JPH06239644A - Pane glass material, far-infrared light sensor device using the same and production of the material - Google Patents
Pane glass material, far-infrared light sensor device using the same and production of the materialInfo
- Publication number
- JPH06239644A JPH06239644A JP5029982A JP2998293A JPH06239644A JP H06239644 A JPH06239644 A JP H06239644A JP 5029982 A JP5029982 A JP 5029982A JP 2998293 A JP2998293 A JP 2998293A JP H06239644 A JPH06239644 A JP H06239644A
- Authority
- JP
- Japan
- Prior art keywords
- infrared light
- glass
- far
- window material
- sensor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Air Conditioning Control Device (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、精密光学機器の遠赤外
光感知用センサ装置などに使用できるガラス窓材、およ
びこれを用いた遠赤外光感知用センサ装置、およびこの
ガラス窓材の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass window material which can be used for a sensor device for detecting far infrared light of precision optical equipment, a sensor device for detecting far infrared light using the same, and the glass window material. Manufacturing method.
【0002】[0002]
【従来の技術】近年、人体が発する遠赤外光を焦電セン
サで感知し、その信号を制御に利用する空調システムが
開発されている。このシステムは人体が選択的に発する
波長が4〜12μmの赤外光のうち、とくに8〜10μ
mの遠赤外光を利用し、空調空間に存在する人間の数や
皮膚温を測定して最適な空調を提供するものである。2. Description of the Related Art In recent years, an air conditioning system has been developed in which far infrared light emitted by a human body is detected by a pyroelectric sensor and the signal thereof is used for control. This system has a wavelength of 4 to 12 μm that the human body selectively emits
Using m far infrared light, the number of people existing in the air-conditioned space and the skin temperature are measured to provide optimum air conditioning.
【0003】一例として図3のセンサユニット(遠赤外
光感知用センサ装置)を装備した家庭用エアコンが具現
化されている。遠赤外光を感知する遠赤外光感知用セン
サ装置1は、駆動部2により駆動されて波形を形成する
チョッパ3と、赤外光を集める赤外レンズ4と、赤外レ
ンズ4からの赤外光量に応じて電気信号を出力する焦電
センサ5と、焦電センサ5からの出力を増幅する増幅回
路6と、赤外レンズ4,焦電センサ5,および増幅回路
6を移動させて視野を変更させる水平駆動部7とを備
え、物体としての被写体8から発する遠赤外光を感知し
て、その信号をマイクロコンピュータからなる制御部9
に出力するようになっている。ここで、このエアコンの
遠赤外光感知用センサ装置1の場合には、エアコン本体
の美観を維持する目的で厚み約2mmのポリエチレン板1
0で窓部をカバーしており、このポリエチレン板10の
およその遠赤外光透過率は波長が8μmの場合で20
%、10μmの場合で50%、12μmの場合で40%
であった。As an example, a domestic air conditioner equipped with the sensor unit (sensor device for detecting far infrared light) of FIG. 3 has been realized. A far-infrared light sensing sensor device 1 for sensing far-infrared light includes a chopper 3 driven by a drive unit 2 to form a waveform, an infrared lens 4 for collecting infrared light, and an infrared lens 4 from the infrared lens 4. By moving the pyroelectric sensor 5 that outputs an electric signal according to the amount of infrared light, the amplifier circuit 6 that amplifies the output from the pyroelectric sensor 5, the infrared lens 4, the pyroelectric sensor 5, and the amplifier circuit 6, A horizontal drive unit 7 for changing the field of view, detects far-infrared light emitted from a subject 8 as an object, and outputs a signal thereof to a control unit 9 including a microcomputer.
It is designed to output to. Here, in the case of the sensor device 1 for detecting far-infrared light of this air conditioner, a polyethylene plate 1 having a thickness of about 2 mm is used for the purpose of maintaining the aesthetic appearance of the air conditioner body.
The polyethylene plate 10 has a far-infrared light transmittance of 20 when the wavelength is 8 μm.
%, 50% for 10 μm, 40% for 12 μm
Met.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記従
来構成の遠赤外光感知用センサ装置1では遠赤外光の半
分以上がポリエチレン板10に吸収されてしまうので、
センサ感度が著しく低下して、誤動作や作動不良が多数
発生していた。However, in the far infrared light sensing sensor device 1 having the above-mentioned conventional structure, more than half of the far infrared light is absorbed by the polyethylene plate 10.
The sensor sensitivity was significantly reduced, causing many malfunctions and malfunctions.
【0005】本発明は上記問題を解決するもので、遠赤
外光感知用センサ装置のセンサ感度が低下することのな
いガラス窓材、およびこれを用いた遠赤外光感知用セン
サ装置、およびこのガラス窓材の製造方法を提供するこ
とを目的とする。The present invention is intended to solve the above problems, and a glass window material which does not reduce the sensor sensitivity of a far infrared light sensing sensor device, and a far infrared light sensing sensor device using the same. It is an object of the present invention to provide a method for manufacturing this glass window material.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に本発明のガラス窓材は、ゲルマニウムおよびひ素の少
なくとも一つとカルコゲン元素とからなるガラス素体で
形成されたものである。In order to solve the above-mentioned problems, the glass window material of the present invention is formed of a glass element body containing at least one of germanium and arsenic and a chalcogen element.
【0007】また、本発明の遠赤外光感知用センサ装置
は、遠赤外光感知用センサ装置のガラス窓材を、ゲルマ
ニウムおよびひ素の少なくとも一つとカルコゲン元素と
からなるガラス素体で形成したものである。Further, in the far-infrared light sensing sensor device of the present invention, the glass window material of the far-infrared light sensing sensor device is formed of a glass element body containing at least one of germanium and arsenic and a chalcogen element. It is a thing.
【0008】また、本発明のガラス窓材の製造方法は、
ゲルマニウムおよびひ素の少なくとも一つとカルコゲン
元素とからなるガラス素体を予備研磨加工または予備成
形加工を行わずにガラス素体の軟化点より10℃〜10
0℃高くかつ400℃以下の温度範囲で押圧成形して窓
材を製造するものであり、さらに、鏡面仕上げ成形金型
により押圧成形するものである。The method of manufacturing a glass window material of the present invention is
A glass body made of at least one of germanium and arsenic and a chalcogen element is not subjected to a pre-polishing process or a pre-forming process, and is 10 ° C to 10 ° C from the softening point of the glass body.
A window material is manufactured by press molding in a temperature range of 0 ° C. higher and 400 ° C. or lower, and further, press molding is performed by a mirror finish molding die.
【0009】[0009]
【作用】上記構成のガラス窓材によれば、遠赤外光透過
率が波長8μmの場合で70%、10μmの場合で70
%、12μmの場合で50%となり、遠赤外光の透過率
がポリエチレン板と比べておよそ40%も向上し、良好
な遠赤外光透過率を得られる。According to the glass window material having the above structure, the far infrared light transmittance is 70% when the wavelength is 8 μm and 70% when the wavelength is 10 μm.
%, It becomes 50% in the case of 12 μm, the transmittance of far infrared light is improved by about 40% as compared with the polyethylene plate, and excellent far infrared light transmittance can be obtained.
【0010】また、上記ガラス窓材を遠赤外光感知用セ
ンサ装置の窓部に配設することにより、遠赤外光の透過
率が向上するのでセンサの誤動作や作動不良は消滅す
る。また、上記構成のガラス窓材の製造方法によれば、
押圧プレスの金型の形状に変化のない温度(400℃以
下)でガラスに充分な流動性を持たせて押圧成形するこ
とができるため、気泡のない良好な窓材を製造でき、さ
らに鏡面仕上げ金型で押圧成形することにより、プレス
後の窓材表面は金型の鏡面に極めて近い高精度なものを
作製できる。また予備研磨せずに低温で成形加工するの
で、高い生産性で安価に赤外光透過用のガラス窓材を提
供できる。Further, by disposing the glass window member in the window portion of the sensor device for detecting far infrared light, the transmittance of far infrared light is improved, so that malfunctions and malfunctions of the sensor are eliminated. Further, according to the method for manufacturing a glass window material having the above structure,
Since glass can be pressed and formed with sufficient fluidity at a temperature (400 ° C or less) that does not change the shape of the pressing press mold, it is possible to manufacture good window materials without bubbles, and also to give a mirror finish. By press-molding with a die, the window material surface after pressing can be manufactured with high precision, which is extremely close to the mirror surface of the die. Further, since the glass is molded and processed at a low temperature without performing preliminary polishing, it is possible to provide a glass window material for infrared light transmission with high productivity and at low cost.
【0011】[0011]
【実施例】以下に図面を参照しながら、本発明の一実施
例の遠赤外光感知用センサ装置の窓材およびその製造方
法について説明する。なお、従来と同機能のものには同
符号を付して、その説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A window material for a sensor device for detecting far infrared light according to an embodiment of the present invention and a method for manufacturing the same will be described below with reference to the drawings. In addition, the same reference numerals are given to those having the same functions as the conventional ones, and the description thereof will be omitted.
【0012】本実施例の空調システムにおける遠赤外光
感知用センサ装置の概略構成を示すブロック図を図1に
示す。従来の空調システムと異なる点は窓材がポリエチ
レンからカルコゲナイドガラスに変わった点である。つ
まり、このガラス窓材20は、ゲルマニウムおよびひ素
の少なくとも一つとカルコゲン元素とからなるガラス素
体で形成されてなる。FIG. 1 is a block diagram showing a schematic structure of a sensor device for detecting far infrared light in the air conditioning system of this embodiment. The difference from the conventional air conditioning system is that the window material is changed from polyethylene to chalcogenide glass. That is, the glass window member 20 is formed of a glass element body containing at least one of germanium and arsenic and a chalcogen element.
【0013】次に、ガラス窓材20の製造方法について
説明する。まず、ゲルマニウムおよびひ素の少なくとも
一つとカルコゲン元素とからなるガラス材料を棒状にし
た後、輪切りにして平板状のガラス素体を得る。そし
て、このガラス素体を成形装置にて成形する。Next, a method of manufacturing the glass window material 20 will be described. First, a glass material made of at least one of germanium and arsenic and a chalcogen element is formed into a rod shape, which is then sliced to obtain a flat glass body. Then, this glass body is molded by a molding device.
【0014】図2は上記ガラス窓材の成形装置の概略構
成を示す断面図である。図2に示すように、タングステ
ンカーバイト製などの一対の成形金型21,22がタン
グステンカーバイト製などの胴型24内で出退自在にに
設置されており、成形金型21,22間に平板状のガラ
ス素体23を挟持する。ガラス素体23をヒータ25を
内蔵したプレスシリンダ26,27によりガラス素体2
3の軟化点から10℃上の温度で加熱し、その後、プレ
スシリンダ27を下降させてガラス素体23を押圧成形
することにより、所定の形状および所定の光学鏡面を有
するガラス窓材20を得る。FIG. 2 is a sectional view showing the schematic construction of the glass window material molding apparatus. As shown in FIG. 2, a pair of molding dies 21, 22 made of tungsten carbide or the like is installed in a body mold 24 made of tungsten carbide or the like so as to be retractable and retractable, and between the molding dies 21, 22. The flat glass body 23 is sandwiched between them. The glass body 23 is pressed by the press cylinders 26 and 27 having the heater 25 therein.
The glass window member 20 having a predetermined shape and a predetermined optical mirror surface is obtained by heating at a temperature 10 ° C. higher than the softening point of 3 and then lowering the press cylinder 27 to press-mold the glass body 23. .
【0015】本実施例で用いたガラスは6種類で、(表
1)に、材料および押圧温度を変化させた場合のレンズ
表面粗さ、金型変形の度合い、およびレンズの気泡の状
態似ついて示す。なお、ゲルマニウムおよびひ素の少な
くとも一つとカルコゲン元素との組成比を変化させるこ
とにより、ガラス素体23の軟化点を調整した。Six types of glass were used in this example, and (Table 1) shows the lens surface roughness when the material and the pressing temperature are changed, the degree of mold deformation, and the state of bubble of the lens. Show. The softening point of the glass body 23 was adjusted by changing the composition ratio of at least one of germanium and arsenic to the chalcogen element.
【0016】[0016]
【表1】 [Table 1]
【0017】これらのカルコゲナイドガラスはいずれも
赤外光を良好に透過し、その遠赤外光透過率は波長が8
μmの場合で70%、10μmの場合で70%、12μ
mの場合で50%となった。また、プレス前の平板状の
ガラス素体23の表面粗さはいずれもおよそ2μmで、
光学鏡面ではなかった。All of these chalcogenide glasses satisfactorily transmit infrared light, and their far infrared light transmittance is 8 wavelengths.
70% for μm, 70% for 10 μm, 12μ
In the case of m, it became 50%. The surface roughness of the flat glass body 23 before pressing is about 2 μm,
It was not an optical mirror surface.
【0018】(表1)から分かるように、本実施例で
は、軟化点が400℃より高いガラス素体23は成形金
型21,22の熱変形が避けられないので押圧成形には
不向きであると判断できる。また、(表1)で軟化点が
390℃以下のガラス素体23を用いて、その軟化点の
温度で押圧成形すると、成形金型21,22の変形は殆
どないが、軟化点で押圧成形してもガラス素体23の流
動性不足により気泡が生じてガラス窓材20としての役
割を果たさない。一方、軟化点より10〜100℃だけ
高い温度範囲での押圧成形を行った場合にはガラス窓材
20の表面に気泡が巻き込まれず、ガラス窓材20の表
面は充分に平滑で光学鏡面を有しており、赤外光透過用
のガラス窓材20としての透過特性を充分満足できるも
のであった。また、軟化点より100℃以上高い温度で
押圧成形すると、ガラス素体23が成形金型21,22
と付着するといった問題が生じ、一方、ガラス素体23
の軟化点より低い温度で押圧成形すると、ガラス素体2
3が所定の窓形状にならないまま割れていた。As can be seen from (Table 1), in this embodiment, the glass body 23 having a softening point higher than 400 ° C. is not suitable for press molding because thermal deformation of the molding dies 21 and 22 cannot be avoided. Can be judged. Further, when the glass body 23 having a softening point of 390 ° C. or less in (Table 1) is press-molded at the temperature of the softening point, the molding dies 21 and 22 are hardly deformed, but the press molding is performed at the softening point. Even if the glass body 23 is insufficient in fluidity, air bubbles are generated and the glass window member 20 does not function. On the other hand, when pressure molding is performed in a temperature range higher than the softening point by 10 to 100 ° C., bubbles are not caught in the surface of the glass window material 20, and the surface of the glass window material 20 is sufficiently smooth and has an optical mirror surface. Therefore, the transmission characteristics of the glass window material 20 for transmitting infrared light were sufficiently satisfied. In addition, when press molding is performed at a temperature higher than the softening point by 100 ° C. or more, the glass body 23 becomes the molding dies 21, 22.
However, there is a problem that the glass body 23
When pressed at a temperature lower than the softening point of
No. 3 was cracked without having a predetermined window shape.
【0019】この結果より、ガラス素体23としては、
ガラス素体23の軟化点より10℃〜100℃高くかつ
400℃以下の温度範囲で押圧成形してガラス窓材20
を製造することが適していることがわかる。From this result, as the glass body 23,
The glass window material 20 is formed by press molding in a temperature range of 10 ° C. to 100 ° C. higher than the softening point of the glass body 23 and 400 ° C. or less.
It can be seen that it is suitable to manufacture
【0020】なお、上記実施例においては、ガラス窓材
20を遠赤外光感知用センサ装置に用いた場合を示した
が、その良好な赤外光透過特性を利用するものであれば
他の製品にも適用できる。Although the glass window member 20 is used in the far infrared light sensing sensor device in the above-mentioned embodiments, other glass devices can be used as long as they utilize the excellent infrared light transmission characteristics. It can also be applied to products.
【0021】[0021]
【発明の効果】以上のように本発明のガラス窓材によれ
ば、ゲルマニウムおよびひ素の少なくとも一つとカルコ
ゲン元素とからなるガラス素体でガラス窓材を形成する
ことにより、遠赤外光透過率がポリエチレン板と比べて
およそ40%も向上し、良好な遠赤外光透過率を得られ
る。As described above, according to the glass window material of the present invention, by forming the glass window material from the glass element body containing at least one of germanium and arsenic and the chalcogen element, the far infrared light transmittance is improved. Is improved by about 40% as compared with the polyethylene plate, and excellent far infrared light transmittance can be obtained.
【0022】また、このガラス窓材を遠赤外光感知用セ
ンサ装置の窓部に設けることにより、遠赤外光の透過率
を上昇させることができて遠赤外光感知用センサ装置の
誤動作や作動不良を防止することができ、ひいては空調
システムなどの信頼性を向上できる。By providing this glass window material in the window portion of the far infrared light sensing sensor device, the far infrared light transmittance can be increased, and the far infrared light sensing sensor device malfunctions. And malfunctions can be prevented, and the reliability of the air conditioning system can be improved.
【0023】また、ゲルマニウムおよびひ素の少なくと
も一つとカルコゲン元素とからなるガラス素体を、ガラ
ス素体の軟化点より10℃〜100℃上でかつ400℃
以下の温度範囲で押圧成形して窓材を製造することで、
押圧成形時に窓材表面に気泡が発生することがない窓材
を得られ、さらに、鏡面仕上げ金型で押圧成形すること
により、プレス後の窓材表面は金型の鏡面に極めて近い
高精度なものを作製できる。また、予備研磨せずに低温
で成形加工するので、高い生産性で安価に赤外光透過用
の窓材を製造できる。簡単に作製できる。Further, a glass body made of at least one of germanium and arsenic and a chalcogen element is provided at a temperature of 10 to 100 ° C. and 400 ° C. above the softening point of the glass body.
By manufacturing the window material by pressure molding in the following temperature range,
It is possible to obtain a window material that does not generate bubbles on the surface of the window material during press molding, and by pressing with a mirror-finished die, the surface of the window material after pressing is highly accurate, very close to the mirror surface of the die. You can make things. Further, since the molding process is performed at a low temperature without performing preliminary polishing, it is possible to manufacture the window material for transmitting infrared light with high productivity and at low cost. Easy to make.
【図1】本発明の一実施例に係る遠赤外光感知用センサ
装置の概略構成を示すブロック図FIG. 1 is a block diagram showing a schematic configuration of a far infrared light sensing sensor device according to an embodiment of the present invention.
【図2】本発明の一実施例に係る遠赤外光感知用センサ
装置のガラス窓材の成形装置を示す断面図FIG. 2 is a cross-sectional view showing a molding device for a glass window material of a sensor device for detecting far infrared light according to one embodiment of the present invention.
【図3】従来の遠赤外光感知用センサ装置の概略構成を
示すブロック図FIG. 3 is a block diagram showing a schematic configuration of a conventional far infrared light sensing sensor device.
1 遠赤外光感知用センサ装置 8 被写体(物体) 20 ガラス窓材 21,22 成形金型 23 ガラス素体 24 胴型 25 ヒータ 26,27 プレスシリンダ 1 Far Infrared Light Sensing Sensor Device 8 Subject (Object) 20 Glass Window Material 21, 22 Molding Mold 23 Glass Element Body 24 Body 25 Heater 26, 27 Press Cylinder
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (4)
つとカルコゲン元素とからなるガラス素体で形成されて
なるガラス窓材。1. A glass window material formed of a glass body containing at least one of germanium and arsenic and a chalcogen element.
光感知用センサ装置であって、遠赤外光を入射する窓部
に、ゲルマニウムおよびひ素の少なくとも一つとカルコ
ゲン元素とからなるガラス素体で形成されてなるガラス
窓材が配設された遠赤外光感知用センサ装置。2. A far-infrared light sensing sensor device for sensing far-infrared light emitted by an object, wherein at least one of germanium and arsenic and a chalcogen element are included in a window portion into which far-infrared light is incident. A far-infrared light sensing sensor device provided with a glass window material formed of a glass body.
つとカルコゲン元素とからなるガラス素体を、ガラス素
体の軟化点より10℃〜100℃高くかつ400℃以下
の温度範囲で押圧成形してガラス窓材を製造するガラス
窓材の製造方法。3. A glass window material obtained by press-molding a glass body composed of at least one of germanium and arsenic and a chalcogen element in a temperature range of 10 ° C. to 100 ° C. higher than the softening point of the glass body and 400 ° C. or lower. A method for manufacturing a glass window material for manufacturing.
て、成形金型の鏡面に近い精度のガラス窓材を製造する
請求項3記載のガラス窓材の製造方法。4. The method for manufacturing a glass window material according to claim 3, wherein the glass window material is manufactured by press molding with a mirror-finishing molding die to produce a glass window material having an accuracy close to the mirror surface of the molding die.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5029982A JPH06239644A (en) | 1993-02-19 | 1993-02-19 | Pane glass material, far-infrared light sensor device using the same and production of the material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5029982A JPH06239644A (en) | 1993-02-19 | 1993-02-19 | Pane glass material, far-infrared light sensor device using the same and production of the material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06239644A true JPH06239644A (en) | 1994-08-30 |
Family
ID=12291173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5029982A Pending JPH06239644A (en) | 1993-02-19 | 1993-02-19 | Pane glass material, far-infrared light sensor device using the same and production of the material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06239644A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007516146A (en) * | 2003-07-07 | 2007-06-21 | サントル・ナシヨナル・ド・ラ・ルシエルシエ・シヤンテイフイツク・(セ・エーヌ・エール・エス) | Infrared transparent glass-ceramic glassy composition |
-
1993
- 1993-02-19 JP JP5029982A patent/JPH06239644A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007516146A (en) * | 2003-07-07 | 2007-06-21 | サントル・ナシヨナル・ド・ラ・ルシエルシエ・シヤンテイフイツク・(セ・エーヌ・エール・エス) | Infrared transparent glass-ceramic glassy composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5383990A (en) | Method for bending and laminating a pair of glass plates | |
US4895585A (en) | Method of manufacturing lens elements | |
JP7340959B2 (en) | glassware | |
JPS60145919A (en) | Press-molding of high-precision formed glass article | |
WO2015125850A1 (en) | Optical element production method and optical element | |
JP2020514243A (en) | process | |
JPH06239644A (en) | Pane glass material, far-infrared light sensor device using the same and production of the material | |
JP2818132B2 (en) | Manufacturing method of optical waveguide | |
GB1148940A (en) | Process for producing a cellular product from expanded pearls of synthetic resin | |
JPH0777964B2 (en) | Lens making method | |
JPH01148717A (en) | Forming device of optical element | |
JP2807318B2 (en) | Method for selecting glass sheet bending method and method for bending glass sheet | |
JPH05330832A (en) | Method for molding calchogenide glass lens | |
JPH0692654A (en) | Method for molding glass lens | |
JP2746425B2 (en) | Method and apparatus for molding optical element | |
JPS61114822A (en) | Manufacture of optical item | |
JPH05301723A (en) | Method for forming optical element | |
JPH06191861A (en) | Molding method of glass lens | |
JPS6221720A (en) | Forming of optical element | |
JPH08210910A (en) | Optical material and optical element for infrared sensor | |
JPH0648749A (en) | Production of ring-shaped lens and device therefor | |
JP2818131B2 (en) | Manufacturing method of optical waveguide | |
JPH0624759A (en) | Production of infrared lens | |
JPH0611604A (en) | Infrared lens gob and infrared lens forming method | |
JPH05279062A (en) | Method for molding glass lens |