JP2004122332A - Shot-peening method - Google Patents

Shot-peening method Download PDF

Info

Publication number
JP2004122332A
JP2004122332A JP2002292992A JP2002292992A JP2004122332A JP 2004122332 A JP2004122332 A JP 2004122332A JP 2002292992 A JP2002292992 A JP 2002292992A JP 2002292992 A JP2002292992 A JP 2002292992A JP 2004122332 A JP2004122332 A JP 2004122332A
Authority
JP
Japan
Prior art keywords
shot
metal product
coverage
hardness
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002292992A
Other languages
Japanese (ja)
Other versions
JP4131384B2 (en
Inventor
Shinji Shibata
柴田 新次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002292992A priority Critical patent/JP4131384B2/en
Publication of JP2004122332A publication Critical patent/JP2004122332A/en
Application granted granted Critical
Publication of JP4131384B2 publication Critical patent/JP4131384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shot-peening method to provide a highly hard surface. <P>SOLUTION: This shot-peening method for a metal product to improve hardness of a surface of the metal product by projecting a shot having hardness the same or higher than the metal product on the surface of the metal product constitutes its characteristic feature of constituting a structure of a shooting part of the metal product of hyper-fine crystal grains of less than 500nm in shot coverage of 900%. Additionally, this shot-peening method satisfies an expression of:nxV<SP>2</SP>xDxρ≥3.0x10<SP>6</SP>under specifications of:n: shot coverage(%/100),V: shot speed (m/s),D: shot grain diameter (mm),ρ: shot grain specific gravity (g/cm<SP>3</SP>). Hereby, it is desirable that the shot speed V is 50 to 250m/sec and that the shot grain diameter D is 0.03 to 3.5mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属成品の表面にショットを投射して、被ショット面の硬度を向上させるショットピーニングの方法に関する。
【0002】
【従来の技術】
従来、金属成品の表面処理方法としては、バネや成品形状に鋳造した鋳鋼品、鋳造成品、ステンレス鋼などの金属成品などを、その全部あるいは一部に、焼き入れ焼き戻し処理した後に冷間加工を施すショットピーニングが知られている。この方法は、高周波誘導加熱などにより成品に約850℃前後で焼き入れし、600℃前後で焼き戻すという処理を行って、表面組織の変態を行わせた後、空冷し、常温あるいは温間で通常のピーニング加工を施して圧縮残留応力を生じさせて、疲労強度を増加させるものである。
【0003】
上記ショットピーニングでは、金属成品の表面にショットを投射させたときの衝突による塑性変形により、金属成品の表面に圧縮残留応力が生じるので、この圧縮残留応力は塑性変形部であるくぼみの大きさに比例する。また、塑性変形部であるくぼみの大きさは、ショット径に比例するので、圧縮残留応力とショット径も比例関係にあるといえる。
【0004】
つまり表層からより深い内部での内部圧縮応力、硬化の深さを得るためには、ショット粒径の大きなショットが有効であり、従来は、ショット径が1.2〜0.6mm程度のショットを用いている。
【0005】
また、上記表面処理方法においては、熱処理工程とショットピーニング工程とを別個に行わなければならず、温度制御を伴う工程管理が煩雑でコスト高となる問題に対して、「金属成品の表面加工熱処理法」(例えば、特許文献1参照)では、金属成品の表面に、成品と同等以上の硬度を有する40〜200μmのショットを噴射速度100m/sec以上で噴射し、表面付近の温度をA3変態点以上に上昇させて、ブラスト処理により、圧縮残留応力の発生に伴う成品表面の硬化、疲労強度の増加と共に熱処理による表面の改質を可能とした。
【0006】
また、「金属成品の表面処理方法」(特許文献2参照)では、高強度、高硬度な材質からなり、ショット径が異なる小さなショットおよび大きなショットを混合した混合ショットを用いてブラスト処理を行い、圧縮残留応力の発生に伴う表面の熱処理硬化、疲労強度の増加と共に、熱処理による表面の改質といった効果を得るショットピーニングにおいて、表面内部までのより深い圧縮応力の発生および表面粗さの向上を可能とし、特に、従来の多工程のショットピーニング、またはピーニング加工後の研磨加工などの処理工程を不要とした金属成品の表面処理方法を提案している。
【0007】
【特許文献1】
特許第1594395号
【特許文献2】
特開平11−347944号公報
【0008】
【発明が解決しようとする課題】
しかし、前記の「金属成品の表面加工熱処理法」では、噴射速度および噴射密度(以降、カバレージと称する)との関係から、高速な噴射速度を得るためにショット径が40〜200μmである小さなショットを用いており、圧縮残留応力および熱処理硬化の生じる成品表層からの深さには限界があった。
また、前記の「金属成品の表面処理方法」におけるショットピーニングでは、ショット粒径が0.6mm〜0.03mmと1mm以下のショットを用いることを提案している。このような粒径のショットを用いたショットピーニングでは、図1に示すようにカバレージが500%付近を頂点として被処理物の表面近傍の圧縮残留応力は低下し始めることが知られている。このために、通常のショットピーニングではカバレージが500%以下の範囲で実施されている場合が多い。前記の「金属成品の表面処理方法」における各実施例では、カバレージは200〜400%程度と推測される。
【0009】
また、カバレージが500%以下のショットピーニングによって得られる硬さの増加分は、炭素鋼ではHVで50〜300程度であり必ずしも満足のゆくものではない。
【0010】
そこで、本発明の課題は、より高い表面硬度を付与するショットピーニング方法を提供することである。
【0011】
【課題を解決するための手段】
本発明のショットピーニング方法は、金属成品の表面に、前記金属成品と同等以上の硬度を有するショットを投射し、前記金属成品の表面の硬度を向上させる金属成品のショットピーニング方法において、ショットカバレージを900%以上として前記金属成品の被ショット部分の組織が500nm以下の超微細結晶粒からなることを特徴とする。
【0012】
また、本発明のショットピーニング方法は、n:ショットカバレージ(%/100)、V:ショット速度(m/s)、D:ショット粒径(mm)、ρ:ショット粒比重(g/cm)の関係が、n×V×D×ρ ≧3.0×106 で表すことができる方法である。ここで、ショット速度Vは50〜250m/secであり、また、ショット粒径Dは0.03〜3.5mmであることが望ましい。
【0013】
【発明の実施の形態】
本発明のショットピーニング方法は、金属成品の表面に、前記金属成品と同等以上の硬度を有するショットを投射し、前記金属成品の表面の硬度を向上させる金属成品のショットピーニング方法において、ショットカバレージを900%以上として前記金属成品の被ショット部分の組織が500nm以下の超微細結晶粒からなることを特徴とする。
【0014】
この衝突が連続して付加されることによって金属成品の表面層の金属組織が微細化され、高強度で且つ高硬度な表面が生成される。特に、カバレージが900%以上になると、金属成品の単位面積当たりに付与されるショットによるエネルギはきわめて大きくなる。そして、表面部分の塑性変形が頻繁に繰り返されることにより金属成品の表面層は500nm以下の超微細結晶粒からなる組織となる。
【0015】
本発明のショットピーニング条件は、n:ショットカバレージ(%/100)、V:ショット速度(m/s)、D:ショット粒径(mm)、ρ:ショット粒比重(g/cm)として、n×V×D×ρ ≧3.0×106 で表すことができる。
【0016】
質量mの物体が速度vで運動するときの運動エネルギeは、e=1/2mvで表すことができる。
【0017】
nはショットの投射密度を表しており、金属成品の被ショット面を満遍なくn回ショットしたと考えることができる。すなわち、カバレージがnの場合のショットによる総運動エネルギEは、E=n(1/2)(4/3)πρ(D/2)  で与えられる。これをショット粒子が接触した面積、0.36×(π/4)Dで除すと、ショットによって付与された被ショット面の単位面積当たりのエネルギとなる。つまり、前記の関係式は、この単位面積当たりに付与されたエネルギ(以降、K値と呼ぶ)が3.0×106 以上であれば、金属成品の被処理表面は500nm以下の超微細結晶からなる組織が得られることを示している。
【0018】
ショット後の金属成品の表面硬さとK値との関係を図2に示す。図2はショット粒径、ショット速度、カバレージといったショットピーニング条件を変化して炭素鋼の表面を処理し、得られた表面の硬度を測定して、K値との関係をプロットしたものである。多少のばらつきはあるものの、ショット後の表面硬度とK値とはほぼ比例関係にあり、K値が増加するとショット後の表面硬度も増加することが分かる。ここで、ショット後の表面硬度をHv600以上とするには、K値は3.0×106 以上であれば良い。なお、カバレージ500%(すなわち、前述の圧縮残留応力が最高となるカバレージ)の場合には、ショット後の炭素鋼の表面硬度はHv600程度であることから、本発明のショットピーニング方法ではショット後の表面硬度をHv600以上を目標とした。
【0019】
また、図3にはショット速度によるショット粒径とカバレージとの関係を示した。横軸にショット粒径(mm)をとり、縦軸をカバレージ(%)として、ショット速度が50m/sec、と100m/secとの2水準についてプロットした。なお、ショットは鉄のショットとし、比重は、7.87g/cmとして計算した。図3からショット粒径の減少に伴いカバレージは急激に増大することが分かる。さらに、ショット粒が細かくなると粒速度が速くなるので、低カバレージで目的が達成できることが分かる。
【0020】
本発明のショットピーニング方法によって得られたSCr30の焼鈍材の極表層の断面を図4に示す。図4のショットピーニング条件は、ショット粒径:1.4mm、ショット粒の硬さ:HV700、投射圧:0.3MPa、ショット速度:50m/sec、カバレージ:15000%で、K値は4131750であった。図4は表面から約200μmの範囲を示しているがSが最表面であり、ショットピーニングによって大きく波打っていることが分かる。黒く渦巻き状に見える部分(A)は直接ショットを受けて硬化した部分であり、その直下の白と黒との層状に見える部分(B)はショットの投射圧力で加工硬化した部分である。図4では示されていないが、(B)のさらに下の部分はショットピーニング処理の影響を受けていない未加工部分となっている。
【0021】
(A)のショット部位の組織は500nm以下の超微細結晶粒からなっており、硬度測定したところ(HV25gとした)HV681であった。また、(B)の加工硬化部位は700〜2000nmの微細結晶粒からなる組織であり、HV347であった。未加工部位は5〜10μmの結晶粒径であり、硬度はHV182であった。なお、(A)のショット部位の超微細結晶粒径は電子顕微鏡によって測定した。
【0022】
ここで、ショットの投射速度は、50〜250m/secであることが望ましい。投射速度が50m/sec未満ではエネルギ不足であり、250m/secを越えると設備的な制約があり困難な場合がある。より好ましくは100〜200m/secである。
【0023】
また、ショット粒径は0.03〜3.5mmであることが望ましい。ショット粒径が0.03mm未満では、上記の式を満足するショット速度を得ることが困難な場合があり、一方、3.5mmを越えるとショット速度不足となって十分なエネルギを付与することができない。より好ましくは、0.1〜3mmである。
【0024】
さらに、カバレージは900〜20000%であることが好ましい。カバレージが900%未満では、必要なK値が得られない。一方、20000%を越えても被ショット面の硬度が飽和してしまって効果が得られない上に生産性を阻害するので適当ではない。より好ましくは、1500〜10000%である。
【0025】
ショットの材質については特に制限はないが、被処理物である金属成品と同等またはそれ以上の硬さを有するものが望ましく、具体的には、HV600以上であることが好ましい。例えば、鋳鉄、鋳鋼、高速度工具鋼、合金工具鋼、非鉄合金鋼などを例示することができる。
【0026】
なお、K値は前記のように3.0×10以上であることが好ましいが、前記の投射速度の上限と、カバレージの上限とを考慮すると、K値の上限は7×107であることが適当である。
【0027】
【実施例】
(試験条件)
被処理物として炭素鋼に、鋼球(比重:7.87g/cm)からなる硬さHv700のショットを使用し、投射圧は0.3MPa一定とし、その他のショット粒径(D)、ショットカバレージ(%)、投射速度(m/sec)の条件を変化させて、6水準のショットピーニングを実施した。それぞれの条件と、算出されたK値とを表1に示した。
(評価方法)
ショット後の金属成品の表面硬度をHV25gで測定した。また、各供試材の表面近傍からサンプルを切り出して断面を研磨し、電子顕微鏡でショット部位の結晶粒径を測定した。結果を表1に併記した。
【0028】
【表1】

Figure 2004122332
【0029】
表1から分かるように、実施例1〜4はすべて、K値が3.0×10以上であり、ショット後の表面硬さは、HV712〜879であった。そしてショット部位の結晶粒径は85〜120nmと超微細な結晶組織となっていた。
【0030】
一方、比較例1は、ショット粒径が1.4mmで、投射速度が50m/secと実施例3と変わらないが、カバレージが3000%と実施例3の1/5であった。そのためK値は826350と小さくなり、ショット後の表面硬さはHV440と低い値しか得られなかった。そして、結晶粒径は5000nmと大きなものであった。また、比較例2はショット粒径と投射速度は実施例2と同じであったが、これもカバレージが300%と非常に小さいために、K値は93495ときわめて小さな値となった。この結果、ショット後の表面硬さはHV434で、また、結晶粒径は15000nm(15μm)と実施例に比べて約100倍も大きな値であった。
【0031】
ショットピーニング処理前の炭素鋼の表面近傍の硬度は、HV200であった。従って、ショットピーニング処理を施すことによって得られた硬さの増分はショット後の表面硬さから200を減じた値である。実施例では、この値が512〜679ときわめて大きな値が得られた。これは通常の焼き入れ焼き鈍し処理によって得られる硬さの増加分(HVで300程度)に比べて約1.5倍ときわめて大きな表面改質効果が得られることが分かる。
【0032】
【発明の効果】
本発明は通常行われるショットピーニング処理よりも数倍大きなショットカバレージとしているので金属成品の被ショット面に付与されるショットの運動エネルギは極めて大きい。その結果被ショット面は500nm以下と超微細な結晶組織となるため、金属成品の表面硬度をHV600以上と、大きく向上することができる。従って、バルブやシャフトなどの耐摩耗性や曲げ疲労といった特性を大きく改善する好適な方法である。
【図面の簡単な説明】
【図1】炭素鋼のショットピーニング処理によるカバレージ(%)と圧縮残留応力との関係を示す概念図である。
【図2】炭素鋼のショット後の表面硬さとK値との関係を示す図である。
【図3】比重7.87g/cmの鉄ショットを用いた場合の照射速度によるショット粒径とカバレージとの関係を示す図である。
【図4】クロム炭素鋼のショット後の表面近傍の結晶組織を示す写真である。
【符号の説明】
A:ショット部位 B:加工硬化部位[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shot peening method for projecting a shot on a surface of a metal product to improve the hardness of a shot surface.
[0002]
[Prior art]
Conventionally, as a method of surface treatment of metal products, a cast steel product, a cast product, a metal product such as stainless steel, etc., which is cast into a spring or a product shape, is quenched and tempered to all or a part of the product, and then cold-worked. Shot peening is known. In this method, the product is quenched at about 850 ° C. by high-frequency induction heating or the like, tempered at about 600 ° C., and the surface structure is transformed. A normal peening process is performed to generate compressive residual stress, thereby increasing fatigue strength.
[0003]
In the above shot peening, compressive residual stress is generated on the surface of the metal product due to plastic deformation due to collision when a shot is projected on the surface of the metal product, and this compressive residual stress is reduced by the size of the recess which is a plastic deformation portion. Proportional. In addition, since the size of the depression, which is the plastic deformation portion, is proportional to the shot diameter, it can be said that the compressive residual stress and the shot diameter are also in a proportional relationship.
[0004]
In other words, in order to obtain the internal compressive stress in the interior deeper from the surface layer and the depth of hardening, a shot having a large shot particle size is effective. Conventionally, a shot having a shot diameter of about 1.2 to 0.6 mm is used. Used.
[0005]
Further, in the above-mentioned surface treatment method, the heat treatment step and the shot peening step must be performed separately, and the process management involving temperature control is complicated and the cost is high. In the method (see, for example, Patent Document 1), a shot of 40 to 200 μm having a hardness equal to or higher than that of a metal product is jetted at a jet speed of 100 m / sec or more on the surface of the metal product, and the temperature near the surface is changed to the A3 transformation point. As described above, the blast treatment enabled the hardening of the product surface due to the generation of compressive residual stress, the increase in fatigue strength, and the surface modification by heat treatment.
[0006]
Further, in the “method of surface treatment of metal products” (see Patent Document 2), blast processing is performed using a mixed shot obtained by mixing small shots and large shots made of high-strength, high-hardness materials and having different shot diameters. In shot peening, which has the effect of heat treatment hardening and fatigue strength of the surface accompanying the generation of compressive residual stress, and the effect of surface modification by heat treatment, it is possible to generate deeper compressive stress to the inside of the surface and improve the surface roughness. In particular, the present invention proposes a surface treatment method for a metal product that does not require a conventional processing step such as shot peening or polishing after peening.
[0007]
[Patent Document 1]
Patent No. 1594395 [Patent Document 2]
JP-A-11-347944
[Problems to be solved by the invention]
However, in the above-mentioned “metal surface treatment method”, a small shot having a shot diameter of 40 to 200 μm is required in order to obtain a high injection speed due to the relationship between the injection speed and the injection density (hereinafter referred to as coverage). There is a limit to the depth from the surface of the product where compressive residual stress and heat treatment hardening occur.
Moreover, in the shot peening in the above-mentioned "method of surface treatment of metal products", it has been proposed to use shots having a shot particle diameter of 0.6 mm to 0.03 mm and 1 mm or less. In shot peening using shots having such a particle size, it is known that the compressive residual stress near the surface of the object to be treated starts to decrease with the coverage at the peak near 500% as shown in FIG. For this reason, in the usual shot peening, the coverage is often performed in a range of 500% or less. In each of the above-described examples of the “method for treating a metal product”, the coverage is estimated to be about 200 to 400%.
[0009]
In addition, the increase in hardness obtained by shot peening with a coverage of 500% or less is about 50 to 300 in HV for carbon steel, which is not always satisfactory.
[0010]
Therefore, an object of the present invention is to provide a shot peening method for giving higher surface hardness.
[0011]
[Means for Solving the Problems]
In the shot peening method of the present invention, a shot having a hardness equal to or higher than that of the metal product is projected onto the surface of the metal product, and the shot coverage of the metal product to improve the hardness of the surface of the metal product is improved. The structure of the portion to be shot of the metal product is made of ultrafine crystal grains of 500 nm or less as 900% or more.
[0012]
In the shot peening method of the present invention, n: shot coverage (% / 100), V: shot speed (m / s), D: shot particle diameter (mm), ρ: shot grain specific gravity (g / cm 3 ) Is a method that can be expressed by n × V 2 × D × ρ ≧ 3.0 × 10 6 . Here, the shot speed V is preferably 50 to 250 m / sec, and the shot particle diameter D is preferably 0.03 to 3.5 mm.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the shot peening method of the present invention, a shot having a hardness equal to or higher than that of the metal product is projected onto the surface of the metal product, and the shot coverage of the metal product to improve the hardness of the surface of the metal product is improved. The structure of the portion to be shot of the metal product is made of ultrafine crystal grains of 500 nm or less as 900% or more.
[0014]
By continuously applying the collision, the metal structure of the surface layer of the metal product is refined, and a high-strength and high-hardness surface is generated. In particular, when the coverage becomes 900% or more, the energy given by the shot given per unit area of the metal product becomes extremely large. Then, due to frequent repetition of plastic deformation of the surface portion, the surface layer of the metal product has a structure composed of ultrafine crystal grains of 500 nm or less.
[0015]
The shot peening conditions of the present invention are as follows: n: shot coverage (% / 100), V: shot speed (m / s), D: shot particle diameter (mm), ρ: shot particle specific gravity (g / cm 3 ). It can be represented by n × V 2 × D × ρ ≧ 3.0 × 10 6 .
[0016]
The kinetic energy e when the object having the mass m moves at the speed v can be expressed by e = 1 / mv 2 .
[0017]
n represents the projection density of the shot, and it can be considered that the shot surface of the metal product has been uniformly shot n times. That is, the total kinetic energy E due to the shot when the coverage is n is given by E = n (1/2) (4/3) πρ (D / 2) 3 V 2 . Dividing this by the area of the shot particles in contact, 0.36 × (π / 4) D 2 , gives the energy per unit area of the shot surface imparted by the shot. In other words, the above relational expression indicates that if the energy applied per unit area (hereinafter referred to as the K value) is 3.0 × 10 6 or more, the surface of the metal product to be treated is an ultrafine crystal of 500 nm or less. It shows that an organization consisting of
[0018]
FIG. 2 shows the relationship between the surface hardness of the metal product after the shot and the K value. FIG. 2 is a graph in which the surface of the carbon steel is treated by changing the shot peening conditions such as the shot grain size, the shot speed, and the coverage, the hardness of the obtained surface is measured, and the relationship with the K value is plotted. Although there is some variation, the surface hardness after the shot is approximately proportional to the K value, and it can be seen that the surface hardness after the shot increases as the K value increases. Here, in order to make the surface hardness after the shot Hv600 or more, the K value only needs to be 3.0 × 10 6 or more. When the coverage is 500% (that is, the coverage at which the above-described compressive residual stress is the highest), the surface hardness of the carbon steel after the shot is about Hv600. The target surface hardness was Hv600 or more.
[0019]
FIG. 3 shows the relationship between the shot particle diameter and the coverage depending on the shot speed. The abscissa plots the shot particle size (mm) and the ordinate plots the coverage (%), and plots the shot speed for two levels of 50 m / sec and 100 m / sec. The shot was an iron shot, and the specific gravity was calculated as 7.87 g / cm 3 . From FIG. 3, it can be seen that the coverage sharply increases as the shot particle size decreases. Further, it can be seen that the smaller the shot grain, the higher the grain speed, so that the object can be achieved with low coverage.
[0020]
FIG. 4 shows a cross section of the very surface layer of the annealed SCr30 obtained by the shot peening method of the present invention. The shot peening conditions in FIG. 4 are as follows: shot particle size: 1.4 mm, shot grain hardness: HV700, projection pressure: 0.3 MPa, shot speed: 50 m / sec, coverage: 15000%, and K value: 4131750. Was. FIG. 4 shows a range of about 200 μm from the surface, but it can be seen that S is the outermost surface and is greatly wavy due to shot peening. The black spiral part (A) is a part which is hardened by directly receiving the shot, and the part (B) immediately below it which looks like a layer of white and black is a part which is work hardened by the shot projection pressure. Although not shown in FIG. 4, the portion further below (B) is an unprocessed portion that is not affected by the shot peening process.
[0021]
The structure at the shot site in (A) was composed of ultrafine crystal grains of 500 nm or less, and the hardness was measured to be HV681 (with an HV of 25 g). Further, the work hardened part in (B) was a structure composed of fine crystal grains of 700 to 2000 nm, and was HV347. The unprocessed part had a crystal grain size of 5 to 10 μm and a hardness of HV182. The ultrafine crystal grain size at the shot site in (A) was measured by an electron microscope.
[0022]
Here, the shot projection speed is desirably 50 to 250 m / sec. When the projection speed is less than 50 m / sec, the energy is insufficient, and when the projection speed exceeds 250 m / sec, there is a case where it is difficult due to facility restrictions. More preferably, it is 100 to 200 m / sec.
[0023]
Also, the shot particle size is desirably 0.03 to 3.5 mm. If the shot particle size is less than 0.03 mm, it may be difficult to obtain a shot speed that satisfies the above equation, while if it exceeds 3.5 mm, the shot speed becomes insufficient and sufficient energy may be applied. Can not. More preferably, it is 0.1 to 3 mm.
[0024]
Further, it is preferable that the coverage is 900 to 20000%. If the coverage is less than 900%, the required K value cannot be obtained. On the other hand, if it exceeds 20,000%, the hardness of the shot surface is saturated, so that no effect can be obtained and productivity is impaired, which is not appropriate. More preferably, it is 1500 to 10000%.
[0025]
The material of the shot is not particularly limited, but preferably has a hardness equal to or higher than that of a metal product to be processed, and specifically, HV600 or more. For example, cast iron, cast steel, high speed tool steel, alloy tool steel, non-ferrous alloy steel and the like can be exemplified.
[0026]
The K value is preferably 3.0 × 10 6 or more as described above. However, considering the upper limit of the projection speed and the upper limit of the coverage, the upper limit of the K value is 7 × 107. Is appropriate.
[0027]
【Example】
(Test condition)
A shot of hardness Hv700 made of steel balls (specific gravity: 7.87 g / cm 3 ) was used for carbon steel as an object to be treated, the projection pressure was kept constant at 0.3 MPa, and other shot particle diameters (D) and shots were used. Six levels of shot peening were performed while changing the conditions of coverage (%) and projection speed (m / sec). Table 1 shows the respective conditions and the calculated K value.
(Evaluation method)
The surface hardness of the metal product after the shot was measured with an HV of 25 g. Further, a sample was cut out from the vicinity of the surface of each test material, the cross section was polished, and the grain size of the shot portion was measured with an electron microscope. The results are shown in Table 1.
[0028]
[Table 1]
Figure 2004122332
[0029]
As can be seen from Table 1, in all of Examples 1 to 4, the K value was 3.0 × 10 6 or more, and the surface hardness after the shot was HV712 to 879. The crystal grain size at the shot portion was 85 to 120 nm, which was an ultrafine crystal structure.
[0030]
On the other hand, in Comparative Example 1, the shot particle size was 1.4 mm, and the projection speed was 50 m / sec, which is the same as that of Example 3, but the coverage was 3000%, which was 1/5 of that of Example 3. Therefore, the K value was as small as 826350, and the surface hardness after the shot was as low as HV440. The crystal grain size was as large as 5000 nm. Further, in Comparative Example 2, the shot particle size and the projection speed were the same as those in Example 2, but the K value was 93495, which was a very small value, because the coverage was also very small at 300%. As a result, the surface hardness after the shot was HV434, and the crystal grain size was 15000 nm (15 μm), which was about 100 times larger than that of the example.
[0031]
The hardness near the surface of the carbon steel before the shot peening treatment was HV200. Therefore, the increase in hardness obtained by performing the shot peening process is a value obtained by subtracting 200 from the surface hardness after the shot. In the examples, extremely large values of 512 to 679 were obtained. This indicates that an extremely large surface modification effect is obtained, which is about 1.5 times as much as the increase in hardness (about 300 in HV) obtained by ordinary quenching and annealing.
[0032]
【The invention's effect】
In the present invention, since the shot coverage is several times larger than the shot peening process usually performed, the kinetic energy of the shot applied to the shot surface of the metal product is extremely large. As a result, the surface to be shot has an ultrafine crystal structure of 500 nm or less, so that the surface hardness of the metal product can be greatly improved to HV600 or more. Therefore, it is a suitable method for greatly improving characteristics such as wear resistance and bending fatigue of valves and shafts.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the relationship between coverage (%) and compressive residual stress by shot peening of carbon steel.
FIG. 2 is a view showing the relationship between the surface hardness after shot of carbon steel and the K value.
FIG. 3 is a diagram showing a relationship between a shot particle size and coverage depending on an irradiation speed when an iron shot having a specific gravity of 7.87 g / cm 3 is used.
FIG. 4 is a photograph showing a crystal structure near the surface of a chromium carbon steel after a shot.
[Explanation of symbols]
A: Shot area B: Work hardened area

Claims (4)

金属成品の表面に、前記金属成品と同等以上の硬度を有するショットを投射し、前記金属成品の表面の硬度を向上させる金属成品のショットピーニング方法において、ショットカバレージを900%以上として前記金属成品の被ショット部分の組織が500nm以下の超微細結晶粒からなることを特徴とするショットピーニング方法。In a metal product shot peening method for projecting a shot having a hardness equal to or higher than that of the metal product on the surface of the metal product and improving the hardness of the surface of the metal product, the shot coverage is set to 900% or more, and A shot peening method, wherein the structure of the shot portion is made of ultrafine crystal grains of 500 nm or less. 前記ショットピーニングは、n:ショットカバレージ(%/100)、V:ショット速度(m/sec)、D:ショット粒径(mm)、ρ:ショット粒比重(g/cm)の関係が、
n×V×D×ρ ≧3.0×10
で表される請求項1に記載のショットピーニング方法。
In the shot peening, n: shot coverage (% / 100), V: shot speed (m / sec), D: shot particle size (mm), ρ: shot particle specific gravity (g / cm 3 ),
n × V 2 × D × ρ ≧ 3.0 × 10 6
The shot peening method according to claim 1, wherein
前記ショット速度(V)は50〜250m/secである請求項2に記載のショットピーニング方法。The shot peening method according to claim 2, wherein the shot speed (V) is 50 to 250 m / sec. 前記ショット粒径(D)は0.03〜3.5mmである請求項2または3に記載のショットピーニング方法。The shot peening method according to claim 2, wherein the shot particle diameter (D) is 0.03 to 3.5 mm.
JP2002292992A 2002-10-04 2002-10-04 Shot peening method Expired - Fee Related JP4131384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292992A JP4131384B2 (en) 2002-10-04 2002-10-04 Shot peening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292992A JP4131384B2 (en) 2002-10-04 2002-10-04 Shot peening method

Publications (2)

Publication Number Publication Date
JP2004122332A true JP2004122332A (en) 2004-04-22
JP4131384B2 JP4131384B2 (en) 2008-08-13

Family

ID=32284077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292992A Expired - Fee Related JP4131384B2 (en) 2002-10-04 2002-10-04 Shot peening method

Country Status (1)

Country Link
JP (1) JP4131384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232772A (en) * 2007-03-20 2008-10-02 Chuo Motor Wheel Co Ltd X-ray residual stress measuring method of casting
CN111551460A (en) * 2020-05-09 2020-08-18 中国航发北京航空材料研究院 Test piece for testing accessibility of turbine disc mortise and evaluation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267164A (en) * 1987-04-21 1988-11-04 Tokyo Netsushiyori Kogyo Kk Method and device for handling surface of metal by means of shot peening
JPH03170268A (en) * 1989-11-29 1991-07-23 Nissan Motor Co Ltd Shot peening method
JPH04176563A (en) * 1990-11-09 1992-06-24 Daido Steel Co Ltd Shot peening method for titanium alloy
JPH05337831A (en) * 1992-06-05 1993-12-21 Nissan Motor Co Ltd Shot peening method for aluminum connecting rod
JPH06240303A (en) * 1993-02-15 1994-08-30 Fuji Seisakusho:Kk Treatment of surface layer of alloy powder
JPH07188738A (en) * 1993-12-28 1995-07-25 Fuji Kihan:Kk Method for preventing wear on sliding part of metallic formed article
JPH09279229A (en) * 1996-04-15 1997-10-28 Suncall Corp Surface treatment of steel work
JP2000052248A (en) * 1998-08-07 2000-02-22 Komatsu Ltd Shot peening method and device therefor and obtained machine parts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267164A (en) * 1987-04-21 1988-11-04 Tokyo Netsushiyori Kogyo Kk Method and device for handling surface of metal by means of shot peening
JPH03170268A (en) * 1989-11-29 1991-07-23 Nissan Motor Co Ltd Shot peening method
JPH04176563A (en) * 1990-11-09 1992-06-24 Daido Steel Co Ltd Shot peening method for titanium alloy
JPH05337831A (en) * 1992-06-05 1993-12-21 Nissan Motor Co Ltd Shot peening method for aluminum connecting rod
JPH06240303A (en) * 1993-02-15 1994-08-30 Fuji Seisakusho:Kk Treatment of surface layer of alloy powder
JPH07188738A (en) * 1993-12-28 1995-07-25 Fuji Kihan:Kk Method for preventing wear on sliding part of metallic formed article
JPH09279229A (en) * 1996-04-15 1997-10-28 Suncall Corp Surface treatment of steel work
JP2000052248A (en) * 1998-08-07 2000-02-22 Komatsu Ltd Shot peening method and device therefor and obtained machine parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232772A (en) * 2007-03-20 2008-10-02 Chuo Motor Wheel Co Ltd X-ray residual stress measuring method of casting
CN111551460A (en) * 2020-05-09 2020-08-18 中国航发北京航空材料研究院 Test piece for testing accessibility of turbine disc mortise and evaluation method

Also Published As

Publication number Publication date
JP4131384B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JPH1029160A (en) Highly hard metal product shot peening method and highly hard metal product
EP2363243B1 (en) Method for manufacturing blasting material for shot-peening
JP2006200003A (en) Heat-treated article and heat treatment method
JP2014519557A (en) Surface treatment of metal parts
JP2002036115A (en) Shot peening processing method and processed article thereof
US9457451B2 (en) Method of manufacturing a gear
WO2007023936A1 (en) Method of shot peening
Unal et al. Novel type shot peening applications on railway axle steel
JP2001065576A (en) Bearing part material
JP2004122332A (en) Shot-peening method
JPH07276242A (en) Manufacture of iron-series shot grain
JPWO2017130476A1 (en) Cast steel projectile
JP3227492B2 (en) Spring shot peening method and spring product
JP4131389B2 (en) Shot peening method
JPH10217122A (en) Treatment method for metal mold surface
JP2004169099A (en) Method for setting ultrasonic impact treatment condition of metallic material
JPH10100069A (en) Shot peening method and treated article
JP6274743B2 (en) Shot peening method to obtain high compressive residual stress
JP2001079766A (en) Projection material for shot peening
JP4559933B2 (en) Machining tool and its manufacturing method
JP3028624B2 (en) How to strengthen carburized parts
Pandey et al. Shot peening and its impact on fatigue life of engineering components
JP2003191166A (en) Method for improving metal mold serviceable life and metal mold
JPH0625736A (en) Manufacture of long life carburized bearing
JP2000176586A (en) Production of high bearing pressure drive resistant part and high bearing pressure drive resistant part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees