JPH06240281A - Production of electroviscous fluid - Google Patents

Production of electroviscous fluid

Info

Publication number
JPH06240281A
JPH06240281A JP5137893A JP5137893A JPH06240281A JP H06240281 A JPH06240281 A JP H06240281A JP 5137893 A JP5137893 A JP 5137893A JP 5137893 A JP5137893 A JP 5137893A JP H06240281 A JPH06240281 A JP H06240281A
Authority
JP
Japan
Prior art keywords
viscosity
fluid
electric field
particles
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5137893A
Other languages
Japanese (ja)
Inventor
Toru Mashita
徹 真下
Tatsuo Nagai
達夫 永井
Junichi Tsugita
純一 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP5137893A priority Critical patent/JPH06240281A/en
Publication of JPH06240281A publication Critical patent/JPH06240281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To facilitate the formation of an electroviscous fluid having desired viscosity. CONSTITUTION:Anisotropic particles which can orient upon the application of an electric field together with at least one polymeric dispersant are added to an electrical insulating medium to obtain an electroviscous fluid having an adjusted viscosity. Thus, the polymeric dispersant added can facilitate the formation of an electroviscous fluid of desired extensively adjustable viscosity without detriment to the properties of the fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電界を印加することに
より流体の粘度を調整することが可能な電気粘性流体の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrorheological fluid in which the viscosity of the fluid can be adjusted by applying an electric field.

【0002】[0002]

【従来の技術】電気粘性流体は、絶縁性の媒体中に微細
な固体粒子を分散させた懸濁液で、充分な電界の作用下
で速やかに粘度が増加する流体である。この流体の粘度
を変化させるためには直流および交流のいずれの電界を
作用させてもよく、また印加する電界強度を変化させる
ことで、流体の粘度を可能な範囲で任意に調整すること
が可能である。
2. Description of the Related Art An electrorheological fluid is a suspension in which fine solid particles are dispersed in an insulating medium and is a fluid whose viscosity rapidly increases under the action of a sufficient electric field. In order to change the viscosity of the fluid, either an electric field of direct current or alternating current may be applied, and by changing the strength of the applied electric field, the viscosity of the fluid can be arbitrarily adjusted within a possible range. Is.

【0003】この電気粘性流体は、クラッチ、ショック
アブソーバ、アクチュエータ、ロボットアーム等を制御
するための機構として開発が進められている。これまで
に報告されている電気粘性流体としては、セルロースや
デンプン、シリカゲル(特開平1−304189号)、
炭素質粉末(特開平3−157498号)、高分子重合
体で被覆した炭素微粉末(特開平3−247698
号)、ポリメタクリル酸ナトリウム等からなる球状また
は粒状の固体粒子を、シリコーン油(特開昭63−30
5196号)、炭化水素油、ハロゲン化パラフィン(特
開平1−266193号)等の電気絶縁性の媒体に分散
させたものが知られている。この電気粘性流体の望まし
い粘度は、上記した用途などによっても異なり、電界を
印加していない状態における粘度を、適宜選定、変更し
たい場合がある。このような場合に従来は、媒体中に分
散している固体粒子の含有量を増減したり、絶縁媒体自
体の粘度を変更することで対応している。
This electrorheological fluid is being developed as a mechanism for controlling a clutch, a shock absorber, an actuator, a robot arm and the like. The electrorheological fluids that have been reported so far include cellulose, starch, silica gel (JP-A-1-304189),
Carbonaceous powder (JP-A-3-157498), fine carbon powder coated with a polymer (JP-A-3-247698)
No.), spherical or granular solid particles composed of sodium polymethacrylate, etc.
5196), hydrocarbon oil, halogenated paraffin (JP-A-1-266193), and the like, which are dispersed in an electrically insulating medium. The desirable viscosity of this electrorheological fluid varies depending on the above-mentioned application, and there are cases where it is desired to appropriately select and change the viscosity in a state where no electric field is applied. Conventionally, in such a case, the content of the solid particles dispersed in the medium is increased or decreased, or the viscosity of the insulating medium itself is changed.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の方法で
流体の粘度を変更すると、次のような問題が生ずること
が知られている。すなわち、固体粒子の増減について
は、流体の粘度を低下させる目的で固体粒子を減量する
と電極間に形成される粒子の架橋の密度が小さくなり、
結合力が弱まって電気粘性効果が低下する。これとは逆
に流体の粘度を高めるために固体粒子を増量すると、固
体粒子が流体の流れにより電極に接触する頻度が大きく
なり、電極の損傷、磨耗が生じやすく、粘性流体を用い
た装置の機能障害が発生するという問題がある。しか
も、増量された固体粒子は、均一分散性が損なわれやす
く、凝集したり、沈降するおそれがある。
However, it is known that changing the viscosity of the fluid by the conventional method causes the following problems. That is, regarding the increase / decrease of solid particles, when the solid particles are reduced for the purpose of lowering the viscosity of the fluid, the density of cross-linking of particles formed between electrodes becomes small,
The binding force is weakened and the electrorheological effect is reduced. On the contrary, if the amount of solid particles is increased in order to increase the viscosity of the fluid, the frequency of contact of the solid particles with the electrode due to the flow of the fluid increases and the electrode is easily damaged or worn. There is a problem that a functional disorder occurs. In addition, the increased solid particles are likely to impair the uniform dispersibility, and may aggregate or settle.

【0005】また、絶縁媒体の粘度を変更する方法で
は、選定できる粘度の範囲は狭く、十分に広い範囲の粘
度をカバーすることができない。さらに、粘度の高い媒
体を選定した場合には、固体粒子の分散状態が不安定に
なるという問題もある。以上のように、固体粒子の増減
や媒体の粘度を選定する方法では、流体の粘度の変化と
ともに、他の不具合が生ずる可能性があり、しかも選定
できる流体の粘度の変化幅はさほど広くはなく、0.0
5Pas〜0.7Pas程度が限度である。本発明は上
記事情を背景としてなされたものであり、流体の性質を
損なうことなく、流体の粘度を十分に変更することが可
能な電気粘性流体の製造方法を提供することを目的とす
る。
Further, the method of changing the viscosity of the insulating medium has a narrow range of selectable viscosities and cannot cover a sufficiently wide range of viscosities. Further, when a medium having a high viscosity is selected, there is a problem that the dispersion state of solid particles becomes unstable. As described above, in the method of increasing / decreasing the solid particles or selecting the viscosity of the medium, other problems may occur along with the change of the viscosity of the fluid, and the range of change in the viscosity of the fluid that can be selected is not so wide. , 0.0
The limit is about 5 Pas to 0.7 Pas. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing an electrorheological fluid that can sufficiently change the viscosity of the fluid without impairing the properties of the fluid.

【0006】[0006]

【課題を解決するための手段】これらの課題を解決する
ため、鋭意研究した結果、分散剤として使用しているポ
リマーの添加量かつ/または分子量を変更することで粘
度を任意に設定できる調整方法を発明した。本発明の構
成は以下の通りである。すなわち、本発明は、電界を印
加することにより流体の粘度を制御する電気粘性流体の
製造方法において、電気絶縁性に優れた媒体中に、電界
の印加により配向する異方性粒子を分散させるとととも
に、少なくとも一種のポリマー分散剤を含有させて流体
の粘度を調整することを特徴とする第2の発明は、ポリ
マー分散剤を、媒体中に重量%で1〜30%含有させる
ことを特徴とする。さらに、第3の発明は、ポリマー分
散剤が、分子量が10,000以上、250,000以
下であることを特徴とし、第4の発明は、ポリマー分散
剤がアクリル系またはメタクリル系の重合体あるいは共
重合体からなることを特徴とする。
[Means for Solving the Problems] In order to solve these problems, as a result of intensive research, as a result, an adjusting method in which the viscosity can be arbitrarily set by changing the addition amount and / or the molecular weight of a polymer used as a dispersant Invented The structure of the present invention is as follows. That is, the present invention is a method for producing an electrorheological fluid in which the viscosity of a fluid is controlled by applying an electric field, in which anisotropic particles oriented by the application of an electric field are dispersed in a medium having excellent electrical insulation properties. At the same time, the second invention is characterized by containing at least one polymer dispersant to adjust the viscosity of the fluid, and the polymer dispersant is contained in the medium in an amount of 1 to 30% by weight. To do. Further, the third invention is characterized in that the polymer dispersant has a molecular weight of 10,000 or more and 250,000 or less, and the fourth invention is that the polymer dispersant is an acrylic or methacrylic polymer or It is characterized by comprising a copolymer.

【0007】本願で用いる電気粘性流体の異方性粒子と
しては、長軸の長さが0.1〜10μmで、アスペクト
比が2以上の針状、棒状あるいは板状のものが望まし
い。これは、現在の粒子の粉砕技術および合成時の形状
制御技術では長軸が0.1μm未満の粒子を製造するこ
とは困難であり、また、粒子の大きさが10μmを越え
ると粒子のブラウン運動が阻害され、媒体中に安定して
分散させることが難しくなるとともに、配向時の液抵抗
が大きくなり、電界に対する応答性が低下するので、上
記長軸の長さが望ましい。さらに、アスペクト比が2未
満の粒子では、電圧を印加したときの配向能が低下し、
粘度変化が小さくなって実用的な粘性流体を得ることが
できないので、上記アスペクト比が望ましい。さらに我
々のこれまでの実験から、長軸の長さが0.3〜1μ
m、アスペクト比が7以上の粒子でより好ましい結果が
得られている。
The anisotropic particles of the electrorheological fluid used in the present application are preferably needle-shaped, rod-shaped or plate-shaped particles having a major axis length of 0.1 to 10 μm and an aspect ratio of 2 or more. This is because it is difficult to produce particles whose major axis is less than 0.1 μm by the current particle crushing technology and shape control technology at the time of synthesis. Moreover, when the particle size exceeds 10 μm, Brownian motion of the particles occurs. Therefore, it is difficult to stably disperse in the medium, and the liquid resistance at the time of orientation becomes large, and the response to the electric field decreases, so the length of the major axis is desirable. Furthermore, in the case of particles having an aspect ratio of less than 2, the orientation ability when a voltage is applied decreases,
The above aspect ratio is desirable because the change in viscosity becomes small and a viscous fluid that is practical cannot be obtained. Furthermore, from our previous experiments, the length of the long axis is 0.3-1μ.
More preferable results are obtained with m and particles having an aspect ratio of 7 or more.

【0008】[0008]

【作用】すなわち、本願発明によれば、異方性粒子とと
もに媒体中にポリマー分散剤を添加したので、ポリマー
分散剤の種別、分子量、添加量を選定することにより、
粘性流体の粘度を広い範囲で変更することができる。そ
の結果、電界を印加しない状態の流体粘度が0.003
Pasという低粘度の流体から、より高粘度の流体ま
で、容易に得ることができる。また、本発明によれば、
ポリマー分散剤の添加により、異方性粒子の凝集防止お
よび増粘効果の増大という効果も得られる。その作用を
以下に説明する。
That is, according to the present invention, since the polymer dispersant is added to the medium together with the anisotropic particles, by selecting the type, molecular weight and addition amount of the polymer dispersant,
The viscosity of the viscous fluid can be changed within a wide range. As a result, the fluid viscosity is 0.003 when no electric field is applied.
It is possible to easily obtain a fluid having a low viscosity of Pas and a fluid having a higher viscosity. Further, according to the present invention,
Addition of the polymer dispersant can also prevent the aggregation of anisotropic particles and increase the thickening effect. The operation will be described below.

【0009】分散媒体中に溶解したポリマーは、異方性
粒子に吸着し、粒子の凝集、沈降を抑制して、安定した
分散状態を保つ役割をする。また、このポリマー分散剤
は、電気粘性流体に電界を印加した状態で、粒子が電極
表面へ吸着、凝集するのを抑制する役割も有している。
この電気粘性流体に多くのポリマー分散剤を添加する
と、電気絶縁媒体中に溶解し、流体全体の粘度を上昇さ
せる。この電気粘性流体に印加する電界の強度を上げて
いくと、電気増粘効果も電界強度の上昇に併せて増加す
る。電界を印加した状態では、異方性粒子の表面で電気
二重層の+−電子が電極に対しそれぞれ偏りを起こし、
配向する。この運動が繰り返されると、粒子の周りの電
気二重層の厚さが薄まり、電界から受ける引力が減少し
て電気粘性効果が小さくなる。しかし、分散媒体の粘度
が高い場合は、配向時の電気二重層の剥離が抑制され
る。その結果、ポリマー分散剤の添加量が多く、流体粘
度が高い電気粘性流体では異方性粒子の電界から受ける
引力がポリマー分散剤の含有量の少ないものに比べて大
きくなり、かつ異方性粒子が電界に配向する力が強くな
るため、電界方向に垂直に流れる流体に対し、粒子の抵
抗が大きくなり、増粘効果も大きくなったものと考えら
れる。
The polymer dissolved in the dispersion medium is adsorbed on the anisotropic particles and suppresses the aggregation and sedimentation of the particles, and plays a role of maintaining a stable dispersed state. This polymer dispersant also has a role of suppressing particles from adsorbing and aggregating on the electrode surface in a state where an electric field is applied to the electrorheological fluid.
When many polymer dispersants are added to this electrorheological fluid, it dissolves in the electrically insulating medium, increasing the viscosity of the entire fluid. When the strength of the electric field applied to the electrorheological fluid is increased, the electric thickening effect also increases along with the increase in the electric field strength. In the state where an electric field is applied, + -electrons of the electric double layer are biased to the electrodes on the surface of the anisotropic particles,
Orient. When this movement is repeated, the thickness of the electric double layer around the particles is reduced, the attractive force received from the electric field is reduced, and the electrorheological effect is reduced. However, when the viscosity of the dispersion medium is high, peeling of the electric double layer during orientation is suppressed. As a result, in an electrorheological fluid with a large amount of polymer dispersant added and a high fluid viscosity, the attractive force received by the electric field of anisotropic particles is greater than that with a low polymer dispersant content, and the anisotropic particles It is considered that because the force of orienting to the electric field becomes stronger, the resistance of the particles to the fluid flowing perpendicularly to the electric field direction becomes larger and the thickening effect becomes larger.

【0010】なお、本願発明におけるポリマー分散剤の
添加量は、重量%で1〜30%とするのが望ましい。こ
れは、1%未満では、添加効果が不十分であり、30%
を越えると、ポリマーの溶解量が過飽和であり粒子の分
散安定性を損なうためである。さらに同様の理由で10
〜25%とするのが一層望ましい。また、ポリマー分散
剤の分子量は、10,000以上、250,000以下
とするのが望ましい。これは、その分子量が、10,0
00未満では上記効果が不十分であり、また、250,
000を越えると溶解能が低下し、析出し易くなるの
で、上記範囲が望ましい。さらに、アクリル系、メタク
リル系の重合体は、これらの効果に優れている。また、
異方性粒子の分散性をより向上させるために、他のアク
リル系またはメタクリル系のポリマーや界面活性剤を複
合添加することも効果的である。
The addition amount of the polymer dispersant in the present invention is preferably 1 to 30% by weight. If it is less than 1%, the effect of addition is insufficient,
If it exceeds, the amount of the polymer dissolved will be supersaturated and the dispersion stability of the particles will be impaired. For the same reason, 10
It is more desirable to be 25%. The molecular weight of the polymer dispersant is preferably 10,000 or more and 250,000 or less. It has a molecular weight of 10,0.
If it is less than 00, the above effect is insufficient, and if
If it exceeds 000, the solubility is lowered and precipitation tends to occur, so the above range is desirable. Furthermore, acrylic and methacrylic polymers are excellent in these effects. Also,
In order to further improve the dispersibility of the anisotropic particles, it is also effective to add another acrylic or methacrylic polymer or a surfactant together.

【0011】[0011]

【実施例】以下に、本発明の実施例について説明する。
これらの実施例における粘性流体の粘度測定は、二重円
筒型回転粘度計(外筒16mm、内筒18mm)を使用
して行なった。なお、以下の実施例では、いずれも固体
粒子は、安定して分散しており、凝集、沈降の現象は生
じなかった。
EXAMPLES Examples of the present invention will be described below.
The viscosity measurement of the viscous fluid in these examples was performed using a double cylinder type rotational viscometer (outer cylinder 16 mm, inner cylinder 18 mm). In each of the following examples, the solid particles were stably dispersed, and neither aggregation nor sedimentation occurred.

【0012】(実施例1)硫酸シンコニジンのヨウ化物
結晶(平均長軸長0.3μm、アスペクト比12の異方
性粒子)0.5gと、アクリレートポリマー(分子量4
0,000のポリマー分散剤)3.0、7.0、13.
5、18.0または20.0gとをフッ素樹脂(絶縁性
媒体)に分散させてそれぞれ粘性流体100g(試験液
1−1〜1−5)を作製した。これらの粘性流体の粘度
を、電圧を印加していない状態と、1kHzで実効電圧
1500V/mmを印加した場合について粘度測定を行
ない、その結果を表1および図1に示した。その結果、
ポリマー分散剤の添加量を変えることにより、広範囲で
流体の粘度を変更することが可能であり、印加時の粘度
も十分に高い数値を有していた。
Example 1 0.5 g of an iodide crystal of cinchonidine sulfate (anisotropic particles having an average major axis length of 0.3 μm and an aspect ratio of 12) and an acrylate polymer (molecular weight 4
10,000 polymer dispersants) 3.0, 7.0, 13.
5, 18.0 or 20.0 g was dispersed in a fluororesin (insulating medium) to prepare 100 g of viscous fluid (test liquids 1-1 to 1-5). With respect to the viscosities of these viscous fluids, the viscosities were measured in a state where no voltage was applied and when an effective voltage of 1500 V / mm was applied at 1 kHz, and the results are shown in Table 1 and FIG. as a result,
It was possible to change the viscosity of the fluid in a wide range by changing the addition amount of the polymer dispersant, and the viscosity at the time of application had a sufficiently high value.

【0013】(実施例2)硫酸シンコニジンのヨウ化物
結晶(平均長軸長0.3μm、アスペクト比12の異方
性粒子)0.5gと、メタクリレートポリマー(分子量
120,000のポリマー分散剤)3.0gとをフッ素
樹脂(絶縁性媒体)に分散させて粘性流体100g(試
験液2)を作製した。この粘性流体の粘度を、実施例1
と同様にして測定を行ない、その結果を表1および図1
に示した。その結果、ポリマー分散剤の種別および分子
量を変えることにより、粘度の範囲を容易に変更するこ
とができることが分かる。
Example 2 0.5 g of cinchonidine sulfate iodide crystal (anisotropic particles having an average major axis length of 0.3 μm and an aspect ratio of 12) and methacrylate polymer (polymer dispersant having a molecular weight of 120,000) 3 0.0 g was dispersed in a fluororesin (insulating medium) to prepare 100 g of viscous fluid (Test liquid 2). The viscosity of this viscous fluid was determined as in Example 1.
The measurement was carried out in the same manner as above, and the results are shown in Table 1 and FIG.
It was shown to. As a result, it is understood that the viscosity range can be easily changed by changing the type and molecular weight of the polymer dispersant.

【0014】(実施例3)2,5ジメチルピラジンのヨ
ウ化物結晶(平均長軸長0.5μm、アスペクト比9)
0.5gとメタクリレートポリマー(分子量120,0
00)10.0または20.0gと、鉱物油に分散させ
て粘性流体100g(試験液3−1、3−2を作製し、
実施例1と同様に粘度測定を行なった。その結果は表1
および図1に示すように、広い範囲で粘度の変更が可能
である。
(Example 3) 2,5-Dimethylpyrazine iodide crystal (average major axis length 0.5 μm, aspect ratio 9)
0.5 g and methacrylate polymer (molecular weight 120,0
00) 10.0 or 20.0 g, and dispersed in mineral oil to prepare 100 g of viscous fluid (test liquids 3-1 and 3-2,
The viscosity was measured in the same manner as in Example 1. The results are shown in Table 1.
And, as shown in FIG. 1, the viscosity can be changed in a wide range.

【0015】(実施例4)酸化チタン結晶(平均長軸長
1.0μm、アスペクト比7)2.5gとアクリレート
ポリマー(分子量250,000)10.0gまたは1
5.0gとをフッ素樹脂に分散させて粘性流体100g
(試験液4−1、4−2)を作製し、実施例1と同様に
粘度測定を行なった。その結果は表1および図1に示す
ように、比較的大きな分子量により粘度を高粘度側に変
更でき、また、添加量の変更により、さらに広い範囲で
粘度の変更が可能である。
Example 4 2.5 g of titanium oxide crystals (average major axis length 1.0 μm, aspect ratio 7) and 10.0 g or 1 of acrylate polymer (molecular weight 250,000)
Disperse 5.0g and fluororesin 100g viscous fluid
(Test liquids 4-1 and 4-2) were prepared and the viscosity was measured in the same manner as in Example 1. As a result, as shown in Table 1 and FIG. 1, the viscosity can be changed to a high viscosity side by a relatively large molecular weight, and the viscosity can be changed in a wider range by changing the addition amount.

【0016】(比較例1)硫酸シンコニジンのヨウ化物
結晶(平均長軸長0.3μm、アスペクト比12の異方
性粒子)0.5gをフッ素樹脂(絶縁性媒体)に分散さ
せて粘性流体100g(試験液5)を作製した。この粘
性流体の粘度を、実施例1と同様に測定し、その結果を
表1および図1に示した。この粘性流体の粘度を低下さ
せるために、ヨウ化物結晶の分散量を減らしたところ
(0.18g)、電界を印加しない状態では、その粘土
は、0.0028Pasに低下したが、電界印加時の粘
度は、0.015Pasであり、増粘効果が著しく低下
している。また、粘度を上げるためにヨウ化物結晶の分
散量を増加させたところ(2.5g)、早期に異方性粒
子の沈降が生じ、使用に耐え得ないものであった。
Comparative Example 1 0.5 g of an iodide crystal of cinchonidine sulfate (anisotropic particles having an average major axis length of 0.3 μm and an aspect ratio of 12) was dispersed in a fluororesin (insulating medium) to obtain 100 g of a viscous fluid. (Test liquid 5) was prepared. The viscosity of this viscous fluid was measured in the same manner as in Example 1, and the results are shown in Table 1 and FIG. In order to reduce the viscosity of this viscous fluid, when the amount of iodide crystals dispersed was reduced (0.18 g), the clay decreased to 0.0028 Pas when no electric field was applied. The viscosity is 0.015 Pas, and the thickening effect is significantly reduced. Further, when the amount of iodide crystals dispersed was increased to increase the viscosity (2.5 g), precipitation of anisotropic particles occurred early and the particles could not be used.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】すなわち、本願発明の電気粘性流体の製
造方法によれば、電気絶縁性に優れた媒体中に、電界の
印加により配向する異方性粒子を分散させるとととも
に、少なくとも一種のポリマー分散剤を含有させて流体
の粘度を調整したので、所望の粘度を有する粘性流体
が、その性質などを損なうことなく容易に得られる。し
かも、得られた粘性流体は、異方性粒子の分散性に優れ
ており、凝集、沈降が有効に防止される効果もある。
That is, according to the method for producing an electrorheological fluid of the present invention, anisotropic particles oriented by application of an electric field are dispersed in a medium having excellent electric insulation and at least one polymer is used. Since the viscosity of the fluid is adjusted by containing the dispersant, a viscous fluid having a desired viscosity can be easily obtained without impairing its properties. Moreover, the obtained viscous fluid has excellent dispersibility of anisotropic particles, and has an effect of effectively preventing aggregation and sedimentation.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例および比較例の粘性流体につい
て、印加をしない状態と印加時の粘度範囲を示すグラフ
である。
FIG. 1 is a graph showing a viscosity range when a voltage is not applied and a viscosity range when a voltage is applied to the viscous fluids of Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10M 135:10) C10N 10:08 20:04 20:06 Z 8217−4H 30:00 D 8217−4H 30:04 40:14 70:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C10M 135: 10) C10N 10:08 20:04 20:06 Z 8217-4H 30:00 D 8217- 4H 30:04 40:14 70:00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電界を印加することにより流体の粘度を
制御する電気粘性流体の製造方法において、電気絶縁性
に優れた媒体中に、電界の印加により配向する異方性粒
子を分散させるととともに、少なくとも一種のポリマー
分散剤を含有させて流体の粘度を調整することを特徴と
する電気粘性流体の製造方法
1. A method for producing an electrorheological fluid in which the viscosity of a fluid is controlled by applying an electric field, in which anisotropic particles oriented by the application of an electric field are dispersed in a medium having excellent electrical insulation properties. And a method for producing an electrorheological fluid, characterized in that the viscosity of the fluid is adjusted by containing at least one polymer dispersant.
【請求項2】 ポリマー分散剤は、媒体中に重量%で1
〜30%含有させたことを特徴とする請求項1記載の電
気粘性流体の製造方法
2. The polymer dispersant is 1% by weight in the medium.
The method for producing an electrorheological fluid according to claim 1, characterized in that the content is -30%.
【請求項3】 ポリマー分散剤は、分子量が10,00
0以上、250,000以下であることを特徴とする請
求項1または2記載の電気粘性流体の製造方法
3. The polymer dispersant has a molecular weight of 10,000.
It is 0 or more and 250,000 or less, The manufacturing method of the electrorheological fluid of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 ポリマー分散剤は、アクリル系またはメ
タクリル系の重合体あるいは共重合体からなることを特
徴とする請求項3記載の電気粘性流体
4. The electrorheological fluid according to claim 3, wherein the polymer dispersant is made of an acrylic or methacrylic polymer or copolymer.
JP5137893A 1993-02-17 1993-02-17 Production of electroviscous fluid Pending JPH06240281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5137893A JPH06240281A (en) 1993-02-17 1993-02-17 Production of electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5137893A JPH06240281A (en) 1993-02-17 1993-02-17 Production of electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH06240281A true JPH06240281A (en) 1994-08-30

Family

ID=12885292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5137893A Pending JPH06240281A (en) 1993-02-17 1993-02-17 Production of electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH06240281A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202594A (en) * 1989-01-31 1990-08-10 Otsuka Chem Co Ltd Electric field-responsive fluid composition
JPH0423890A (en) * 1990-05-18 1992-01-28 Shin Etsu Chem Co Ltd Electro-viscous fluid composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202594A (en) * 1989-01-31 1990-08-10 Otsuka Chem Co Ltd Electric field-responsive fluid composition
JPH0423890A (en) * 1990-05-18 1992-01-28 Shin Etsu Chem Co Ltd Electro-viscous fluid composition

Similar Documents

Publication Publication Date Title
US5507967A (en) Electrorheological magnetic fluid and process for producing the same
Smith et al. Intrinsic viscosities and other rheological properties of flocculated suspensions of nonmagnetic and magnetic ferric oxides
US20060231357A1 (en) Field responsive shear thickening fluid
JPS61259752A (en) Electric viscous fluid
Kuramoto et al. Electrorheological property of a polyaniline-coated silica suspension
Otsubo Dilatant flow of flocculated suspensions
JPH06240281A (en) Production of electroviscous fluid
JPH05168908A (en) Electric viscous fluid
Hunter et al. Couette flow behavior of coagulated colloidal suspensions. IV. Effect of viscosity of the suspension medium
KR20080103773A (en) Magnetic composite particles and magnetorheological fluid using the same
Chang et al. Effect of the adsorption of polyvinyl alcohol on the rheology and stability of clay suspensions
Otsubo et al. Rheological studies on bridging flocculation
KR101755925B1 (en) Magnetorheological fluid composition
CN108148655A (en) A kind of anti-settling ER fluid and its control method
JP4109473B2 (en) Electrorheological composition
Sun et al. Model filled polymers. VII: Flow behavior of polymers containing monodisperse crosslinked polymeric beads
JPS5832197B2 (en) electrorheological fluid
KR100593483B1 (en) Electro-fluidic fluid comprising polyaniline / titanium dioxide composite as conductive particles and method for producing same
JPH04348192A (en) Electro-viscous fluid
JPH06240280A (en) Electroviscous fluid
KR100479269B1 (en) Electrorheological fluid using microcapsule having electrophoretic nano particles and fabrication method
CN110747038A (en) Suspension preparation method
JPH07173484A (en) Electroviscouc fluid composition
JPH08127790A (en) Electro-rheological fluid composition and device using the same
Eyrik et al. Investigation of electrorheological properties and creep behavior of poly (oxymethylene)/polythiophene composites