JPH06238482A - Low hydrogen type coated electrode - Google Patents

Low hydrogen type coated electrode

Info

Publication number
JPH06238482A
JPH06238482A JP2948193A JP2948193A JPH06238482A JP H06238482 A JPH06238482 A JP H06238482A JP 2948193 A JP2948193 A JP 2948193A JP 2948193 A JP2948193 A JP 2948193A JP H06238482 A JPH06238482 A JP H06238482A
Authority
JP
Japan
Prior art keywords
welding
leg length
graphite
average particle
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2948193A
Other languages
Japanese (ja)
Inventor
Yutaka Takahashi
豊 高橋
Isao Nagano
功 長野
Masao Umeki
正夫 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2948193A priority Critical patent/JPH06238482A/en
Publication of JPH06238482A publication Critical patent/JPH06238482A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To provide a coated electrode with which a large leg length is obtainable and equal leg characteristics are good even in gravity type single pass welding by using graphite limited in average grain size to a specific range. CONSTITUTION:This low hydrogen type coated electrode is formed by applying a coating material contg. 0.1 to 0.7% (wt.%, hereafter the same) graphite having 112 to 21mum average grain sizes, 3 to 14% magnesia clinker, 3 to 14% magnesite and 3 to 12% metal fluoride to a steel core wire by using water glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低水素系被覆アーク溶
接棒に関し、特に水平すみ肉溶接姿勢による重力式1パ
ス溶接で、大脚長が安定して得られかつ等脚性が良好な
被覆アーク溶接棒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-hydrogen coated arc welding rod, and in particular, in gravity one-pass welding in a horizontal fillet welding position, a coating capable of stably obtaining a large leg length and having good isosceles property. It relates to an arc welding rod.

【0002】[0002]

【従来の技術】マグネサイト−珪砂−蛍石を主成分とす
る490N/mm2 高張力鋼用低水素系被覆アーク溶接
棒(以下単に溶接棒と称す)は、炭酸石灰−蛍石を主成
分とする低水素系溶接棒に比べ、ビード形状が平滑でか
つアンダカットの発生が極めて少ないことから、船体構
造用鋼材の水平すみ肉姿勢による重力式1パス溶接に多
く用いられている。
2. Description of the Related Art A low hydrogen system coated arc welding rod (hereinafter simply referred to as a welding rod) for 490 N / mm 2 high-strength steel containing magnesite-silica-fluorite as a main component is mainly composed of lime carbonate-fluorite. Compared with low hydrogen type welding rods, which have a smoother bead shape and extremely less undercut, they are often used for gravity type one-pass welding in horizontal fillet posture of steel for hull structure.

【0003】しかしながら近年、船舶が大型化されるに
従い使用される構造用鋼材は厚板化し、必然的に溶接棒
における溶接ビードも大脚長が要求され、かつ等脚性も
重要視されるようになってきている。ここで大脚長と
は、上脚長、下脚長共に8mm以上得られることをいい
(以下大脚長と言う)、等脚性とは上脚長と下脚長の比
率をいい、一般的には上脚長/下脚長が0.9以上であ
ることが望ましいとされる。以下の説明では等脚性ある
いは上脚長/下脚長で表す。
However, in recent years, as the size of ships has increased, the structural steel materials used have become thicker, and inevitably the welding bead in the welding rod is required to have a large leg length, and equality is important. It has become to. Here, the large leg length means that both the upper leg length and the lower leg length can be 8 mm or more (hereinafter referred to as the large leg length), and the isosceles property refers to the ratio of the upper leg length and the lower leg length, and generally, the upper leg length / It is desirable that the lower leg length is 0.9 or more. In the following description, it is expressed as isopod or upper leg length / lower leg length.

【0004】このような状況下において、従来溶接棒を
用いて板厚30mm程度の厚鋼板に水平すみ肉姿勢によ
る重力式1パス溶接を行うと、下脚長が大きく上脚長が
小さいビード、すなわち不等脚となり、目標とする大脚
長が得られないという大きな欠点を持っている。また、
水平すみ肉用溶接棒において、良好な大脚長、等脚性を
得る方法としては、1パスを重力式溶接法で溶接を行っ
た後、上脚長の不足分を2パス目の手溶接により補足す
る、いわゆる2パス溶接が行われるが、極めて非能率的
な方法であることから能率向上をめざす業界では大きな
問題点となっている。
Under such a circumstance, when gravity type one-pass welding is performed on a thick steel plate having a plate thickness of about 30 mm using a conventional welding rod in a horizontal fillet posture, a bead with a large lower leg length and a small upper leg length, that is, a non-adherent bead. It has the big drawback that it becomes a uniform leg and the target leg length cannot be obtained. Also,
For horizontal fillet welding rods, as a method for obtaining good long leg length and isoscelesity, one pass is welded by gravity welding and then the shortage of the upper leg length is supplemented by the second pass manual welding. Although so-called two-pass welding is performed, it is a very inefficient method, and this is a serious problem in the industry aiming to improve efficiency.

【0005】また、最近では溶接能率向上を目的として
炭酸ガス溶接用フラックス入りワイヤを用いて厚板の溶
接を行った場合においても、下脚長の止端部がオーバラ
ップ状となり大脚長が得られず、等脚性を満足させ得な
い状況にある。さらに、従来技術として、特開昭49−
87544号公報および特開昭50−10741号公報
にはMgCO3 やSiO2 を主成分とする溶接棒におい
て、ビード形状を良好ならしめる方法が開示されている
が、本発明者等はこれらの実施例に基づいて棒径8mm
の溶接棒を試作し、大脚長および等脚性について調査し
たが、いずれも大脚長が得られず、かつ等脚性も期待し
た効果を得ることができなかった。
Further, recently, even when a thick plate is welded using a flux-cored wire for carbon dioxide gas welding for the purpose of improving welding efficiency, the toe of the lower leg length is overlapped and a large leg length is obtained. Without being able to satisfy the isoscelesity. Further, as a conventional technique, Japanese Patent Laid-Open No. 49-
Japanese Patent Application Laid-Open No. 87544 and Japanese Patent Application Laid-Open No. 50-10741 disclose a method for achieving a good bead shape in a welding rod containing MgCO 3 or SiO 2 as a main component. 8mm rod diameter based on example
The welding rod of No. 3 was prototyped and the large leg length and the equipodality were investigated. However, none of them yielded the large leg length, and could not obtain the expected effect on the equipodality.

【0006】一方、これ等の問題点を改善するために本
発明者らは、マグネサイト−珪砂−蛍石を主成分とした
被覆剤組成に高炭素フェロマンガンの平均粒径を制限す
ることによって大脚長、等脚性を改善できることがわか
り、鋭意研究をすすめてきたが、その後市場の要求がさ
らに厳しくなり、本技術では十分対応できなくなり、さ
らに大脚長かつ等脚性の安定化が望まれるようになって
きている。
On the other hand, in order to ameliorate these problems, the present inventors have limited the average particle size of high carbon ferromanganese to a coating composition containing magnesite-silica sand-fluorite as a main component. Although it was found that the large leg length and the equipodality could be improved, intensive research was carried out, but after that the market requirements became more severe, and this technology could not adequately respond, and further stabilization of the large leg length and the isopodity is desired. Is starting to appear.

【0007】[0007]

【発明が解決しようとする課題】本発明は従来の太径溶
接棒においてなし得なかった、大脚長が安定して得られ
かつ等脚性が良好な溶接棒を提供することを目的とした
ものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a welding rod which can be stably obtained with a large leg length and which has good isopodity, which cannot be achieved by the conventional large diameter welding rod. Is.

【0008】[0008]

【課題を解決するための手段】以上のような状況から本
発明者らは、特に太径溶接棒の水平すみ肉溶接における
大脚長のビードが安定して得られかつ等脚性が良好な溶
接棒の開発について被覆剤組成及びグラファイトの平均
粒径の面から鋭意研究を進めてきた。その結果、使用す
るグラファイトの平均粒径を限定することにより、溶融
スラグの流動性が大幅に改善され、目標を達成できるこ
とがわかった。
In view of the above circumstances, the present inventors have found that a bead with a large leg length can be stably obtained in horizontal fillet welding of a large-diameter welding rod, and welding with good isoscelesity is achieved. We have been engaged in intensive research on the development of rods in terms of the coating composition and the average particle size of graphite. As a result, it was found that by limiting the average particle size of the graphite used, the fluidity of the molten slag was significantly improved and the target could be achieved.

【0009】その状態の模式を図1及び図2に示す。図
1においてAは高炭素フェロマンガンの平均粒径を制限
した溶接棒の溶融スラグの状態図で、1はスラグ、2は
溶融プールを示す図である。Bはグラファイトの平均粒
径を限定した溶接棒の溶融スラグの状態図で、1はスラ
グ、2は溶融プールを示す図である。
A schematic view of this state is shown in FIGS. In FIG. 1, A is a state diagram of molten slag of a welding rod in which the average particle size of high carbon ferromanganese is limited, 1 is slag, and 2 is a diagram showing a molten pool. B is a state diagram of a molten slag of a welding rod in which the average particle size of graphite is limited, 1 is a slag, and 2 is a diagram showing a molten pool.

【0010】図2Aは高炭素フェロマンガンの平均粒径
を制限した溶接棒のビード形状を示し、3はビード、4
は鋼板である。Bはグラファイトの平均粒径を限定した
溶接棒のビード形状で、3はビード、4は鋼板である。
図1では高炭素フェロマンガンの平均粒径を制限した溶
接棒Aに比べて、グラファイトの平均粒径を限定した溶
接棒Bでは、溶融スラグ1が溶融プールを細長く流動
し、溶融プール2の位置がビード上部に形成されるた
め、図2のBに示すように従来溶接棒Aに比べて大脚長
および等脚性が安定して得られるものと推定される。
FIG. 2A shows a bead shape of a welding rod in which the average particle size of high carbon ferromanganese is limited, 3 is a bead, and 4 is a bead.
Is a steel plate. B is a bead shape of a welding rod in which the average grain size of graphite is limited, 3 is a bead, and 4 is a steel plate.
In FIG. 1, in comparison with the welding rod A in which the average particle size of high carbon ferromanganese is limited, in the welding rod B in which the average particle size of graphite is limited, the molten slag 1 flows in the molten pool in an elongated shape, and the position of the molten pool 2 is increased. Is formed on the upper portion of the bead, it is presumed that, as shown in FIG. 2B, the large leg length and the equal leg property can be stably obtained as compared with the conventional welding rod A.

【0011】本発明者らは以上の結果及びその他被覆剤
組成の検討結果から、水平すみ肉溶接における溶接作業
性が良好で、すみ肉ビードの大脚長が安定して得られか
つ等脚性が良好な溶接棒を見出した。すなわち、本発明
の要旨とするところは平均粒径が112〜212μmの
グラファイト0.1〜0.7%、マグネシアクリンカー
3〜14%、マグネサイト3〜14%、金属弗化物3〜
12%を含有する被覆剤を、水ガラスを用いて鋼心線に
塗布してなることを特徴とする低水素系溶接棒にある。
From the above results and the examination results of other coating compositions, the present inventors have found that the welding workability in horizontal fillet welding is good, the long leg length of the fillet bead is stably obtained, and the isosceles property is equal. A good welding rod was found. That is, the gist of the present invention is that 0.1 to 0.7% graphite having an average particle size of 112 to 212 μm, 3 to 14% magnesia clinker, 3 to 14% magnesite, and 3 to 3 metal fluorides.
A low hydrogen welding rod is characterized in that a coating material containing 12% is applied to a steel core wire using water glass.

【0012】[0012]

【作用】以下に本発明を詳細に説明する。本発明溶接棒
の構成要件は次のような試験結果に基づくものである。
被覆剤の配合においてグラファイトの平均粒径を95〜
230μmの間で種々変化させて分割した。そして別途
準備した、ルチール12.9%、珪砂11.5%、蛍石
9.5%、二酸化マンガン3.5%、マグネシアクリン
カー10.4%、マグネサイト10.8%、フェロシリ
コン1.7%、鉄粉35.1%、中炭素フェロマンガン
1.3%、マイカ2.2%、弗化リチウム0.45%に
前記の平均粒径を分割したそれぞれのグラファイトを
0.65%添加して乾式混合を行い、珪酸ソーダ(47
ボーメ)2+珪酸カリ(38ボーメ)1の組合わせから
なる水ガラスを22%添加して湿式混合を行った後、
C;0.07%、Si;0.01%、Mn;0.52
%、P;0.012%、S;0.005%、N;0.0
13%、残部Feからなる直径8mm、長さ700mm
の鋼心線に被覆外径が12.9mmになるように通常の
押し出し式塗装機により塗装した。
The present invention will be described in detail below. The constituent features of the welding rod of the present invention are based on the following test results.
The average particle size of graphite in the coating composition is 95-
The film was divided by changing variously within 230 μm. And, separately prepared, 12.9% of rutile, 11.5% of silica sand, 9.5% of fluorite, 3.5% of manganese dioxide, 10.4% of magnesia clinker, 10.8% of magnesite, 1.7 of ferrosilicon. %, Iron powder 35.1%, medium carbon ferromanganese 1.3%, mica 2.2%, lithium fluoride 0.45% and 0.65% of each graphite obtained by dividing the above average particle size. Dry mixing to remove sodium silicate (47
22% of water glass consisting of a combination of Baume 2) and potassium silicate (38 Baume) 1 was added and wet-mixed.
C: 0.07%, Si: 0.01%, Mn: 0.52
%, P; 0.012%, S; 0.005%, N; 0.0
13%, diameter 8 mm consisting of balance Fe, length 700 mm
The steel core wire was coated with an ordinary extrusion-type coating machine so that the coating outer diameter was 12.9 mm.

【0013】さらに高炭素フェロマンガンの平均粒径を
制限した溶接棒と本発明とを比較するため、高炭素フェ
ロマンガンの平均粒径を制限した溶接棒を試作した。先
ず高炭素フェロマンガンの平均粒径50〜90μmの間
で種々変化させて分割し、別途準備した、二酸化マンガ
ン2.9%、ルチール9.7%、珪砂8.3%、蛍石
8.3%、マグネシアクリンカー10.2%、マグネサ
イト7.9%、マイカ1.3%、酸化ジルコン0.4
%、フェロシリコン1.4%、鉄粉36.4%、チタン
酸カリ0.4%、弗化リチウム0.4%、アルギン酸ソ
ーダ0.6%、中炭素フェロマンガン1.1%に、前記
の分割したそれぞれの高炭素フェロマンガンを10.7
%添加して乾式混合を行い、珪酸ソーダ(47ボーメ)
2+珪酸カリ(38ボーメ)1の組合わせからなる水ガ
ラスを22%添加して湿式混合を行った後、C;0.0
6%、Si;0.01%、Mn;0.51%、P;0.
011%、S;0.006%、N;0.0012%、残
部Feからなる直径8mm、長さ700mmの鋼心線に
被覆外径が約12.8mmになるように通常の押し出し
式塗装機により塗装した。
Further, in order to compare the present invention with a welding rod in which the average grain size of high carbon ferromanganese is limited, a welding rod in which the average grain size of high carbon ferromanganese is limited was manufactured. First, the high-carbon ferromanganese was divided into various particles with an average particle size of 50 to 90 μm and separately prepared, and manganese dioxide 2.9%, rutile 9.7%, silica sand 8.3%, and fluorite 8.3 were prepared separately. %, Magnesia clinker 10.2%, magnesite 7.9%, mica 1.3%, zircon oxide 0.4
%, Ferrosilicon 1.4%, iron powder 36.4%, potassium titanate 0.4%, lithium fluoride 0.4%, sodium alginate 0.6%, medium carbon ferromanganese 1.1%, Each of the divided high carbon ferromanganese of 10.7
% And dry-mixed, sodium silicate (47 Baume)
After 22% of water glass consisting of a combination of 2 + potassium silicate (38 Baume) 1 was added and wet-mixed, C: 0.0
6%, Si; 0.01%, Mn; 0.51%, P;
011%, S: 0.006%, N: 0.0012%, the balance of Fe 8 mm in diameter, 700 mm in length of steel core wire ordinary extrusion coating machine so that the coating outer diameter is about 12.8 mm Painted by.

【0014】両溶接棒共最高400℃で乾燥を行った。
得られたそれぞれの試作溶接棒を用いて寸法が板厚30
mm×幅100mm×長さ1000mmでジンクリッチ
プライマーが約20μmになるように塗布した490N
/mm2 級高張力鋼材をT型すみ肉溶接ができるように
組立て、溶接電流390A、運棒比(溶接ビードを消費
棒長で除した値を言う)は1.2倍で水平すみ肉重力式
1パス溶接を行った。
Both welding rods were dried at a maximum temperature of 400.degree.
Using each of the prototype welding rods obtained, the size is 30
mm × width 100 mm × length 1000 mm, zinc-rich primer applied to approximately 20 μm 490N
/ Mm 2 class high-strength steel material is assembled to enable T-type fillet welding, welding current 390A, rod ratio (welding bead divided by consumed rod length) is 1.2 times, horizontal fillet gravity Formula 1 pass welding was performed.

【0015】その後、脚長ゲージを用いて上、下の脚長
を測定するとともに等脚性を算出し、さらにグラファイ
ト添加のものについてはビードから分析試料を採収して
〔C〕の化学分析を行った。尚、溶接金属の〔C〕量
は、0.13%以下であれば高温割れが起きないことを
別途確認している。
After that, the upper and lower leg lengths are measured using a leg length gauge and the isoscelesity is calculated, and for the graphite-added ones, an analytical sample is collected from the bead and the chemical analysis of [C] is performed. It was It has been separately confirmed that hot cracking does not occur if the [C] content of the weld metal is 0.13% or less.

【0016】その結果を表1、表2(表1のつづき)、
表3、表4(表3のつづき)に示す。表1、2はグラフ
ァイトの平均粒径を制限した本発明例及び比較例を示
し、表3、4は高炭素フェロマンガンの平均粒径を制限
した溶接棒の適用例であるが、表1、2のグラファイト
を使用した本発明例と比較した場合、表1、2の本発明
例は等脚性が良好でかつ大脚長のビードが安定して得ら
れており、グラファイトの平均粒径が溶接ビードの等脚
性及び大脚長の安定性に大きく影響することを見出し
た。
The results are shown in Table 1 and Table 2 (continued from Table 1),
The results are shown in Table 3 and Table 4 (continued from Table 3). Tables 1 and 2 show examples of the present invention and comparative examples in which the average particle size of graphite is limited, and Tables 3 and 4 are application examples of welding rods in which the average particle size of high carbon ferromanganese is limited. When compared with the example of the present invention using graphite of No. 2, in the examples of the present invention of Tables 1 and 2, beads having a long leg length and stable is obtained, and the average particle diameter of graphite was It was found that the isodality of the beads and the stability of the large leg length are greatly affected.

【0017】グラファイトの平均粒径を112〜212
μmとしたのは表1、2から明らかなように112〜2
12μmの範囲内であれば溶接作業性が良好で上脚長、
下脚長共に目標とする8mm以上が得られかつ等脚性が
0.9以上で優れていること、さらには溶接金属の
〔C〕量も高温割れを起こさない限界量0.13%以下
であることを根拠とするものである。
The average particle size of graphite is 112 to 212.
As is clear from Tables 1 and 2, the value of μm is 112 to 2
Within the range of 12 μm, the welding workability is good and the upper leg length,
The target lower leg length of 8 mm or more is obtained and the isoscelesity is 0.9 or more, and the [C] amount of the weld metal is 0.13% or less, which is a limit amount that does not cause hot cracking. It is based on that.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】グラファイトの平均粒径が112μm未満
では粒径が小さ過ぎるため溶接金属の〔C〕量は0.1
3%以下であるが、スラグの流動性が過小で不等脚かつ
大脚長が得られない。平均粒径が212μmを超える場
合においては、大脚長が得られかつ等脚性も良好である
が、スラグの流動性が過大で棒先端にややからみ易くな
るので採用できない。
If the average grain size of graphite is less than 112 μm, the grain size is too small, so the [C] content of the weld metal is 0.1.
Although it is 3% or less, the fluidity of the slag is too small to obtain an unequal leg and a large leg length. When the average particle size exceeds 212 μm, a large leg length can be obtained and good isoscelesity is obtained, but the fluidity of the slag is excessive and the rod tip is liable to be slightly entangled.

【0023】さらに前記グラファイトの平均粒径と添加
量の関係を詳細に調査するためにグラファイトの平均粒
径が112〜212μmのものを用い、配合比率を変化
させて通常用いられる低水素系被覆アーク溶接棒の被覆
組成となるように組合わせ、前記の鋼心線及び水ガラス
を用いて塗装し、最高温度400℃で乾燥を行い、前記
と同様の試験を行った結果、平均粒径を112〜212
μmに限定したグラファイトを0.1〜0.7%添加す
れば良好な結果が得られることを確認した。
Further, in order to investigate in detail the relationship between the average particle size of graphite and the amount added, a graphite having an average particle size of 112 to 212 μm is used, and a low hydrogen type coated arc which is usually used by changing the compounding ratio. The welding rods were combined so as to have a coating composition, coated with the steel core wire and water glass, dried at the maximum temperature of 400 ° C., and the same test as the above was conducted. ~ 212
It was confirmed that good results can be obtained by adding 0.1 to 0.7% of graphite limited to μm.

【0024】平均粒径を112〜212μmに限定した
グラファイトの添加が0.1%未満では目標とする流動
形態にならないため、大脚長が安定して得られず、かつ
等脚性を満足させることはできない。一方、前記グラフ
ァイトの添加が0.7%を超えると、アーク切れが発生
しやすくなるとともに溶接金属の〔C〕量の歩留りが多
くなり、耐高温割れ性が劣化する。
If the addition of graphite with the average particle size limited to 112 to 212 μm is less than 0.1%, the target flow form will not be obtained, so that the large leg length cannot be stably obtained and the isopia property is satisfied. I can't. On the other hand, if the amount of graphite added exceeds 0.7%, arc breakage is likely to occur, the yield of [C] content of the weld metal increases, and the hot crack resistance deteriorates.

【0025】マグネシアクリンカーは、スラグの塩基度
及びスラグの粘性を調整するために添加するものである
が、3%未満ではその効果が得られない。一方、14%
を超えて添加するとスラグの粘性が高くなりすぎてビー
ド形状を劣化させ、アークが不安定となる。マグネサイ
トは、アークの安定性に優れ、CO2 源として溶接金属
のシールド効果を発揮すると共にビード表面を滑らかに
する。3%未満では保護筒が形成されにくくピットも発
生しやすくなる。一方、14%を超えるとスラグが流れ
やすくなり、正常なビード形状が得られない。
The magnesia clinker is added to adjust the basicity of the slag and the viscosity of the slag, but if it is less than 3%, its effect cannot be obtained. On the other hand, 14%
If added in excess of 1.0, the viscosity of the slag becomes too high, deteriorating the bead shape and making the arc unstable. Magnesite has excellent arc stability, and CO 2 It exerts the shielding effect of the weld metal as a source and smoothes the bead surface. If it is less than 3%, it is difficult to form a protective cylinder and pits are likely to occur. On the other hand, if it exceeds 14%, the slag tends to flow, and a normal bead shape cannot be obtained.

【0026】金属弗化物は3%未満の添加ではスラグの
流動性が劣化し、ビード形状が凸状となる。一方、12
%を超えると、被覆筒が浅くなり母材に短絡するので溶
接が困難となる。尚、上記の検討におけるグラファイト
の平均粒径はJIS Z 8801に準じて各粒径間の
重量比率を求めた後、次式を用いて算出した。
If the content of metal fluoride is less than 3%, the fluidity of the slag deteriorates and the bead shape becomes convex. On the other hand, 12
If it exceeds%, the sheath becomes shallow and short-circuits to the base material, making welding difficult. The average particle size of graphite in the above examination was calculated using the following equation after determining the weight ratio between the particle sizes according to JIS Z8801.

【0027】平均粒径D(μm)=(W1×297+W
2×254+W3×180+W4×127+W5×90
+W6×68+W7×53+W8×22)/100 但し各数字は測定ふるい間の平均粒径を示し、W1〜W
8は下記の意味を有する。 W1:297 μm以上のwt% W2:297〜210μmのwt% W3:210〜149μmのwt% W4:149〜105μmのwt% W5:105〜 74μmのwt% W6: 74〜 62μmのwt% W7: 62〜 44μmのwt% W8: 44 μm未満のwt% また、前記被覆剤組成としてグラファイト、マグネシア
クリンカー、マグネサイト以外の被覆剤として金属弗化
物とは、蛍石、氷昌石、弗化バリウム、弗化アルミニウ
ム、弗化リチウム等を示す。本発明の他の被覆剤組成と
してはアーク安定剤としてルチール、チタン酸カリ、二
酸化マンガン、炭酸マンガン、脱酸剤及び合金剤として
はフェロシリコン、フェロマンガン、フェロチタン、ス
ラグ生成剤としては珪砂、石灰、ドロマイト、マイカ、
タルク等、溶着効率向上剤として鉄粉、水ガラスとして
は珪酸ソーダ、珪酸カリ等を用いる。
Average particle diameter D (μm) = (W1 × 297 + W
2 x 254 + W3 x 180 + W4 x 127 + W5 x 90
+ W6 × 68 + W7 × 53 + W8 × 22) / 100 However, each number indicates the average particle size between the measuring sieves, W1 to W
8 has the following meaning. W1: 297 μm or more wt% W2: 297 to 210 μm wt% W3: 210 to 149 μm wt% W4: 149 to 105 μm wt% W5: 105 to 74 μm wt% W6: 74 to 62 μm wt% W7: 62 to 44 μm wt% W8: less than 44 μm wt% Further, as the coating composition other than graphite, magnesia clinker, and magnesite, metal fluorides are fluorite, glaze, barium fluoride, Aluminum fluoride, lithium fluoride, etc. are shown. As another coating composition of the present invention, rutile as an arc stabilizer, potassium titanate, manganese dioxide, manganese carbonate, ferrosilicon as a deoxidizer and alloying agent, ferromanganese, ferro titanium, silica sand as a slag forming agent, Lime, dolomite, mica,
Iron powder is used as a welding efficiency improving agent such as talc, and sodium silicate or potassium silicate is used as water glass.

【0028】[0028]

【実施例】鋼心線径8.0mmのJIS G 3523
の1種1号に相当する心線に表5、表6(表5のつづ
き)、表7、表8(表7のつづき−1)に示す被覆剤の
組合せにより、被覆外径が約12.9mmになるように
して塗装し、最高温度400℃×60分の乾燥を実施し
た。得られたそれぞれの溶接棒を用い後述の溶接条件に
て溶接を行い、脚長、等脚性、スラグのからみ度合いを
含む一般的な溶接作業性及び溶接金属の〔C〕量を調査
した。その結果を表6、表9(表7のつづき−2)に示
す。
[Example] JIS G 3523 having a steel core wire diameter of 8.0 mm
The outer diameter of the coating is about 12 depending on the combination of the coating agents shown in Table 5, Table 6 (continued from Table 5), Table 7, and Table 8 (continued-1 from Table 7) on the core wire corresponding to No. 1 of No. 1 The coating was performed so that the thickness would be 1.9 mm, and the maximum temperature was 400 ° C. × 60 minutes for drying. Welding was performed under the below-described welding conditions using each of the obtained welding rods, and general welding workability including leg length, isopodity, slag entanglement degree, and [C] amount of weld metal were investigated. The results are shown in Tables 6 and 9 (continued-2 in Table 7).

【0029】(溶接条件) 試験板;490N/mm2 級鋼張力鋼板(36t×10
0mmw×1000mml)無機ジンクリッチプライマ
20μm塗布 重力式溶接機;市販品 溶接姿勢;1パス水平すみ肉溶接 溶接電流;380〜400A 運棒比;1.2 尚、評価基準は大脚長においては上脚長、下脚長共に8
mmを超えるものについては良好○印、下廻るものにつ
いては不良×印とした。
(Welding conditions) Test plate: 490 N / mm 2 grade steel tensile steel plate (36 t × 10)
0mmw × 1000mml) Inorganic zinc rich primer 20μm coating Gravity welding machine; commercial product Welding position: 1-pass horizontal fillet welding Welding current: 380-400A Lover ratio; 1.2 In addition, the evaluation standard is upper leg length , Both lower leg length 8
Those with a diameter of more than mm were marked with a good ◯, and those with a diameter of less than mm were marked with a bad X.

【0030】等脚性については上脚長を下脚長で除した
値が0.95以上のものを良好○印、0.95を下廻っ
たものについては不良×印とした。スラグの流動性及び
一般の溶接作業性については従来棒と遜色のないものは
良好○印、劣るものを不良×印とした。溶接金属の
〔C〕量については0.13%以下のものを良好、0.
13%を超えるものについては不良とした。
Regarding the isosceles property, those in which the value obtained by dividing the upper leg length by the lower leg length was 0.95 or more were evaluated as good ◯, and those less than 0.95 were evaluated as bad x. Regarding the fluidity of slag and the general workability of welding, those that are comparable to conventional rods are marked with a good mark, and those that are inferior are marked with a bad mark. Regarding the amount of [C] of the weld metal, those of 0.13% or less are good,
Those exceeding 13% were regarded as defective.

【0031】表5、表6(表5のつづき)の高炭素フェ
ロマンガンの平均粒径を制限した溶接棒の適用例である
M1〜M2は、高炭素フェロマンガンの平均粒径及び添
加量が適正であっても等脚性が安定しない例である。表
7、表8(表7のつづき−1)、表9(表7のつづき−
2)に示される本発明例である溶接棒L1〜L12はグ
ラファイトの平均粒径及び添加量が適正であるため、大
脚長が安定して得られ、等脚性、溶接作業性が良好で溶
接金属の〔C〕が極めて良好な結果を示した。
M1 and M2, which are application examples of the welding rods in which the average particle size of high carbon ferromanganese is limited in Tables 5 and 6 (continued from Table 5), have an average particle size of high carbon ferromanganese and an addition amount thereof. This is an example in which the equipodality is not stable even if it is appropriate. Table 7, Table 8 (continued from Table 7-1), Table 9 (continued from Table 7-
In the welding rods L1 to L12 of the present invention shown in 2), since the average particle diameter and the addition amount of graphite are appropriate, the large leg length can be stably obtained, and the isosceles property and the welding workability are good and the welding is performed. The metal [C] showed very good results.

【0032】比較例の溶接棒では、L13は、金属弗化
物の添加量が多過ぎるため被覆筒が浅くなり溶接棒が母
材に短絡して溶接が困難なため中断した。L14は、金
属弗化物の添加量が少な過ぎるためスラグの流動性が悪
く、溶接作業性が劣化した。L15は、マグネサイトの
添加量が多過ぎるためスラグの流動性が過大となり、ビ
ード形状が劣化した。
In the welding rod of the comparative example, L13 was interrupted because the amount of metal fluoride added was too large and the coating cylinder became shallow and the welding rod short-circuited to the base material, making welding difficult. Since the amount of metal fluoride added to L14 was too small, the flowability of the slag was poor and the welding workability was deteriorated. In L15, since the amount of added magnesite was too large, the fluidity of the slag was excessive and the bead shape was deteriorated.

【0033】L16は、マグネサイトの添加量が少な過
ぎるため保護筒がもろくなり、溶接作業性が劣化した。
L17〜L18は、グラファイトの平均粒径が小さ過ぎ
るため溶接金属の〔C〕量は低めで良好であるが、スラ
グの流動性が過小で等脚性が劣化するとともに大脚長が
得られていない。
With respect to L16, since the amount of magnesite added was too small, the protective cylinder became brittle and the welding workability deteriorated.
Regarding L17 to L18, since the average particle size of graphite is too small, the [C] content of the weld metal is low and good, but the fluidity of the slag is too small and the isosceles property deteriorates and a large leg length is not obtained. .

【0034】L19〜L20は、グラファイトの添加量
が多過ぎるため大脚長が得られ等脚性は良好であるが、
スラグの流動性が過大で溶接棒先端にスラグがからみ、
溶接作業性が劣化した。L21は、グラファイトの添加
量が少な過ぎるためスラグの流動形態が不具合で等脚性
が劣化した。
In L19 to L20, since the amount of graphite added is too large, a large leg length can be obtained and the isosceles property is good.
The fluidity of the slag is excessive and the slag entangles at the tip of the welding rod,
Welding workability deteriorated. In L21, since the amount of graphite added was too small, the flow morphology of the slag was inferior and the isosceles property deteriorated.

【0035】L22は、マグネシアクリンカーの添加量
が多過ぎるためスラグの粘性が高くなり過ぎてビード形
状が劣化し、アークも不安定となった。L23〜L24
は、マグネシアクリンカーの添加量が少な過ぎるためス
ラグの粘性が調整されず、溶接作業性及び等脚性が劣化
した。L25〜L26は、グラファイトの平均粒径が大
き過ぎるため大脚長が得られ、等脚性は良好であるが、
スラグの流動性が過大で溶接棒先端にスラグがからみ、
溶接作業性が劣化した。
Since the amount of magnesia clinker added to L22 was too large, the viscosity of the slag became too high, the bead shape deteriorated, and the arc became unstable. L23 ~ L24
In addition, since the addition amount of magnesia clinker was too small, the viscosity of the slag was not adjusted, and the welding workability and the isopodity deteriorated. In L25 to L26, since the average particle size of graphite is too large, a large leg length can be obtained, and the isosceles property is good,
The fluidity of the slag is excessive and the slag entangles at the tip of the welding rod,
Welding workability deteriorated.

【0036】L27は、グラファイトを全く添加しない
例であるが、スラグの流動性が劣化するとともに等脚性
が劣化し、大脚長が得られなかった。
L27 is an example in which graphite is not added at all, but the fluidity of the slag is deteriorated and the isosceles property is deteriorated, and a large leg length cannot be obtained.

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【表9】 [Table 9]

【0042】[0042]

【発明の効果】以上のように本発明の溶接棒によれば水
平すみ肉姿勢による重力式1パス溶接においても、従来
の低水素系溶接棒のように上脚長の不足分を補う必要が
なく、大脚長が安定して得られかつ等脚性が良好である
ため溶接能率向上、作業工数の大幅な低減が計れること
により産業上寄与するところ大である。
As described above, according to the welding rod of the present invention, even in the gravity type one-pass welding in the horizontal fillet posture, it is not necessary to compensate for the shortage of the upper leg length unlike the conventional low hydrogen type welding rod. Since the large leg length is stably obtained and the isosceles property is good, the welding efficiency can be improved and the working man-hour can be greatly reduced, which is a great contribution to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aは高炭素フェロマンガンの平均粒径を制限し
た溶接棒の溶融スラグの流動状態図、Bは本発明溶接棒
の溶融スラグの流動状態図である。
FIG. 1A is a flow diagram of molten slag of a welding rod in which the average particle size of high carbon ferromanganese is limited, and B is a flow diagram of molten slag of the welding rod of the present invention.

【図2】Aは高炭素フェロマンガンの平均粒径を制限し
た溶接棒で溶接したすみ肉ビード形状の断面図、Bは本
発明溶接棒で溶接したすみ肉ビード形状の断面図であ
る。
FIG. 2A is a cross-sectional view of a fillet bead shape welded with a welding rod in which the average particle size of high carbon ferromanganese is limited, and B is a cross-sectional view of a fillet bead shape welded with the welding rod of the present invention.

【符号の説明】[Explanation of symbols]

1 溶融スラグ 2 溶融プール 3 すみ肉ビード 4 鋼板 1 Molten slag 2 Molten pool 3 Fillet beads 4 Steel plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が112〜212μmのグラフ
ァイト0.1〜0.7%(重量%:以下同じ)、マグネ
シアクリンカー3〜14%、マグネサイト3〜14%、
金属弗化物3〜12%を含有する被覆剤を、水ガラスを
用いて鋼心線に塗布してなることを特徴とする低水素系
被覆アーク溶接棒。
1. Graphite having an average particle size of 112 to 212 μm 0.1 to 0.7% (weight%: the same hereinafter), magnesia clinker 3 to 14%, magnesite 3 to 14%,
A low hydrogen-based coated arc welding rod, characterized in that a coating material containing 3 to 12% of metal fluoride is applied to a steel core wire using water glass.
JP2948193A 1993-02-18 1993-02-18 Low hydrogen type coated electrode Withdrawn JPH06238482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2948193A JPH06238482A (en) 1993-02-18 1993-02-18 Low hydrogen type coated electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2948193A JPH06238482A (en) 1993-02-18 1993-02-18 Low hydrogen type coated electrode

Publications (1)

Publication Number Publication Date
JPH06238482A true JPH06238482A (en) 1994-08-30

Family

ID=12277283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2948193A Withdrawn JPH06238482A (en) 1993-02-18 1993-02-18 Low hydrogen type coated electrode

Country Status (1)

Country Link
JP (1) JPH06238482A (en)

Similar Documents

Publication Publication Date Title
US4940882A (en) Welding flux and welding electrode
KR930009966B1 (en) Flux-cored wire for gas shilded arc welding
EP0028854B1 (en) Coated welding electrode of basic type suitable for vertical down welding of pipes
US4367394A (en) Coated electrode for arc welding
JPH06238482A (en) Low hydrogen type coated electrode
JP3051251B2 (en) Low hydrogen coated arc welding rod
JP2000071096A (en) Flux cored wire for horizontal fillet gas shield arc welding
JP2003025088A (en) Flux cored wire for gas-shielded arc welding
JP4311888B2 (en) Low hydrogen coated arc welding rod
JPH11216593A (en) Low hydrogen system covered arc electrode
JPH03264193A (en) Low hydrogen type coated arc welding electrode
JPH03142099A (en) Coated arc welding rod for stainless steel
JP3505429B2 (en) Flux-cored wire for gas shielded arc welding
JPH089117B2 (en) Stainless steel coated arc welding rod
JP2579860B2 (en) Low hydrogen coated arc welding rod for Uranami welding
JPS59110495A (en) Low hydrogen type coated arc welding electrode for fillet welding
KR900001676B1 (en) Flux cored electrodes for self-shielded arc welding
JPH04319093A (en) Flux cored wire for nickel alloy 'hastelloy c-276(r)' welding
RU2125927C1 (en) Composition of electrode coating
JPH0475796A (en) Low hydrogen type coated arc welding electrode
JP2019171399A (en) Low-hydrogen type coated electrode
JPH023678B2 (en)
JPH04313492A (en) Low hydrogen type coated electrode
JPS6358078B2 (en)
JPS61216891A (en) Coated electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509