ーメットの表面層でNiが析出するという現象が発生
し、サーメットの表面層の硬度を低下させ、CVDコー
ティングによる本来の耐摩耗性を向上させる効果を減少
させてしまうという問題点があった。
That is, high hardness TiC has a melting point of 32.
Whereas the binder Ni has a melting point of 1455 ° C and a thermal expansion coefficient α of 13.3 / 10 6 , while the thermal expansion coefficient α is 00 ° C and the thermal expansion coefficient α is 7.6 / 10 6 , For the same reason as in the case of the above cemented carbide, a phenomenon in which Ni precipitates on the surface layer of the cermet in the temperature range of the CVD coating considerably lower than the melting point of Ni (1455 ° C) occurs, and the hardness of the surface layer of the cermet increases. There is a problem in that the effect of improving the original wear resistance by the CVD coating is reduced.

【0017】本発明は叙上の問題点を解決するために開
発されたもので、粉末合金の表面付近の組織を変化させ
且つ各圧粉体間の組織を微細化させて各圧粉体間の密着
性を高め、粉末合金の耐摩耗性及び耐久性をより一層向
上させることを目的とする。また、粉末合金にCVD又
はPVDコーティングを施すものにおいては、粉末合金
の表面層での結合剤の析出現象を低下せしめて、CVD
又はPVDコーティングによる本来の効果を向上させる
ことを目的とする。
The present invention was developed in order to solve the above-mentioned problems, and the structure near the surface of the powder alloy is changed and the structure between the respective powder compacts is made fine so that the powder compacts The purpose of the present invention is to improve the adhesion of the powder alloy and further improve the wear resistance and durability of the powder alloy. Further, in the case where the powder alloy is subjected to the CVD or PVD coating, the precipitation phenomenon of the binder in the surface layer of the powder alloy is reduced to improve the CVD.
Alternatively, the purpose is to improve the original effect of the PVD coating.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、本発明の粉末合金の表面層の処理法においては、サ
ンドブラストないしはショットピーニングにおいてショ
ットを高速に噴射させると、被加工物たる製品の噴射面
に発熱が生じ、製品の噴射表面温度がショットの噴射速
度の増加に伴って上昇することに基づいて為されたもの
で、複数の各種圧粉体から成る粉末合金の製品の表面
に、各種圧粉体のうち最高硬度の圧粉体の硬度と同等以
上の硬度を有する40〜200μのショットを噴射速度
50m/sec以上で噴射し、前記粉末合金の表面付近の温
度を、各種圧粉体のうち結合剤となる圧粉体の再結晶温
度以上に上昇させ、後続するショットの加圧力で粉末合
金の表面付近の前記高硬度の圧粉体の配置状態を変化さ
せることを特徴とする。次いでこの粉末合金の表面にP
VDコーティング又はCVDコーティングを施すもので
ある。
In order to achieve the above object, in the method for treating the surface layer of the powder alloy of the present invention, when shots are jetted at high speed in sand blasting or shot peening, the product to be processed becomes Heat was generated on the injection surface, and it was made based on the fact that the injection surface temperature of the product rises with the increase in the injection speed of the shot, and on the surface of the product of the powder alloy consisting of multiple various powder compacts, Among the various powder compacts, a 40 to 200μ shot having a hardness equal to or higher than that of the powder compact with the highest hardness is sprayed at a spraying speed of 50 m / sec or more, and the temperature near the surface of the powder alloy is adjusted to various powder compacts. It is characterized in that the temperature rises above the recrystallization temperature of the green compact that serves as a binder in the body, and the arrangement state of the high hardness green compact near the surface of the powder alloy is changed by the pressing force of the subsequent shot. . Then P on the surface of this powder alloy
VD coating or CVD coating is applied.

【0019】[0019]

【作用】粉末合金の代表的なものである超硬合金を例と
して作用について以下に説明する。
The operation will be described below by taking a cemented carbide, which is a typical powder alloy, as an example.

【0020】ショットの衝撃力によって超硬合金の表面
層の温度が上昇して結晶剤の圧粉体たるCoの再結晶温
度に達すると、結合剤のCoが著しく軟化する。この軟
化したCoと共に混在する高硬度の圧粉体たるWCの個
々の粒子は、ショット粒径に比して相対的にはるかに小
さいので、ショットの衝撃力によりほとんど平滑な面で
加圧される状態になり、表面層のWCの個々の粒子の平
坦面が超硬合金の表面に揃えられると同時に、WCとC
oの個々の粒子間の空間が減少して密着性が向上すると
いう表面層の組織の変化が生じる。この理由で、WCの
個々の粒子は超硬合金の表面から剥離しにくくなる。
When the impact force of the shot raises the temperature of the surface layer of the cemented carbide and reaches the recrystallization temperature of Co, which is the powder compact of the crystallizing agent, Co of the binder is significantly softened. The individual particles of WC, which is a high-hardness green compact mixed with the softened Co, are relatively much smaller than the shot particle size, and are therefore pressed on the almost smooth surface by the impact force of the shot. And the flat surfaces of the individual particles of WC in the surface layer are aligned with the surface of the cemented carbide, and at the same time WC and C
A change in the structure of the surface layer occurs in which the space between individual particles of o is reduced and the adhesion is improved. For this reason, individual particles of WC are less likely to delaminate from the surface of the cemented carbide.

【0021】さらに、上記サンドブラスト又はショット
ピーニング加工した超硬合金の表面に、CVD又はPV
Dコーティングを行なっても、表面層のWCの個々の粒
子の表面が平滑化されWC同志の間の組織が密着してい
るために、膨張したCoは超硬合金の表面へ析出しな
い。
Further, CVD or PV is applied to the surface of the cemented carbide which has been sandblasted or shot peened.
Even when D coating is performed, expanded Co does not precipitate on the surface of the cemented carbide because the surface of each particle of WC in the surface layer is smoothed and the structure between the WCs is in close contact.

【0022】[0022]

【実施例】以下、粉末合金の代表的な超硬合金の場合に
ついて図面を参照して説明し、サーメットなど他の粉末
合金については省略する。
EXAMPLE A typical cemented carbide powder alloy will be described below with reference to the drawings, and other powder alloys such as cermet will be omitted.

【0023】フライス加工用の超硬合金チップ(以下、
「超硬チップ」という)の表面に、図5に示すような重
力式ブラスト加工装置30(以下、「重力式装置」とい
う)を用いてブラスト加工処理を行った。なお、ブラス
ト加工装置としては、直圧式ブラスト加工装置を用いて
もよい。
Cemented carbide tips for milling (hereinafter,
The surface of the "carbide chip") was subjected to a blasting treatment using a gravity blasting apparatus 30 (hereinafter referred to as "gravity apparatus") as shown in FIG. A direct pressure type blasting machine may be used as the blasting machine.

【0024】重力式装置30は、被加工物Wを出し入れ
する出入口35を備えたキャビネット31内にショット
等の研磨材36を噴出するノズル32が設けられ、この
ノズル32には管44を連結し、この管44は図示せざ
る圧縮機に連通しており、この圧縮機から圧縮空気が供
給される。キャビネット31の下部にはホッパ38が設
けられ、ホッパ38の最下端は導管43を介してキャビ
ネット31の上方に設置された回収タンク33の上方側
面に連通し、回収タンク33の下端は管41を介して前
記ノズル32へ連通される。回収タンク33内の研磨材
は重力あるいは所定の圧力を受けて回収タンク33から
落下し、前記管44を介してノズル32へ供給された圧
縮空気と共にキャビネット31内へ噴射される。
In the gravity type device 30, a nozzle 32 for ejecting an abrasive 36 such as shot is provided in a cabinet 31 having an entrance / exit 35 for taking in / out a workpiece W, and a pipe 44 is connected to the nozzle 32. The pipe 44 communicates with a compressor (not shown), and compressed air is supplied from the compressor. A hopper 38 is provided in the lower part of the cabinet 31, and the lowermost end of the hopper 38 communicates with the upper side surface of a recovery tank 33 installed above the cabinet 31 via a conduit 43, and the lower end of the recovery tank 33 connects a pipe 41. It is communicated with the nozzle 32 via the. The abrasive in the recovery tank 33 receives gravity or a predetermined pressure, falls from the recovery tank 33, and is injected into the cabinet 31 together with the compressed air supplied to the nozzle 32 through the pipe 44.

【0025】回収タンク33内には、研磨材36として
被加工物Wたる超硬チップの母材の超硬合金のWCの圧
粉体の硬度より高い硬度HRC65を有し且つショット粒
径が44μの硬質ビーズで成るショットを投入する。な
お、本実施例ではショットはガラスとセラミックから成
る球状のセラミック入りビーズを使用しているが、超硬
合金の高硬度の圧粉体であるWC以上の硬度を有し且つ
球状のガラスビーズあるいはステンレスなどの他の材料
であっても良い。
In the recovery tank 33, the abrasive material 36 has a hardness H RC 65 which is higher than the hardness of the green compact of WC of the cemented carbide of the base material of the cemented carbide chip as the workpiece W and the shot grain size. Is a 44 μm hard bead. In this example, the shot uses spherical ceramic beads made of glass and ceramic. However, spherical glass beads having a hardness of WC or higher, which is a high hardness green compact of cemented carbide, or spherical glass beads or Other materials such as stainless steel may be used.

【0026】被加工物Wたる超硬チップを出入口35か
らキャビネット31内へ投入し、前記ショットはノズル
32より噴射圧力6kg/cm2、噴射速度80m/sec、噴射
距離100mmで超硬チップの表面へ10〜20秒間噴射
される。特に前記超硬チップの先端のコーナ部には5〜
6秒間噴射される。
A workpiece W, a cemented carbide chip, is put into the cabinet 31 through the inlet / outlet 35, and the shot is jetted from the nozzle 32 at a jetting pressure of 6 kg / cm 2 , a jetting speed of 80 m / sec, and a jetting distance of 100 mm. It is jetted for 10 to 20 seconds. In particular, 5 to the corner of the tip of the carbide tip
It is jetted for 6 seconds.

【0027】噴射された研磨材36およびこのとき発生
した粉塵37は、キャビネット31の下部のホッパ38
に落下し、導管43内に生じている上昇気流によって上
昇して回収タンク内に送られ、この回収タンク内研磨材
36が回収される。回収タンク33内の粉塵37は回収
タンク33内の気流によって回収タンク33の上端から
管42を介してダストコレクタ34へ導かれ、ダストコ
レクタ34の底部に集積され、正常な空気がダストコレ
クタ34の上部に設けられた排風機39から放出され
る。
The sprayed abrasive 36 and the dust 37 generated at this time are transferred to the hopper 38 at the bottom of the cabinet 31.
And then rises by the ascending air current generated in the conduit 43 and is sent into the recovery tank, where the abrasive 36 in the recovery tank is recovered. The dust 37 in the recovery tank 33 is guided by the air flow in the recovery tank 33 from the upper end of the recovery tank 33 to the dust collector 34 through the pipe 42 and accumulated at the bottom of the dust collector 34, so that normal air is collected in the dust collector 34. It is discharged from the blower 39 provided at the upper part.

【0028】上記のブラスト加工処理条件をまとめると
下表のようになる。
The above blasting processing conditions are summarized in the table below.

【0029】[0029]

【表1】 実施例1 Table 1 Example 1

【0030】上記の条件でブラストされた超硬チップの
表面付近の温度は上昇し、超硬合金の表面層の組織に変
化が生じ、より一層耐久性及び耐摩耗性に富む超硬チッ
プを得る結果に至ったのである。
The temperature in the vicinity of the surface of the cemented carbide chip blasted under the above conditions rises, the structure of the surface layer of the cemented carbide changes, and a cemented carbide chip having more excellent durability and wear resistance is obtained. The result was reached.

【0031】図2は、本実施例の上記条件でブラスト加
工処理を施した後のフライス加工用の超硬チップの先端
のコーナ部を拡大した拡大図を示すものであり、図1に
示す従来の超硬チップすなわちブラスト加工処理前の超
硬チップの先端のコーナ部の拡大図と比較すると、本実
施例の超硬チップの先端のコーナ部の表面アラサは明ら
かに小さくなっており、従来の超硬チップに比して顕著
な差がみられる。なお、図1および図2において、各超
硬チップの先端付近の白い部分は顕微鏡写真を撮影する
とき超硬チップの表面が光で反射したために生じたもの
である。
FIG. 2 is an enlarged view of an enlarged corner portion of the tip of the cemented carbide tip for milling after the blasting treatment under the above-mentioned conditions of this embodiment. Compared with the enlarged view of the corner portion of the tip of the cemented carbide tip, that is, the tip of the cemented carbide tip before the blasting treatment, the surface roughness of the corner portion of the tip of the cemented carbide tip of this example is obviously smaller, There is a marked difference compared to the carbide tip. In FIGS. 1 and 2, the white portion near the tip of each cemented carbide tip is caused by the reflection of light on the surface of the cemented carbide tip when a micrograph is taken.

【0032】さらに、従来の超硬チップの先端のコーナ
部の縦断面の金属組織図である図3と、本実施例の超硬
チップの先端のコーナ部の縦断面の金属組織図である図
4とを比較すると、表面層の表面アラサおよび組織に大
きな違いが見られる。本実施例の超硬チップでは従来の
超硬チップに比較して表面アラサは顕著に小さいもので
あり、表面層付近の組織は各粒子が微細化されしかも粒
子の配列が均一な状態になっている。
Further, FIG. 3 is a vertical cross-sectional metallographic view of the corner portion of the tip of the conventional cemented carbide tip, and FIG. 3 is a vertical metallographic view of the corner portion of the tip of the cemented carbide tip of this embodiment. Comparing with No. 4, a large difference is seen in the surface roughness and texture of the surface layer. In the cemented carbide tip of the present example, the surface roughness is remarkably small as compared with the conventional cemented carbide tip, and the texture in the vicinity of the surface layer is such that each particle is miniaturized and the arrangement of the particles is uniform. There is.

【0033】さらに、本実施例で得られた前記超硬チッ
プを用いて、耐熱性および耐摩耗性に富み極めて硬く難
削材の代表的な金属材料とされているインコネルを被切
削物としてフライス加工を行なったところ、以下に示す
良好な結果を得た。
Further, using the above-mentioned cemented carbide tip obtained in this embodiment, Inconel, which is a typical hard metal material having excellent heat resistance and wear resistance and which is extremely hard and difficult to cut, is used as a milling object. When processed, the following good results were obtained.

【0034】前記被切削物を、フライスの送り速度が1
00mm/minで、切削長さを500mm、1往復10分間で
切削するフライス加工工程を1パスとすると、従来の超
硬チップでは、1パスで使用不可能になったが、本実施
例の超硬チップでは、5パスまで使用可能であった。
The cutting speed of the object to be cut is 1
If the milling process of cutting at a cutting length of 500 mm and a reciprocating time of 10 minutes at 00 mm / min is defined as one pass, the conventional cemented carbide tip cannot be used in one pass. The hard tip was usable up to 5 passes.

【0035】すなわち、本実施例の超硬チップは従来の
超硬チップに比して5倍の寿命が得られ、超硬チップ自
体の耐久性が大幅に向上した。
That is, the cemented carbide tip of this embodiment has a life of 5 times that of the conventional cemented carbide tip, and the durability of the cemented carbide tip itself is significantly improved.

【0036】さらに、本実施例の超硬チップは従来の超
硬チップに比して切削性が良好であった。その結果、本
実施例の超硬チップにより切削加工した被切削物の加工
表面の表面アラサ及び寸法のバラツキは、従来の超硬チ
ップによる切削加工物に比して小さく、良好な品質の被
切削物を得られる。
Further, the cemented carbide tip of this example had better machinability than the conventional cemented carbide tip. As a result, the surface roughness and the variation in the size of the processed surface of the work piece cut by the carbide tip of the present example are smaller than those of the conventional work piece by the carbide tip, and the work piece of good quality is cut. You can get things.

【0037】一例として、本実施例の超硬チップを備え
た超硬バイトおよび従来の超硬チップを備えた超硬バイ
トをそれぞれ用いて、S45Cの材料でなる直径75〜
120の被切削物を旋盤により750rpm.で回転さ
せ、被切削物の外周より2mmの切削深さで同一の加工条
件で旋盤加工を行ったところ、以下に示すような顕著な
差がみられた。なお、この例は本実施例と従来の超硬チ
ップの切削性の差をみるために行った実験例である。被
切削物を30分間連続切削した後、被切削物の寸法を測
定すると、被切削物の寸法のバラツキは、従来の超硬バ
イトでは、15μであったが、本実施例の超硬バイトで
は、5μであった。
As an example, using a cemented carbide bit having the cemented carbide tip of the present embodiment and a cemented carbide bite having a conventional cemented carbide tip, the diameter of the material of S45C is 75-
120 objects to be cut by a lathe at 750 rpm. When the lathe was rotated under the same machining conditions with a cutting depth of 2 mm from the outer periphery of the object to be cut, the following remarkable differences were observed. In addition, this example is an example of an experiment conducted to see the difference in machinability between this embodiment and the conventional cemented carbide tip. When the dimension of the object to be cut was measured after continuously cutting the object to be cut for 30 minutes, the variation in the dimension of the object to be cut was 15μ in the conventional cemented carbide tool, but in the cemented carbide tool of this example. It was 5μ.

【0038】被切削物を60分間連続切削した後、被切
削物の寸法を測定すると、被切削物の寸法のバラツキ
は、従来の超硬バイトでは、38μであったが、本実施
例の超硬バイトでは、22μであった。
When the dimension of the object to be cut was measured after continuously cutting the object to be cut for 60 minutes, the variation in the dimension of the object to be cut was 38 μ in the conventional cemented carbide bite. For the hard bite, it was 22μ.

【0039】以上のことから、本実施例の超硬チップ
は、耐摩耗性、構成刃先の抑制効果、耐チッピング性な
どが向上し、超硬チップ自体の品質が全体的に向上した
ことにより、結果として本実施例の超硬チップによって
切削加工した被切削物の品質が向上するという優れた効
果が得られたものと考えられる。
From the above, the cemented carbide tip of the present embodiment has improved wear resistance, effect of suppressing the constituent cutting edge, chipping resistance, etc., and the quality of the cemented carbide tip itself has been improved as a whole. As a result, it is considered that the excellent effect that the quality of the object to be cut by the carbide tip of the present example is improved was obtained.

【0040】さらに、本実施例において上記のような良
好な結果が得られた理由を以下に説明する。先ず、金属
性物体でなる被加工物Wの表面に前記ショットを噴射し
たときの温度上昇について説明すると、ショットの衝突
前と衝突後の速度の変化は、被加工物W及びショットの
硬度により異なるが、衝突後の速度は低下する。この速
度の変化はエネルギー不変の法則により、音以外にその
大部分は熱エネルギーに変換される。熱エネルギーは衝
突時に衝突部が変形することによる内部摩擦と考えられ
るが、ショットの衝突した変形部分のみで熱交換が行な
われるので部分的には高温になる。
Further, the reason why the above-described good result is obtained in this embodiment will be described below. First, the temperature rise when the shot is sprayed on the surface of the workpiece W made of a metallic object will be described. The change in velocity before and after the collision of the shot depends on the hardness of the workpiece W and the shot. However, the speed decreases after the collision. Due to the law of energy invariance, most of this speed change is converted into thermal energy in addition to sound. The thermal energy is considered to be internal friction due to the deformation of the collision portion at the time of collision, but heat is exchanged only at the deformed portion where the shot has collided, so the temperature becomes high locally.

【0041】すなわち、ショットにより変形して温度上
昇する部分の重量は、ショットの衝突前の速度に比例し
て大きくなるが、被加工物Wの全体重量に対する比率は
小さいものであるので、温度上昇は被加工物Wの表面付
近に局部的に生ずる。
That is, the weight of the portion which is deformed by the shot and rises in temperature increases in proportion to the velocity of the shot before the collision, but the ratio to the total weight of the workpiece W is small, so that the temperature rises. Occurs locally near the surface of the workpiece W.

【0042】なお、ショット及び被加工物Wの表面硬度
が共に高い場合の衝突においては反発係数eは1に近い
が、この場合は変形部分が小さいため局部的にはより高
温になる。
Incidentally, the coefficient of restitution e is close to 1 in a collision when the surface hardness of both the shot and the workpiece W is high, but in this case the deformed portion is small and the temperature becomes higher locally.

【0043】また、温度上昇はショットの衝突前の速度
に比例するので、ショットの噴射速度を高速にする必要
があり、ショット径を40μ〜200μと小さい方が5
0m/sec以上の高速で噴射でき、しかも被加工物Wの表
面の温度上昇を均一にできる。
Since the temperature rise is proportional to the speed of the shot before the collision, it is necessary to increase the shot injection speed, and the smaller shot diameter of 40 μ to 200 μ is 5.
It can be jetted at a high speed of 0 m / sec or more, and the temperature rise on the surface of the workpiece W can be made uniform.

【0044】しかしながら、被加工物Wが炭素工具鋼の
ように焼入れ効果のある金属物体であれば、ショットの
衝撃力による温度上昇により、炭素工具鋼の母材の表面
層を局部的に焼入れて表面硬度を増加することができる
が、粉末合金などの高硬度でしかも焼入れ効果のない金
属物体に対しては必ずしも処理効果を期待できなかっ
た。しかし、本願発明者は、粉末合金の金属物体に対し
てブラスト加工を施す実験を重ね、前述したような良好
な結果を得たのである。
However, if the workpiece W is a metal object having a hardening effect such as carbon tool steel, the surface layer of the base material of the carbon tool steel is locally hardened by the temperature rise due to the impact force of the shot. Although it is possible to increase the surface hardness, it was not always possible to expect a treatment effect on a metal object such as a powder alloy having a high hardness and no quenching effect. However, the inventor of the present application has repeatedly conducted an experiment in which a metal object made of a powder alloy is subjected to blasting, and has obtained the favorable result as described above.

【0045】上記条件で超硬合金の表面にブラスト加工
を行うと、ショットの衝撃力によって超硬合金の表面層
の温度が上昇して結合剤のCoが著しく軟化する温度す
なわちCoの再結晶温度以上の700℃に達し、このC
oが軟化した状態になって始めてショットの衝撃力はさ
らに表面層のWCとCoのそれぞれの圧粉体の配置状態
を変化させることになり、超硬合金の表面層の温度上昇
以外の他の効果を発揮する。
When the surface of the cemented carbide is blasted under the above conditions, the temperature of the surface layer of the cemented carbide rises due to the impact force of the shot, and the temperature at which Co of the binder is significantly softened, that is, the recrystallization temperature of Co. The temperature reached above 700 ° C and this C
Only when o becomes a softened state, the impact force of the shot further changes the arrangement state of the green compacts of WC and Co of the surface layer, and other than the temperature rise of the surface layer of the cemented carbide. Be effective.

【0046】炭化タングステン(WC)の概略寸法は1
〜2μ以下であり、ショット粒径44μに比して相対的
にはるかに小さいので、軟化したCoと共に混在するW
Cはほとんど平滑な面で加圧される状態と同様になる。
すなわち、WCに対して1万倍以上の体積のショットが
WCに高速で衝突するので、個々のWCの粒子に対する
単位面積当たりの衝撃力は非常に大きくなり、そのため
に超硬合金の表面層の温度が上昇してCoの再結晶温度
に達しCoが軟化した状態では、前記ショットの衝撃力
により表面層のWCの個々の粒子の向きが変化して各W
Cの粒子の平坦面が超硬合金の表面に揃えられる。と同
時に、WCの個々の粒子は相対的に大きな体積のショッ
トにより大きな衝撃力(単位面積当たりの)を受け、結
合剤が微細化することになるので、各圧粉体間の微小な
空間が減少し、WCとCoの個々の粒子間の組織が密着
する。
The approximate size of tungsten carbide (WC) is 1
.About.2 μ or less, which is much smaller than the shot grain size of 44 μ, so that W mixed with softened Co is mixed.
C becomes almost the same as the state of being pressed on a smooth surface.
That is, since a shot having a volume of 10,000 times or more of the WC collides with the WC at a high speed, the impact force per unit area of each WC particle becomes very large, and therefore the surface layer of the cemented carbide is formed. When the temperature rises to reach the recrystallization temperature of Co and the Co is softened, the impact force of the shot changes the orientation of the individual particles of WC in the surface layer, and
The flat surface of the C particles is aligned with the surface of the cemented carbide. At the same time, the individual particles of WC receive a large impact force (per unit area) due to a shot of a relatively large volume, and the binder is miniaturized. It decreases and the texture between the individual particles of WC and Co adheres.

【0047】したがって、本実施例の超硬チップは上述
したようにWCの粒子の表面が平滑化され、各圧粉体W
CとCoの個々の粒子間の組織が密着して、WCの個々
の粒子は超硬合金の表面から剥離しにくくなるので、切
削加工中に脱落するWCが減少し、超硬合チップの耐久
性が増大することになったものと考えられる。
Therefore, in the cemented carbide tip of the present embodiment, the surface of the WC particles is smoothed as described above, and each green compact W
Since the structure between the individual particles of C and Co adheres and the individual particles of WC are less likely to separate from the surface of the cemented carbide, the WC falling off during cutting is reduced and the durability of the cemented carbide tip is reduced. It is considered that the sex has increased.

【0048】実際、前述したように、図3および図4を
参照して従来と本実施例の超硬チップの表面層の組織の
状態を比較すると、結合剤が微細化して各圧粉体の粒子
間の組織が密着していることが認められる。
In fact, as described above, comparing the texture states of the surface layers of the conventional and the cemented carbide chips of the present embodiment with reference to FIGS. It can be seen that the tissues between the particles are in close contact.

【0049】また、上記条件でブラスト加工した超硬合
金に、800〜1000゜Cの高温のCVDコーティン
グを行なったところ、超硬合金の表面層にCoの析出現
象はほとんど認められなかった。そのため、従来の超硬
合金にCVDコーティングを施したものとは異なり、本
実施例の超硬チップはCVDコーティングの本来の効果
すなわちCVDコーティングにより粉末合金の耐摩耗性
を向上させるという効果を減少させることがないという
良好な結果を得た。
When the blast-processed cemented carbide was subjected to high temperature CVD coating at 800 to 1000 ° C., almost no precipitation of Co was observed in the surface layer of the cemented carbide. Therefore, unlike the conventional cemented carbide having CVD coating, the cemented carbide chip of the present embodiment reduces the original effect of CVD coating, that is, the effect of improving the wear resistance of the powder alloy by CVD coating. Good results were obtained.

【0050】一例として、本実施例および従来の超硬チ
ップに、TiCとTiNをそれぞれ3μの厚みのCVD
コーティングを施した後、これらの超硬チップをそれぞ
れ用いて自動車部品のクランクシャフトを切削加工した
ところ、従来の超硬チップでは、60個のクランクシャ
フトを生産可能であったが、本実施例の超硬チップで
は、120個のクランクシャフトを生産可能であった。
As an example, CVD and TiC and TiN having a thickness of 3 .mu.
After the coating, the crankshafts of automobile parts were cut using these carbide tips, respectively, and it was possible to produce 60 crankshafts with the conventional carbide tips. Carbide chips could produce 120 crankshafts.

【0051】なお、被切削物のクランクシャフトの表面
アラサおよび寸法精度においても、本実施例の超硬チッ
プでは従来の超硬チップより良好な品質の被切削物を得
られた。
Also in terms of the surface roughness and dimensional accuracy of the crankshaft of the object to be cut, the carbide tip of this example provided an object of better quality than the conventional carbide tips.

【0052】以上のように、CVDコーティングを施し
た本実施例の超硬チップに良好な結果が得られた理由
は、前述したように、ショットの衝撃力により超硬チッ
プの表面層の温度が結合剤Coの再結晶温度に達する
と、表面層のWCの個々の粒子の表面が平滑化されWC
同志の間の組織が密着すると共にCoが微細化するの
で、この超硬チップの表面にCVDコーティングを施し
て表面層のWC間に介在するCoが膨張しても、超硬合
金の表面へのCoの析出を抑制する効果が得られたため
であると考えられる。
As described above, the reason why good results were obtained with the carbide coating of this embodiment coated with CVD is that, as described above, the temperature of the surface layer of the carbide tip is changed by the impact force of the shot. When the recrystallization temperature of the binder Co is reached, the surface of the individual particles of WC in the surface layer is smoothed and
Since the microstructure of Co adheres as the structure between the two adheres to each other, even if Co intervening between WC of the surface layer is expanded by applying CVD coating to the surface of this cemented carbide chip, It is considered that this is because the effect of suppressing the precipitation of Co was obtained.

【0053】なお、サーメットで成る工具類や機械部品
などの製品に上記条件でショットピーニングした場合
も、前述の超硬合金と同様の理由で同様の効果が認めら
れる。
Even when products such as tools and machine parts made of cermet are shot peened under the above-mentioned conditions, the same effect is recognized for the same reason as for the cemented carbide.

【0054】[0054]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0055】(1)粉末合金の表面付近の結合剤を微細
化するよう変化させ且つ各圧粉体間の微小な空間を減少
させて各圧粉体間の組織の密着性を高めることができ、
粉末合金の耐摩耗性及び耐久性をより一層向上させるこ
とができた。
(1) The binder in the vicinity of the surface of the powder alloy can be changed so as to be fine and the minute space between the green compacts can be reduced to improve the adhesion of the structure between the green compacts. ,
It was possible to further improve the wear resistance and durability of the powder alloy.

【0056】(2)また、粉末合金の表面層の高硬度の
圧粉体の表面を精密に平滑化して高硬度の圧粉体の平坦
面を粉末合金の表面に揃えることにより、切削加工中に
おける前記高硬度の圧粉体の脱落の可能性を減少せし
め、粉末合金の耐摩耗性及び耐久性をより一層向上させ
ることができた。
(2) During the cutting process, the surface of the high hardness green compact of the surface layer of the powder alloy is precisely smoothed so that the flat surface of the high hardness green compact is aligned with the surface of the powder alloy. It was possible to reduce the possibility of the high-hardness green compact falling off and further improve the wear resistance and durability of the powder alloy.

【0057】(3)また、粉末合金の表面層の処理法で
ブラスト加工処理を施した粉末合金の切削工具において
は、耐摩耗性、構成刃先の抑制効果、耐チッピング性な
どの機械的特性が全体的に向上するので、前記切削工具
によって切削加工した被切削物の寸法精度や表面アラサ
などの品質特性を向上することを可能にした。
(3) Further, in the cutting tool of the powder alloy subjected to the blasting treatment by the treatment method of the surface layer of the powder alloy, the mechanical properties such as wear resistance, the effect of suppressing the constituent cutting edge, and the chipping resistance are Since it is improved as a whole, it is possible to improve the quality characteristics such as the dimensional accuracy and surface roughness of the work to be cut by the cutting tool.

【0058】(4)上記(2)項の理由により、粉末合
金の表面層の高硬度の圧粉体同志間の組織を密着させた
ので、粉末合金の表面に高温のCVDコーティングを施
しても、高硬度の圧粉体間に介在する結合剤の粉末合金
の表面への析出現象を低下せしめることができ、CVD
コーティングの効果を損なうことなく粉末合金の耐摩耗
性及び耐久性をより一層向上させることができた。
(4) Because of the reason described in (2) above, the texture between the high hardness green compacts of the surface layer of the powder alloy is brought into close contact with each other, so that even if high temperature CVD coating is applied to the surface of the powder alloy. , The precipitation phenomenon of the binder existing between the high hardness green compacts on the surface of the powder alloy can be reduced, and the CVD
It was possible to further improve the wear resistance and durability of the powder alloy without impairing the effect of the coating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のブラスト加工処理前の超硬チップの先
端のコーナ部の表面の顕微鏡写真(×105)を基にし
た拡大図である。
FIG. 1 is an enlarged view based on a micrograph (× 105) of a surface of a corner portion at a tip of a cemented carbide chip before blasting treatment of the present invention.

【図2】本発明のブラスト加工処理後の超硬チップの先
端のコーナ部の表面の顕微鏡写真(×105)を基にし
た拡大図である。
FIG. 2 is an enlarged view based on a micrograph (× 105) of the surface of the corner portion at the tip of the cemented carbide tip after the blasting treatment of the present invention.

【図3】本発明のブラスト加工処理前の超硬チップの先
端のコーナ部の表面付近の縦断面の金属組織の顕微鏡写
真(×1400)を基にした組織図である。
FIG. 3 is a structural diagram based on a micrograph (× 1400) of a metal structure of a vertical cross section near the surface of a corner portion at the tip of a carbide tip before blasting treatment of the present invention.

【図4】本発明のブラスト加工処理後の超硬チップの先
端のコーナ部の表面付近の縦断面の金属組織の顕微鏡写
真(×1400)を基にした組織図である。
FIG. 4 is a structural diagram based on a micrograph (× 1400) of a metal structure of a vertical cross section near the surface of a corner portion at the tip of a cemented carbide chip after the blasting treatment of the present invention.

【図5】本発明の実施例における重力式のブラスト加工
装置の全体図を示すものである。
FIG. 5 is an overall view of a gravity type blasting apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

30 重力式ブラスト加工装置 31 キャビネット 32 ノズル 33 回収タンク 34 ダストコレクタ 35 出入口 36 研磨材 38 ホッパ 39 排風機 41 管 42 管 43 導管 44 管 30 Gravity Blasting Machine 31 Cabinet 32 Nozzle 33 Collection Tank 34 Dust Collector 35 Inlet / Outlet 36 Abrasive 38 Hopper 39 Blower 41 Pipe 42 Pipe 43 Pipe 44 Pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の各種圧粉体から成る粉末合金の製
品の表面に、各種圧粉体のうち最高硬度の圧粉体の硬度
と同等以上の硬度を有する40〜200μのショットを
噴射速度50m/sec以上で噴射し、前記粉末合金の表面
付近の温度を、各種圧粉体のうち結合剤となる圧粉体の
再結晶温度以上に上昇させることを特徴とする粉末合金
の表面層の処理法。
1. A jet speed of 40 to 200 .mu.m having a hardness equal to or higher than that of a green compact having the highest hardness among various green compacts is sprayed on the surface of a powder alloy product composed of a plurality of various green compacts. Spraying at 50 m / sec or more to raise the temperature near the surface of the powder alloy to a temperature higher than the recrystallization temperature of the green compact as a binder among various green compacts. Processing method.
【請求項2】 高硬度の圧粉体と結合剤の圧粉体とから
成る粉末合金の製品の表面に、前記高硬度の圧粉体の硬
度以上の硬度を有する40〜200μのショットを噴射
速度50m/sec以上で噴射し、前記粉末合金の表面付近
の温度を前記結合剤の圧粉体の再結晶温度以上に上昇さ
せ、後続するショットの加圧力で粉末合金の表面付近の
前記高硬度の圧粉体の配置状態を変化させることを特徴
とする粉末合金の表面層の処理法。
2. A shot of 40 to 200 .mu. Having a hardness equal to or higher than the hardness of the high hardness green compact is sprayed on the surface of a powder alloy product comprising a high hardness green compact and a binder green compact. Spraying at a speed of 50 m / sec or more to raise the temperature near the surface of the powder alloy above the recrystallization temperature of the powder compact of the binder, and the high hardness near the surface of the powder alloy by the pressing force of the subsequent shot. A method for treating a surface layer of a powder alloy, characterized in that the arrangement state of the green compact is changed.
【請求項3】 前記噴射速度が好ましくは80m/sec以
上で、前記ショットが、ショット粒径44μ、ショット
硬度HRC65である請求項1又は2記載の粉末合金の表
面層の処理法。
3. The method for treating a surface layer of a powder alloy according to claim 1, wherein the injection speed is preferably 80 m / sec or more, and the shot has a shot grain size of 44 μ and a shot hardness of H RC 65.
【請求項4】 前記粉末合金が、超硬合金又はサーメッ
トである請求項1、2又は3記載の粉末合金の表面層の
処理法。
4. The method for treating a surface layer of a powder alloy according to claim 1, 2 or 3, wherein the powder alloy is cemented carbide or cermet.
【請求項5】 複数の各種圧粉体から成る粉末合金の製
品の表面に、各種圧粉体のうち最高硬度の圧粉体の硬度
と同等以上の硬度を有する40〜200μのショットを
噴射速度50m/sec以上で噴射し、前記粉末合金の表面
付近の温度を、各種圧粉体のうち結合剤となる圧粉体の
再結晶温度以上に上昇させ、次いでこの粉末合金の表面
にPVDコーティング又はCVDコーティングを施すこ
とを特徴とする粉末合金の表面層の処理法。
5. A jet speed of 40 to 200 μ having a hardness equal to or higher than the hardness of the green compact having the highest hardness among various green compacts is sprayed on the surface of a powder alloy product composed of a plurality of various green compacts. Spraying at 50 m / sec or more to raise the temperature in the vicinity of the surface of the powder alloy above the recrystallization temperature of the green compact as a binder among various green compacts, and then PVD coating or A method for treating a surface layer of a powder alloy, which comprises applying a CVD coating.
【請求項6】 高硬度の圧粉体と結合剤の圧粉体とから
成る粉末合金の製品の表面に、前記高硬度の圧粉体の硬
度以上の硬度を有する40〜200μのショットを噴射
速度50m/sec以上で噴射し、前記粉末合金の表面付近
の温度を前記結合剤の圧粉体の再結晶温度以上に上昇さ
せ、後続するショットの加圧力で粉末合金の表面付近の
前記高硬度の圧粉体の配置状態を変化させ、次いでこの
粉末合金の表面にPVDコーティング又はCVDコーテ
ィングを施すことを特徴とする粉末合金の表面層の処理
法。
6. A shot of 40 to 200 μ having a hardness equal to or higher than the hardness of the high hardness green compact is sprayed on the surface of a powder alloy product comprising a high hardness green compact and a binder green compact. Spraying at a speed of 50 m / sec or more to raise the temperature near the surface of the powder alloy above the recrystallization temperature of the powder compact of the binder, and the high hardness near the surface of the powder alloy by the pressing force of the subsequent shot. 2. A method for treating a surface layer of a powder alloy, which comprises changing the arrangement state of the green compact and then applying PVD coating or CVD coating to the surface of the powder alloy.
JP5025619A 1993-02-15 1993-02-15 Surface treatment of powder alloy Expired - Lifetime JP3049165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5025619A JP3049165B2 (en) 1993-02-15 1993-02-15 Surface treatment of powder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5025619A JP3049165B2 (en) 1993-02-15 1993-02-15 Surface treatment of powder alloy

Publications (2)

Publication Number Publication Date
JPH06240303A true JPH06240303A (en) 1994-08-30
JP3049165B2 JP3049165B2 (en) 2000-06-05

Family

ID=12170903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5025619A Expired - Lifetime JP3049165B2 (en) 1993-02-15 1993-02-15 Surface treatment of powder alloy

Country Status (1)

Country Link
JP (1) JP3049165B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687739A1 (en) * 1994-06-14 1995-12-20 Fuji Kihan Co., Ltd. Method of making surface-hardened metal shot
JPH09279229A (en) * 1996-04-15 1997-10-28 Suncall Corp Surface treatment of steel work
US6374961B1 (en) 1998-11-30 2002-04-23 Nsk-Warner K.K. Tube-pressed brake
JP2004122332A (en) * 2002-10-04 2004-04-22 Toyota Motor Corp Shot-peening method
JP2004181535A (en) * 2002-11-29 2004-07-02 Toyota Motor Corp Shot-peening method
US6790294B1 (en) 1999-02-19 2004-09-14 Suncall Corporation Spring with excellent fatigue endurance property and surface treatment method for producing the spring
CN105339112A (en) * 2013-09-18 2016-02-17 株式会社不二机贩 Surface treatment method for powdered metal material
CN109094028A (en) * 2018-10-13 2018-12-28 株洲利华硬质合金有限公司 A kind of high rigidity carboloy nozzle and preparation method thereof for 3D printing
US20210114116A1 (en) * 2018-06-29 2021-04-22 Ab Sandvik Coromant Method of treating a cutting tool, and a cutting tool
CN113005381A (en) * 2021-02-09 2021-06-22 昆明理工大学 Surface treatment method for tungsten carbide-based hard alloy
JP2021115672A (en) * 2020-01-27 2021-08-10 株式会社不二機販 Binder metal phase strengthening method of sintered body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687739A1 (en) * 1994-06-14 1995-12-20 Fuji Kihan Co., Ltd. Method of making surface-hardened metal shot
JPH09279229A (en) * 1996-04-15 1997-10-28 Suncall Corp Surface treatment of steel work
US6374961B1 (en) 1998-11-30 2002-04-23 Nsk-Warner K.K. Tube-pressed brake
US6790294B1 (en) 1999-02-19 2004-09-14 Suncall Corporation Spring with excellent fatigue endurance property and surface treatment method for producing the spring
JP2004122332A (en) * 2002-10-04 2004-04-22 Toyota Motor Corp Shot-peening method
JP2004181535A (en) * 2002-11-29 2004-07-02 Toyota Motor Corp Shot-peening method
CN105339112A (en) * 2013-09-18 2016-02-17 株式会社不二机贩 Surface treatment method for powdered metal material
US20210114116A1 (en) * 2018-06-29 2021-04-22 Ab Sandvik Coromant Method of treating a cutting tool, and a cutting tool
JP2021529676A (en) * 2018-06-29 2021-11-04 エービー サンドビック コロマント How to process cutting tools and cutting tools
CN109094028A (en) * 2018-10-13 2018-12-28 株洲利华硬质合金有限公司 A kind of high rigidity carboloy nozzle and preparation method thereof for 3D printing
JP2021115672A (en) * 2020-01-27 2021-08-10 株式会社不二機販 Binder metal phase strengthening method of sintered body
CN113005381A (en) * 2021-02-09 2021-06-22 昆明理工大学 Surface treatment method for tungsten carbide-based hard alloy
CN113005381B (en) * 2021-02-09 2022-03-18 昆明理工大学 Surface treatment method for tungsten carbide-based hard alloy

Also Published As

Publication number Publication date
JP3049165B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
US7244519B2 (en) PVD coated ruthenium featured cutting tools
KR100755251B1 (en) An apparatus and method for improving work surface during forming and shaping of materials
EP1801248B1 (en) Wear resistant low friction coating composition and method for coating
US5697994A (en) PCD or PCBN cutting tools for woodworking applications
US6511265B1 (en) Composite rotary tool and tool fabrication method
US2964420A (en) Refractory coated body
US5637030A (en) Abrasive formulation for waterjet cutting and method employing same
JPH06240303A (en) Treatment of surface layer of alloy powder
JP2001507082A (en) Processing method for metal members
JP2005177981A (en) Cemented carbide tool and manufacturing method thereof
WO2007081314A1 (en) Improved wear-resistant boride composites with high percentage of reinforcement phase
US20060219825A1 (en) High pressure fluid/particle jet mixtures utilizing metallic particles
US5499672A (en) Mold for continuous casting which comprises a flame sprayed coating layer of a tungsten carbide-based wear-resistant material
EP1493845B1 (en) CVD coated cutting tool insert
JPWO2004103615A1 (en) Surface toughening method of sintered body cutting tool and long-life sintered body cutting tool
JP2745487B2 (en) Shot processing ball
EP0932464A1 (en) Green honed cutting insert and method of making the same
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JP2599044B2 (en) High pressure injection nozzle
JP2003293113A (en) Molding die and manufacturing method therefor
JP3176953B2 (en) Tool surface treatment method
JP6823303B2 (en) Surface modification method of the object to be treated and production method of the treated product
JP7470963B2 (en) Method for strengthening binder metal phase in sintered body
JP3878334B2 (en) Cemented carbide and coated cemented carbide
Kennedy et al. Dynamic abrasion resistance of coatings applied to engineering materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090324

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13

EXPY Cancellation because of completion of term