JPH06237992A - Heat and gas exchanger - Google Patents

Heat and gas exchanger

Info

Publication number
JPH06237992A
JPH06237992A JP50A JP4996193A JPH06237992A JP H06237992 A JPH06237992 A JP H06237992A JP 50 A JP50 A JP 50A JP 4996193 A JP4996193 A JP 4996193A JP H06237992 A JPH06237992 A JP H06237992A
Authority
JP
Japan
Prior art keywords
gas
fluid
liquid
heat
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Atsuhiko Nogawa
淳彦 野川
Mitsuaki Ogiwara
光明 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP50A priority Critical patent/JPH06237992A/en
Publication of JPH06237992A publication Critical patent/JPH06237992A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the execution of a heat exchange and gas exchange with one exchanger by passing gas different temp. and gaseous partial pressure from first fluid into a second flow passage and executing the heat exchange and the gas exchange via gas permeable membranes. CONSTITUTION:An artificial lung 1A with the heat exchanger has a housing 2 constituted of a cylindrical body 3 and cover members 4, 5 liquidtightly joined to both ends. The many hollow yarn membranes 6 embedded and fixed at both ends into partition walls 7, 8 are housed in the cylindrical body 3. An inflow port 34 and outflow port 35 for blood are formed in the upper part and lower part of the cylindrical body 3. The cover member 4 is internally partitioned to two spaces 43, 44 by a porous sheet 42 and is provided with a gas inflow port 45 communicating with one thereof and a liquid inflow port 46 communicating with the other. The heat exchange and the gas exchange are executed between the blood flowing in the spacings between the hollow yarn membranes 6 each other and the liquid contg. air bubbles flowing in the internal cavities of the hollow yarn membranes 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第一の流体と第二の流
体との間で熱交換およびガス交換を行う熱およびガス交
換器に関する。
FIELD OF THE INVENTION The present invention relates to a heat and gas exchanger for heat and gas exchange between a first fluid and a second fluid.

【0002】[0002]

【従来の技術】例えば、心臓手術等の際に血液の体外循
環を行なう場合の血液体外循環回路には、血液を酸素
化、脱炭酸ガスする人工肺(ガス交換器)と、血液の温
度を調節する熱交換器とが設置されており、体外に導か
れた血液を熱交換器により冷却または加温した後、酸素
化、脱炭酸ガスすることが行われる。
2. Description of the Related Art For example, an extracorporeal blood circulation circuit for performing extracorporeal circulation of blood during heart surgery or the like includes an artificial lung (gas exchanger) for oxygenating and decarbonating blood and a temperature of blood. A heat exchanger for adjustment is installed, and the blood introduced to the outside of the body is cooled or heated by the heat exchanger, and then oxygenated and decarbonated.

【0003】しかしながら、このような血液体外循環回
路では、熱交換器と人工肺とがそれぞれ別個に設置され
ているため、回路構成が複雑となり、また、回路中の血
液のプライミング量も増大するという問題がある。
However, in such an extracorporeal blood circulation circuit, since the heat exchanger and the artificial lung are separately installed, the circuit configuration becomes complicated and the priming amount of blood in the circuit also increases. There's a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、1つ
の交換器で熱交換とガス交換とを行うことができる熱お
よびガス交換器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat and gas exchanger which can perform heat exchange and gas exchange with one exchanger.

【0005】[0005]

【課題を解決するための手段】このような目的は、以下
の本発明(1)により達成される。また、(2)〜
(9)であるのが好ましい。
Such an object is achieved by the present invention (1) described below. Also, (2)-
It is preferably (9).

【0006】(1) ハウジング内に、ガス透過性の膜
と、第一の流体の流入部と、第一の流体の流出部と、前
記第一の流体の流入部から流出部へ至る第一流路と、第
二の流体の流入部と、第二の流体の流出部と、前記第二
の流体の流入部から流出部へ至る第二流路とを有し、前
記第一流路と前記第二流路とが前記ガス透過性の膜で隔
てられている熱およびガス交換器であって、前記第一流
路に前記第一の流体を流すとともに、前記第二流路に前
記第一の流体と温度が異なる液体と前記第一の流体とガ
ス分圧の異なる気体とを流し、前記ガス透過性の膜を介
して、前記第一の流体と前記第二の流体との間で熱交換
およびガス交換を行うことを特徴とする熱およびガス交
換器。
(1) Inside the housing, a gas-permeable membrane, a first fluid inflow portion, a first fluid outflow portion, and a first flow from the first fluid inflow portion to the outflow portion. A passage, a second fluid inflow portion, a second fluid outflow portion, and a second flow passage from the second fluid inflow portion to the outflow portion, and the first flow passage and the first flow passage. A heat and gas exchanger in which two flow paths are separated by the gas permeable membrane, the first fluid is caused to flow through the first flow path, and the first fluid is passed through the second flow path. And liquids having different temperatures, the first fluid, and gases having different gas partial pressures are caused to flow, and heat exchange between the first fluid and the second fluid is performed via the gas-permeable membrane. A heat and gas exchanger characterized by performing gas exchange.

【0007】(2) 前記第二の流体の流入部は、前記
第一の流体と温度が異なる液体と前記第一の流体とガス
分圧の異なる気体とを混合する混合手段を有する上記
(1)に記載の熱およびガス交換器。
(2) The inflow part of the second fluid has a mixing means for mixing a liquid having a temperature different from that of the first fluid and a gas having a different gas partial pressure from the first fluid. ) Heat and gas exchangers as described in ().

【0008】(3) 前記混合手段は、前記気体を気泡
状態で前記液体に混合するものである上記(2)に記載
の熱およびガス交換器。
(3) The heat and gas exchanger according to (2), wherein the mixing means mixes the gas with the liquid in a bubble state.

【0009】(4) 前記第二の流体の流入部は、前記
第一の流体と温度が異なる液体と前記第一の流体とガス
分圧の異なる気体とが、前記第二流路にそれぞれ別個に
流入するように構成されている上記(1)に記載の熱お
よびガス交換器。
(4) In the second fluid inflow portion, a liquid having a temperature different from that of the first fluid and a gas having a different gas partial pressure from the first fluid are separately provided in the second flow path. The heat and gas exchanger according to (1) above, which is configured to flow into the heat exchanger.

【0010】(5) 前記第一の流体は血液である上記
(1)ないし(4)のいずれかに記載の熱およびガス交
換器。
(5) The heat and gas exchanger according to any one of (1) to (4) above, wherein the first fluid is blood.

【0011】(6) 前記第二の流体は、水と、血液よ
り酸素分圧が高い気体とで構成されるものである上記
(1)ないし(5)のいずれかに記載の熱およびガス交
換器。
(6) The heat and gas exchange according to any one of (1) to (5) above, wherein the second fluid is composed of water and a gas having a higher oxygen partial pressure than blood. vessel.

【0012】(7) 前記ガス透過性の膜は、熱伝導率
が2×10-4J/cm・s・K以上のものである上記(1)ない
し(6)のいずれかに記載の熱およびガス交換器。
(7) The gas permeable membrane as described in any one of (1) to (6) above, which has a thermal conductivity of 2 × 10 −4 J / cm · s · K or more. And gas exchanger.

【0013】(8) 前記ガス透過性の膜は、中空糸膜
である上記(1)ないし(7)のいずれかに記載の熱お
よびガス交換器。
(8) The heat and gas exchanger according to any one of (1) to (7) above, wherein the gas permeable membrane is a hollow fiber membrane.

【0014】(9) 前記第二流路は、前記中空糸膜の
内腔で構成される上記(8)に記載の熱およびガス交換
器。
(9) The heat and gas exchanger according to the above (8), wherein the second flow path is constituted by an inner cavity of the hollow fiber membrane.

【0015】[0015]

【実施例】以下、本発明の熱およびガス交換器を添付図
面に示す好適実施例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat and gas exchanger of the present invention will be described below in detail with reference to the preferred embodiments shown in the accompanying drawings.

【0016】図1は、本発明の熱およびガス交換器を熱
交換器付人工肺に適用した場合の構成例を示す縦断面図
である。同図に示すように、熱交換器付人工肺1Aは、
筒状本体3と、この筒状本体3の両端にそれぞれ液密に
接合されたカバー部材(筐体)4および5とで構成され
るハウジング2を有している。
FIG. 1 is a vertical cross-sectional view showing a structural example in which the heat and gas exchanger of the present invention is applied to an artificial lung with a heat exchanger. As shown in the figure, the artificial lung with heat exchanger 1A is
It has a housing 2 composed of a tubular body 3 and cover members (housings) 4 and 5 that are liquid-tightly joined to both ends of the tubular body 3.

【0017】ハウジング2の主要部材である筒状本体3
は、軸方向の中央部30においてその内径が最小とな
り、中央部30から両端部までそれぞれ内径が徐々に拡
径するテーパー状をなしている。この筒状本体3内に
は、ガス透過性の膜である多数の中空糸膜6の束が収納
されており、この中空糸膜6の束の両端は、隔壁7およ
び8に埋設されて筒状本体3の両端部付近にそれぞれ固
定されている。
A cylindrical body 3 which is a main member of the housing 2.
Has a minimum inner diameter in the central portion 30 in the axial direction, and has a tapered shape in which the inner diameter gradually increases from the central portion 30 to both end portions. A bundle of a large number of hollow fiber membranes 6 which are gas permeable membranes is housed in the tubular body 3, and both ends of the bundle of hollow fiber membranes 6 are embedded in partition walls 7 and 8 to form a cylinder. It is fixed near both ends of the main body 3.

【0018】隔壁7および8は、例えばポリウレタン、
シリコーン、エポキシのような高分子ポッティング材を
筒状本体3の両端部付近に注入、硬化させて形成したも
のであり、隔壁7は、後述する流入部31と流出部51
とを液密に遮蔽し、隔壁8は、後述する流出部32と流
入部41とを液密に遮蔽する。
The partition walls 7 and 8 are made of polyurethane, for example.
A polymer potting material such as silicone or epoxy is injected and cured near both ends of the cylindrical body 3, and the partition wall 7 has an inflow part 31 and an outflow part 51 which will be described later.
Are liquid-tightly shielded, and the partition wall 8 liquid-tightly shields an outflow portion 32 and an inflow portion 41 described later.

【0019】なお、前述したように、筒状本体3が中央
部30から両端に向けて内径が拡径するテーパー状をな
しているため、収納される中空糸膜6の束は、中央部3
0付近において絞り込まれた状態となり、よって、中空
糸膜6とその外側を流れる血液との接触率が高くなり、
ガス交換および熱交換の効率が高められる。
As described above, since the cylindrical main body 3 has a tapered shape in which the inner diameter increases from the central portion 30 toward both ends, the bundle of hollow fiber membranes 6 to be stored is in the central portion 3.
It becomes a narrowed state in the vicinity of 0, so that the contact rate between the hollow fiber membrane 6 and the blood flowing outside thereof increases,
The efficiency of gas exchange and heat exchange is increased.

【0020】筒状本体3の図1中上部および下部には、
それぞれ、第一の流体である血液の流入部31および流
出部32が形成されている。この流入部31および流出
部32は、筒状本体3の前記テーパー状をなす部分より
さらに内径が拡径している。また、流入部31および流
出部32には、それぞれ、それらの内部空間に連通する
管状の流入口34および流出口35が突出形成されてい
る。
The upper and lower parts of the tubular body 3 in FIG.
An inflow part 31 and an outflow part 32 for blood, which is the first fluid, are formed in each case. The inflow portion 31 and the outflow portion 32 have inner diameters larger than those of the tapered portion of the cylindrical main body 3. Further, the inflow portion 31 and the outflow portion 32 are respectively formed with a tubular inflow port 34 and an outflow port 35 that project to communicate with their internal spaces.

【0021】また、このようなハウジング2では、筒状
本体3の図1中下端に接合されたカバー部材4により後
述する第二の流体の流入部41が形成され、図1中上端
に接合されたカバー部材5により第二の流体の流出部5
1が形成される。
In such a housing 2, a cover member 4 joined to the lower end of the cylindrical main body 3 in FIG. 1 forms a second fluid inflow portion 41, which will be described later, and is joined to the upper end in FIG. The cover member 5 allows the second fluid outflow portion 5
1 is formed.

【0022】カバー部材5の側部には、カバー部材5の
内部に連通する管状の流出口52が突出形成されてい
る。また、流入部41には、第二の流体として、ガス交
換用の気体(以下単に「気体」という)および熱交換用
の液体(以下単に「液体」という)が流入するが、この
流入部41には、気体と液体とを混合する混合手段が設
けられている。
A tubular outlet 52 communicating with the inside of the cover member 5 is formed on the side portion of the cover member 5 so as to project therefrom. Further, a gas for gas exchange (hereinafter simply referred to as “gas”) and a liquid for heat exchange (hereinafter simply referred to as “liquid”) flow into the inflow part 41 as the second fluid. Is provided with a mixing means for mixing a gas and a liquid.

【0023】すなわち、カバー部材4の内部は、混合手
段である気体透過性の多孔質シート(気泡発生部材)4
2により、第一流入空間43および第二流入空間44に
仕切られている。そして、カバー部材4の側部には、管
状の気体流入口45および液体流入口46が、それぞれ
第一流入空間43および第二流入空間44に連通するよ
う突出形成されている。
That is, the inside of the cover member 4 is a gas permeable porous sheet (air bubble generating member) 4 as a mixing means.
It is divided by 2 into a first inflow space 43 and a second inflow space 44. A tubular gas inflow port 45 and a liquid inflow port 46 are formed on the sides of the cover member 4 so as to communicate with the first inflow space 43 and the second inflow space 44, respectively.

【0024】多孔質シート42による混合手段は、第一
流入空間43内の気体が多孔質シート42に形成された
細孔を通過する際に気泡となり、この気泡が第二流入空
間44内の液体中に混入するよう構成されている。
The mixing means using the porous sheet 42 becomes bubbles when the gas in the first inflow space 43 passes through the pores formed in the porous sheet 42, and these bubbles form the liquid in the second inflow space 44. It is designed to be mixed in.

【0025】このような多孔質シート42としては、例
えば、メッシュ、織布、不織布、メンブランフィルタ等
を用いることができる。なお、多孔質シート42の気体
透過により得られる気泡の直径は、特に限定されず、気
泡の直径が、中空糸膜6の内径未満のものはもちろんの
こと、中空糸膜6の内径以上のもの、例えば中空糸膜6
の内径の1〜20倍程度のものであっても、中空糸膜6
の内部と第二流入空間44との圧力差を調整することに
よって、中空糸膜6内を通過することができる。
As such a porous sheet 42, for example, a mesh, a woven cloth, a non-woven cloth, a membrane filter or the like can be used. The diameter of the bubbles obtained by gas permeation of the porous sheet 42 is not particularly limited, and the diameter of the bubbles is not less than the inner diameter of the hollow fiber membrane 6 and is not less than the inner diameter of the hollow fiber membrane 6. , For example, hollow fiber membrane 6
Even if it is about 1 to 20 times the inner diameter of the hollow fiber membrane 6
The hollow fiber membrane 6 can be passed through by adjusting the pressure difference between the inside of the hollow fiber membrane and the second inflow space 44.

【0026】熱交換器付人工肺において、気体流入口4
5から第一流入空間43へ導入される気体は、第一の流
体である血液より酸素分圧が高く、二酸化炭素分圧が低
い気体であり、例えば、空気、純酸素、または酸素リッ
チな気体等が挙げられる。これにより、中空糸膜6を介
して血液に酸素加、脱炭酸ガスが行われる。
In the oxygenator with a heat exchanger, the gas inlet 4
The gas introduced from 5 into the first inflow space 43 is a gas having a higher oxygen partial pressure and a lower carbon dioxide partial pressure than blood which is the first fluid, and is, for example, air, pure oxygen, or an oxygen-rich gas. Etc. As a result, oxygen is added to the blood and carbon dioxide is removed through the hollow fiber membrane 6.

【0027】また、液体流入口46から第二流入空間4
4へ導入される液体としては、第一の流体である血液と
温度が異なる液体であり、これにより、中空糸膜6を介
して血液を冷却または加温する。なお、この液体として
は、水または水溶液が好ましい。
Further, from the liquid inflow port 46 to the second inflow space 4
The liquid introduced into 4 is a liquid having a temperature different from that of blood which is the first fluid, and thereby cools or heats blood through the hollow fiber membrane 6. The liquid is preferably water or an aqueous solution.

【0028】各中空糸膜6同士の間隙および中空糸膜6
と筒状本体3の内面との間の間隙で構成される空間は、
流入部31から流出部32へ至る血液の第一流路33を
形成している。
The gap between the hollow fiber membranes 6 and the hollow fiber membranes 6
The space formed by the gap between the inner surface of the cylindrical body 3 and
A first flow path 33 for blood from the inflow portion 31 to the outflow portion 32 is formed.

【0029】各中空糸膜6の両端は、それぞれ、第二流
入空間44およびカバー部材5内に連通するよう開口
し、各中空糸膜6の内腔は、流入部41から流出部51
へ至る第二流路を形成している。
Both ends of each hollow fiber membrane 6 are opened so as to communicate with the second inflow space 44 and the cover member 5, respectively, and the inner cavity of each hollow fiber membrane 6 extends from the inflow portion 41 to the outflow portion 51.
To form a second flow path.

【0030】本発明において、中空糸膜6は、第一の流
体、第二の流体間でのガス交換を行う媒体であるととも
に、熱交換を行う媒体でもある。使用し得る中空糸膜6
としては、多孔質膜および緻密膜のいずれでもよい。多
孔質膜としては、例えば、ポリプロピレン、ポリエチレ
ンのような多孔質ポリオレフィン系や、セルロース−ジ
−アセテート等のセルロース系材料によるものが挙げら
れ、緻密膜としては、例えば、シリコーンゴムによるも
のが挙げられる。
In the present invention, the hollow fiber membrane 6 is a medium for exchanging gas between the first fluid and the second fluid, and also a medium for exchanging heat. Hollow fiber membrane 6 that can be used
It may be either a porous film or a dense film. Examples of the porous film include porous polyolefin materials such as polypropylene and polyethylene, and cellulose material such as cellulose-di-acetate, and examples of the dense film include silicone rubber. .

【0031】このような中空糸膜6を介して第一の流
体、第二の流体間でのガス交換および熱交換が行われる
が、通常の有効膜面積(十分なガス交換能が得られる程
度の有効膜面積)において、十分な熱交換を可能とする
ために、中空糸膜6は、その熱伝導率が2×10-4J/cm
・s・K以上、特に、2.5×10-4J/cm・s・K以上であるも
のが好ましい。本発明では、中空糸膜6がこのように比
較的低い熱伝導率であっても、有効膜面積が大きいた
め、十分な熱交換能を得ることができる。
Gas exchange and heat exchange between the first fluid and the second fluid are performed through the hollow fiber membrane 6 as described above, but a normal effective membrane area (a sufficient gas exchange capacity can be obtained). In order to allow sufficient heat exchange, the hollow fiber membrane 6 has a thermal conductivity of 2 × 10 −4 J / cm 2.
It is preferably s · K or more, and particularly preferably 2.5 × 10 −4 J / cm · s · K or more. In the present invention, even if the hollow fiber membrane 6 has such a relatively low thermal conductivity, since the effective membrane area is large, sufficient heat exchange capacity can be obtained.

【0032】また、筒状本体3、カバー部材4および5
の構成材料としては、例えばポリカーボネート、アクリ
ル樹脂、ポリエチレンテレフタレート、ポリエチレン、
ポリプロピレン、ポリスチレン、ポリ塩化ビニル、アク
リル−スチレン共重合体、アクリル−ブタジエン−スチ
レン共重合体等を挙げることができる。
Further, the cylindrical body 3, the cover members 4 and 5
As the constituent material of, for example, polycarbonate, acrylic resin, polyethylene terephthalate, polyethylene,
Examples thereof include polypropylene, polystyrene, polyvinyl chloride, acryl-styrene copolymer, acryl-butadiene-styrene copolymer and the like.

【0033】なお、熱交換器付人工肺1Aにおいて、血
液の流入部(流入口)と流出部(流出口)とを図1中上
下逆に設け、血液が第一流路33内を図1中上方に向け
て流れるような構成としてもよい。
In the artificial lung with heat exchanger 1A, an inflow part (inflow port) and an outflow part (outflow port) for blood are provided upside down in FIG. 1 so that blood flows inside the first flow path 33 in FIG. It may be configured to flow upward.

【0034】次に、熱交換器付人工肺1Aの作用につい
て説明する。気体流入口45からは第一流入空間43に
気体が供給され、液体流入口46からは第二流入空間4
4に液体が供給される。第一流入空間43内の気体の圧
力が第二流入空間44内の圧力に比べて高くなると、第
一流入空間43内の気体は、多孔質シート42に形成さ
れた細孔を通過して気泡となり、この気泡が第二流入空
間44内の液体中に混入する。そして、第二流入空間4
4内の圧力が所定値以上となると、この気泡を含む液体
は、各中空糸膜6の一端からその内腔すなわち第二流路
内に入り、該第二流路内を流れ、中空糸膜6の他端から
流出部51内に流入し、流出口52からケーシング2外
へ排出される。
Next, the operation of the artificial lung with heat exchanger 1A will be described. Gas is supplied to the first inflow space 43 from the gas inflow port 45, and the second inflow space 4 is supplied from the liquid inflow port 46.
Liquid is supplied to 4. When the pressure of the gas in the first inflow space 43 becomes higher than the pressure in the second inflow space 44, the gas in the first inflow space 43 passes through the pores formed in the porous sheet 42 and bubbles. Then, the bubbles are mixed in the liquid in the second inflow space 44. And the second inflow space 4
When the pressure inside the hollow fiber membrane 4 exceeds a predetermined value, the liquid containing the bubbles enters from the one end of each hollow fiber membrane 6 into its inner cavity, that is, the second flow channel, and flows in the second flow channel. It flows into the outflow part 51 from the other end of 6, and is discharged out of the casing 2 from the outflow port 52.

【0035】なお、第二流路内における液体および気体
の流動形態は、いかなるものでもよく、例えば、各中空
糸膜6を垂直状態に保持した場合、気泡流、スラグ流、
環状流、環状噴霧流(1981年,養賢堂発行の「気液
二相流」,第7〜9頁参照)のいずれでもよいが、特
に、スラグ流を形成するのが好ましい。
The liquid and the gas in the second flow passage may have any flow form, for example, when each hollow fiber membrane 6 is held in a vertical state, a bubble flow, a slag flow,
Either an annular flow or an annular spray flow (see "Gas-Liquid Two-Phase Flow", pages 7-9, published by Yokendo, 1981) may be used, but it is particularly preferable to form a slag flow.

【0036】一方、流入口34からは流入部31へ血液
が流入し、さらにこの血液は、各中空糸膜6同士の間隙
および中空糸膜6と筒状本体3の内面との間の間隙、す
なわち第一流路33内を中空糸膜6の長手方向に沿って
図1中下方に流れ、流出部32へ到達し、さらに、流出
口35からケーシング2外へ排出される。
On the other hand, blood flows into the inflow portion 31 from the inflow port 34, and further, this blood has a gap between the hollow fiber membranes 6 and a gap between the hollow fiber membranes 6 and the inner surface of the tubular body 3, That is, it flows in the first flow path 33 along the longitudinal direction of the hollow fiber membrane 6 downward in FIG. 1, reaches the outflow portion 32, and is further discharged from the outflow port 35 to the outside of the casing 2.

【0037】血液は、第一流路33内を流れる間に、中
空糸膜6に形成された多数の細孔を介して、中空糸膜6
の内腔(第二流路)を流れる気体と接触し、ガス交換が
行われる。これにより、血液は、酸素加、脱炭酸ガスが
なされる。また、これと同時に、血液は、第一流路33
内を流れる間に、中空糸膜6を介して、中空糸膜6の内
腔(第二流路)を流れる液体との間で熱交換が行われ
る。これにより、血液は、所望の温度に冷却または加温
される。
While the blood flows in the first flow path 33, the blood passes through a large number of pores formed in the hollow fiber membrane 6 and the hollow fiber membrane 6
The gas is exchanged by coming into contact with the gas flowing through the inner cavity (second flow path). As a result, the blood is oxygenated and decarbonated. At the same time, the blood flows through the first flow path 33.
While flowing inside, heat exchange is performed with the liquid flowing through the hollow fiber membrane 6 through the hollow fiber membrane 6 (the second flow path). Thereby, the blood is cooled or heated to a desired temperature.

【0038】このような熱交換器付人工肺1Aにおい
て、熱交換とガス交換とのバランスは、第二の流体にお
ける液体と気体との混合比、すなわち、液体中に混入す
る気泡の量を調整することにより任意に選択することが
できる。この場合、第二の流体として液体および気体の
一方のみを供給し、第一の流体との間で熱交換およびガ
ス交換の一方のみを行うこともできる。
In the artificial lung with heat exchanger 1A, the balance between heat exchange and gas exchange is adjusted by adjusting the mixing ratio of the liquid and gas in the second fluid, that is, the amount of bubbles mixed in the liquid. By doing so, it can be arbitrarily selected. In this case, it is also possible to supply only one of the liquid and the gas as the second fluid and perform only one of the heat exchange and the gas exchange with the first fluid.

【0039】図2は、本発明の熱およびガス交換器を熱
交換器付人工肺に適用した場合の他の構成例を示す縦断
面図である。同図に示す熱交換器付人工肺1Bは、第二
の流体の流入部と、気体および液体の混合手段の構成が
異なる以外は、前記熱交換器付人工肺1Aと同様であ
る。以下、相違点についてのみ説明し、同様の事項の説
明は省略する。
FIG. 2 is a vertical cross-sectional view showing another structural example when the heat and gas exchanger of the present invention is applied to an artificial lung with a heat exchanger. The artificial lung with a heat exchanger 1B shown in the same drawing is the same as the artificial lung with a heat exchanger 1A except that the configuration of the second fluid inflow portion and the mixing means for gas and liquid is different. Hereinafter, only different points will be described, and description of similar matters will be omitted.

【0040】熱交換器付人工肺1Bにおいては、筒状本
体3の図2中下端に接合されたカバー部材9により第二
の流体の流入部91が形成される。カバー部材9の側部
には、前記と同様の液体流入口92が、カバー部材9内
に連通するよう突出形成されている。
In the artificial lung with heat exchanger 1B, the second fluid inflow portion 91 is formed by the cover member 9 joined to the lower end of the tubular body 3 in FIG. A liquid inlet 92 similar to the above is formed on the side portion of the cover member 9 so as to communicate with the inside of the cover member 9.

【0041】流入部91に設置される混合手段は、カバ
ー部材9を貫通する送気管93と、カバー部材9内の底
部付近に位置し、前記送気管93の先端に取り付けられ
た多孔質体(気泡発生部材)94とで構成されている。
この場合、多孔質体94としては、各種燒結体や発泡体
を用いることができ、例えば、発泡ポリウレタン、発泡
ポリエチレン、多孔質ポリプロピレン、ガラス、素焼き
等のセラミックス等で構成されるものが挙げられる。
The mixing means installed in the inflow section 91 is located near the bottom of the air supply pipe 93 penetrating the cover member 9 and inside the cover member 9, and is a porous body attached to the tip of the air supply pipe 93 ( Bubble generating member) 94.
In this case, various sintered bodies and foams can be used as the porous body 94, and examples include foamed polyurethane, foamed polyethylene, porous polypropylene, glass, ceramics such as unglazed ceramics, and the like.

【0042】このような構成の熱交換器付人工肺1Bに
おいては、液体が液体流入口92からカバー部材9内に
供給されるとともに、気体が送気管93を介して多孔質
体94内に供給され、多孔質体94に形成された細孔を
通過して気泡となり、この気泡がカバー部材9内の液体
中に混入する。そして、カバー部材9内の圧力が所定値
以上となると、この気泡を含む液体は、各中空糸膜6の
一端からその内腔(第二流路内)に入り、該第二流路内
を流れ、前記と同様にして、第一流路33内を流れる血
液との間でガス交換および熱交換を行う。
In the artificial lung with heat exchanger 1B having such a structure, the liquid is supplied from the liquid inlet 92 into the cover member 9, and the gas is supplied into the porous body 94 through the air supply pipe 93. Then, the bubbles pass through the pores formed in the porous body 94 to form bubbles, and the bubbles are mixed into the liquid in the cover member 9. Then, when the pressure in the cover member 9 becomes equal to or higher than a predetermined value, the liquid containing the bubbles enters the lumen (in the second flow path) from one end of each hollow fiber membrane 6 and flows in the second flow path. Flow and gas exchange and heat exchange are performed with the blood flowing in the first flow path 33 in the same manner as described above.

【0043】図3は、本発明の熱およびガス交換器を熱
交換器付人工肺に適用した場合のさらに他の構成例を示
す縦断面図である。同図に示す熱交換器付人工肺1C
は、第二の流体の流入部と、気体および液体の混合手段
の構成が異なる以外は、前記熱交換器付人工肺1Aと同
様である。以下、相違点についてのみ説明し、同様の事
項の説明は省略する。
FIG. 3 is a vertical cross-sectional view showing still another configuration example when the heat and gas exchanger of the present invention is applied to an artificial lung with a heat exchanger. Oxygenator 1C with heat exchanger shown in the figure
Is the same as the artificial lung with heat exchanger 1A except that the configuration of the second fluid inflow portion and the mixing means for gas and liquid are different. Hereinafter, only different points will be described, and description of similar matters will be omitted.

【0044】熱交換器付人工肺1Cにおいては、筒状本
体3の図3中下端に接合されたカバー部材10により第
二の流体の流入部101が形成される。カバー部材10
の側部には、管状の液体流入口102が、カバー部材1
0内に連通するよう突出形成されている。
In the artificial lung with heat exchanger 1C, the second fluid inflow portion 101 is formed by the cover member 10 joined to the lower end of the tubular body 3 in FIG. Cover member 10
A tubular liquid inlet 102 is provided at the side of the cover member 1
It is formed so as to communicate with 0.

【0045】流入部101に設置される混合手段は、液
体流入口102と、該液体流入口102の壁部を貫通
し、その先端が液体流入口102内に連通するノズル1
03で構成されている。
The mixing means installed in the inflow part 101 penetrates the liquid inflow port 102 and the wall part of the liquid inflow port 102, and the nozzle 1 whose tip communicates with the liquid inflow port 102.
It is composed of 03.

【0046】このような構成の熱交換器付人工肺1Cに
おいては、液体流入口102から液体をカバー部材9内
に供給する際に、ノズル103の先端から液体流入口1
02内に高圧で気体を供給して、気泡を混入させる。そ
して、カバー部材9内に供給された気泡を含む液体は、
その圧力が所定値以上となると、各中空糸膜6の一端か
らその内腔(第二流路内)に入り、該第二流路内を流
れ、前記と同様にして、第一流路33内を流れる血液と
の間でガス交換および熱交換を行う。
In the artificial lung 1C with a heat exchanger having such a structure, when the liquid is supplied from the liquid inlet 102 into the cover member 9, the liquid inlet 1 starts from the tip of the nozzle 103.
Gas is supplied at high pressure into 02 to mix bubbles. Then, the liquid containing bubbles supplied into the cover member 9 is
When the pressure becomes equal to or higher than a predetermined value, the hollow fiber membranes 6 enter the inner cavities (inside the second flow passage) of the hollow fiber membranes 6 and flow in the second flow passages. It exchanges gas and heat with the blood flowing through it.

【0047】なお、図1、図2および図3に示す構成の
各熱交換器付人工肺において、前記とは逆に、各中空糸
膜6の内腔を第一の流体(血液)が流れる第一流路と
し、各中空糸膜6同士の間隙および中空糸膜6と筒状本
体3の内面との間の間隙で構成される空間を第二の流体
(気体および液体)が流れる第二流路としてもよい。
In each of the artificial lungs with a heat exchanger having the construction shown in FIGS. 1, 2 and 3, contrary to the above, the first fluid (blood) flows through the inner cavity of each hollow fiber membrane 6. The second flow in which the second fluid (gas and liquid) flows through the space defined by the gap between the hollow fiber membranes 6 and the gap between the hollow fiber membranes 6 and the inner surface of the tubular body 3 as the first flow path. It may be used as a road.

【0048】図4は、本発明の熱およびガス交換器を熱
交換器付人工肺に適用した場合のさらに他の構成例を示
す断面図側面である。前述した熱交換器付人工肺1A〜
1Cが、第二の流体として気体と液体とを混合したもの
を第二流路に流す構成であるのに対し、この熱交換器付
人工肺1Dは、第二の流体として気体と液体とを2相分
離した状態で第二流路に流す構成である。以下、その構
成について詳述する。
FIG. 4 is a side view of a cross-sectional view showing still another configuration example when the heat and gas exchanger of the present invention is applied to an oxygenator with a heat exchanger. Oxygenator with heat exchanger 1A described above
1C has a configuration in which a mixture of a gas and a liquid as the second fluid is caused to flow through the second flow path, while the artificial lung with a heat exchanger 1D uses the gas and the liquid as the second fluid. It is a configuration in which the two phases are separated and flowed to the second flow path. The configuration will be described in detail below.

【0049】図4に示すように、熱交換器付人工肺1D
は、ハウジング本体12と、このハウジング本体12の
両側端にそれぞれ液密に接合されたカバー部材(筐体)
13および14とで構成されるハウジング11を有して
いる。
As shown in FIG. 4, an oxygenator 1D with a heat exchanger
Is a housing body 12 and a cover member (housing) liquid-tightly joined to both ends of the housing body 12.
It has a housing 11 composed of 13 and 14.

【0050】このハウジング本体12内には、前記と同
様の中空糸膜6の束が、図4中横方向になるように収納
されており、この中空糸膜6の束の両端は、前記と同様
の隔壁15および16に埋設されてハウジング本体12
の両側端部付近にそれぞれ固定されている。
A bundle of hollow fiber membranes 6 similar to the one described above is accommodated in the housing body 12 so as to extend in the horizontal direction in FIG. 4, and both ends of the bundle of hollow fiber membranes 6 are the same as those described above. The housing body 12 is embedded in the same partition walls 15 and 16
Are fixed near both ends of each.

【0051】ハウジング本体12の図4中上部および下
部には、それぞれ、第一の流体である血液の流入部12
1および流出部122が形成されている。流入部121
および流出部122におけるハウジング本体12の内面
は、テーパ面を形成している。また、流入部121およ
び流出部122の頂部には、それぞれ、流入部121お
よび流出部122の内部空間に連通する管状の流入口1
24および流出口125が突出形成されている。
The upper part and the lower part of the housing body 12 in FIG.
1 and the outflow part 122 are formed. Inflow section 121
The inner surface of the housing body 12 at the outflow portion 122 forms a tapered surface. In addition, the tubular inlet 1 that communicates with the inner space of the inflow section 121 and the outflow section 122 is provided at the top of the inflow section 121 and the outflow section 122, respectively.
24 and the outlet 125 are formed to project.

【0052】また、このようなハウジング11では、ハ
ウジング本体12の図4中左端に接合されたカバー部材
13により第二の流体の流入部131が形成され、図1
中上端に接合されたカバー部材14により第二の流体の
流出部141が形成される。
Further, in such a housing 11, the second fluid inflow portion 131 is formed by the cover member 13 joined to the left end of the housing body 12 in FIG.
A second fluid outflow portion 141 is formed by the cover member 14 joined to the middle upper end.

【0053】カバー部材13の図4中左側面には、カバ
ー部材13の内部に連通する管状の気体流入口132お
よび液体流入口133が、それぞれ、カバー部材13の
上方および下方位置に突出形成されている。
On the left side surface of the cover member 13 in FIG. 4, a tubular gas inlet 132 and a liquid inlet 133 communicating with the inside of the cover member 13 are formed to project above and below the cover member 13, respectively. ing.

【0054】また、カバー部材14の図4中右側面に
は、カバー部材14の内部に連通する管状の気体流出口
142および液体流出口143が、それぞれ、カバー部
材14の上方および下方位置に突出形成されている。
On the right side surface of the cover member 14 in FIG. 4, tubular gas outlets 142 and liquid outlets 143, which communicate with the inside of the cover member 14, project above and below the cover member 14, respectively. Has been formed.

【0055】各中空糸膜6同士の間隙で構成される空間
は、流入部121から流出部122へ至る血液の第一流
路123を形成している。各中空糸膜6の両端は、それ
ぞれ、カバー部材13および14の内部に連通するよう
開口し、各中空糸膜6の内腔は、流入部131から流出
部141へ至る第二流路を形成している。
The space formed by the gaps between the hollow fiber membranes 6 forms a first flow path 123 for blood from the inflow part 121 to the outflow part 122. Both ends of each hollow fiber membrane 6 are opened so as to communicate with the inside of the cover members 13 and 14, respectively, and the inner cavity of each hollow fiber membrane 6 forms a second flow path from the inflow part 131 to the outflow part 141. is doing.

【0056】次に、熱交換器付人工肺1Dの作用につい
て説明する。カバー部材13内には、気体流入口132
から気体が供給され、液体流入口133から液体が供給
される。カバー部材13の内部では、下方に液体、上方
に気体が分かれて存在している。カバー部材13内の圧
力が所定値以上となると、カバー部材13内の液体は、
中空糸膜6の束のうち、カバー部材13内の液面17よ
り下方にある中空糸膜6の一端から、その内腔すなわち
第二流路内に入り、該第二流路内を流れ、中空糸膜6の
他端からカバー部材14内に流入し、貯留される。ま
た、カバー部材13内の気体は、中空糸膜6の束のう
ち、カバー部材13内の液面17より上方にある中空糸
膜6の一端から、その内腔すなわち第二流路内に入り、
該第二流路内を流れ、中空糸膜6の他端からカバー部材
14内に流入し、液面18より上方の空間に貯留され
る。そして、カバー部材14内の気体は気体流出口14
2から、液体は液体流出口143からそれぞれケーシン
グ11外へ排出される。
Next, the operation of the artificial lung with heat exchanger 1D will be described. A gas inlet 132 is provided in the cover member 13.
The gas is supplied from, and the liquid is supplied from the liquid inflow port 133. Inside the cover member 13, a liquid is present below and a gas is present above. When the pressure inside the cover member 13 reaches or exceeds a predetermined value, the liquid inside the cover member 13
Of the bundle of hollow fiber membranes 6, from one end of the hollow fiber membranes 6 below the liquid surface 17 in the cover member 13, enters into its lumen, that is, the second flow channel, and flows in the second flow channel, The hollow fiber membrane 6 flows into the cover member 14 from the other end and is stored therein. In addition, the gas in the cover member 13 enters the lumen, that is, the second flow path, from one end of the hollow fiber membranes 6 above the liquid surface 17 in the cover member 13 of the bundle of hollow fiber membranes 6. ,
It flows in the second flow path, flows into the cover member 14 from the other end of the hollow fiber membrane 6, and is stored in a space above the liquid surface 18. The gas in the cover member 14 is the gas outlet 14
From 2, the liquid is discharged from the liquid outlet 143 to the outside of the casing 11, respectively.

【0057】一方、流入口124からは流入部121へ
血液が流入し、さらにこの血液は、各中空糸膜6同士の
間隙、すなわち第一流路123内を中空糸膜6と直交す
る方向に沿って流れる。血液が第一流路123の前半、
すなわち液面17より下方にある中空糸膜6同士の間隙
を通過する際には、その中空糸膜6の内腔(第二流路)
を流れる液体との間で熱交換が行われ、第一流路123
の後半、すなわち液面17より上方にある中空糸膜6同
士の間隙を通過する際には、その中空糸膜6の内腔(第
二流路)を流れる気体との間でガス交換が行われる。
On the other hand, blood flows from the inflow port 124 to the inflow part 121, and the blood flows in the gap between the hollow fiber membranes 6, that is, in the first flow path 123 along the direction orthogonal to the hollow fiber membranes 6. Flowing. Blood is in the first half of the first channel 123,
That is, when passing through the gap between the hollow fiber membranes 6 below the liquid surface 17, the inner cavity of the hollow fiber membranes 6 (second flow path)
Heat is exchanged with the liquid flowing through the first flow path 123.
In the latter half of that, that is, when passing through the gap between the hollow fiber membranes 6 above the liquid surface 17, gas exchange is performed with the gas flowing through the inner cavity (second flow path) of the hollow fiber membranes 6. Be seen.

【0058】このようにして、所望の温度に冷却または
加温され、かつ酸素加、脱炭酸ガスがなされた血液は、
流出部122へ到達し、さらに、流出口125からケー
シング11外へ排出される。
In this way, the blood cooled or heated to a desired temperature, oxygenated and decarbonated gas is
It reaches the outflow portion 122, and is further discharged from the outlet 125 to the outside of the casing 11.

【0059】なお、このような熱交換器付人工肺1Dに
おいては、例えばカバー部材13内への気体および液体
の供給量(圧力)をそれぞれ調整することにより、液面
17のレベルを調整し、ガス交換を行う中空糸膜6と熱
交換を行う中空糸膜6との体積比を適宜変えることで、
熱交換とガス交換とのバランスを所望に調整することが
できる。この場合、前記と同様、液体および気体の一方
のみを供給し、第一の流体との間で熱交換およびガス交
換の一方のみを行うこともできる。
In the artificial lung 1D with a heat exchanger, the level of the liquid surface 17 is adjusted by adjusting the supply amount (pressure) of gas and liquid into the cover member 13, respectively. By appropriately changing the volume ratio of the hollow fiber membrane 6 for gas exchange and the hollow fiber membrane 6 for heat exchange,
The balance between heat exchange and gas exchange can be adjusted as desired. In this case, similarly to the above, it is also possible to supply only one of the liquid and the gas and perform only one of the heat exchange and the gas exchange with the first fluid.

【0060】また、熱交換器付人工肺1Dにおいて、気
体流出口142および液体流出口143に代わり、カバ
ー部材14の側面の液面18付近に、カバー部材14内
の気体および液体を排出する1つの流出口を設けた構成
であってもよい。
In the artificial lung with heat exchanger 1D, instead of the gas outlet 142 and the liquid outlet 143, the gas and liquid in the cover member 14 are discharged near the liquid surface 18 on the side surface of the cover member 1 It may be a configuration in which one outflow port is provided.

【0061】また、血液の流入部(流入口)と流出部
(流出口)とを図4中上下逆に設け、ハウジング本体1
2内に流入した血液に対し、まずガス交換を行い、次い
で熱交換を行うような構成としてもよい。
The inflow part (inflow port) and the outflow part (outflow port) for blood are provided upside down in FIG.
The blood that has flowed into the inside 2 may be first gas-exchanged and then heat-exchanged.

【0062】なお、上記各構成例では、本発明の熱およ
びガス交換器を中空糸膜型人工肺に適用した場合につい
て説明したが、これに限らず、ガス透過性の膜として平
膜を用いたものに適用したものでもよい。
In each of the above structural examples, the case where the heat and gas exchanger of the present invention is applied to a hollow fiber membrane type artificial lung has been described, but the present invention is not limited to this, and a flat membrane is used as a gas permeable membrane. It may be applied to the existing one.

【0063】また、本発明の熱およびガス交換器は、人
工肺に適用する場合に限らず、熱交換およびガス交換を
行うものであれば、いかなるものでもよく、その用途
も、医療用の他、例えば工業用であってもよい。さら
に、本発明において、第一の流体としては、前記血液に
限らず、血漿のようなその他の体液や体液以外の液体、
気体等いかなるものでもよい。
Further, the heat and gas exchanger of the present invention is not limited to the case of being applied to an artificial lung, but may be of any type as long as it performs heat exchange and gas exchange, and its application is not limited to medical use. For example, it may be for industrial use. Furthermore, in the present invention, the first fluid is not limited to the blood, but other body fluids such as plasma or liquids other than body fluid,
Anything such as gas may be used.

【0064】次に、本発明の熱およびガス交換器を、具
体的実施例を挙げてさらに詳細に説明する。
Next, the heat and gas exchanger of the present invention will be described in more detail with reference to specific examples.

【0065】(実施例1)図1に示す構成の熱交換器付
人工肺を製造した。この人工肺のハウジング内には、有
効長さ92mm、内径約200μm のポリプロピレン製の
多孔質中空糸膜を多数本配設し、その有効膜面積を1.
7m2とした。なお、この中空糸膜の熱伝導率は、4×1
-4J/cm・s・Kであった。また、第二の流体の流入部41
は、平均孔径40μm の多孔質シートにより、第一流入
空間43および第二流入空間44に仕切った。
Example 1 An oxygenator with a heat exchanger having the structure shown in FIG. 1 was manufactured. A large number of polypropylene hollow fiber membranes having an effective length of 92 mm and an inner diameter of about 200 μm are arranged in the housing of the artificial lung, and the effective membrane area is 1.
It was set to 7 m 2 . The thermal conductivity of this hollow fiber membrane is 4 × 1.
It was 0 −4 J / cm · s · K. In addition, the second fluid inflow portion 41
Was partitioned into a first inflow space 43 and a second inflow space 44 by a porous sheet having an average pore diameter of 40 μm.

【0066】(実施例2)図2に示す構成の熱交換器付
人工肺を製造した。この人工肺のハウジング内には、実
施例1と同様の中空糸膜を多数本配設し、その有効膜面
積を1.7m2とした。また、第二の流体の流入部91に
設置された気泡発生用の多孔質体としては、発泡ポリエ
チレン(平均孔径100μm )を中空のうず巻き形状に
成形したものを用いた。
Example 2 An oxygenator with a heat exchanger having the structure shown in FIG. 2 was manufactured. In the housing of this artificial lung, many hollow fiber membranes similar to those in Example 1 were arranged, and the effective membrane area was set to 1.7 m 2 . As the porous body for generating bubbles, which was installed in the second fluid inflow portion 91, a foamed polyethylene (average pore diameter 100 μm) molded in a hollow spiral shape was used.

【0067】(実施例3)図3に示す構成の熱交換器付
人工肺を製造した。この人工肺のハウジング内には、実
施例1と同様の中空糸膜を多数本配設し、その有効膜面
積を1.7m2とした。また、液体の流入口に貫通して設
置されたノズル103の先端部の口径は、0.5mmであ
った。
Example 3 An artificial lung with a heat exchanger having the structure shown in FIG. 3 was manufactured. In the housing of this artificial lung, many hollow fiber membranes similar to those in Example 1 were arranged, and the effective membrane area was set to 1.7 m 2 . Further, the diameter of the tip portion of the nozzle 103 installed through the liquid inlet was 0.5 mm.

【0068】上記実施例1〜3の各熱交換器付人工肺を
用い、以下のような実験を行った。 [実験1]第二の流体の流入部に、20℃の冷水を60
00ml/minで供給するとともに、酸素を4000ml/min
で供給して、各中空糸膜の内腔に酸素の気泡を含む冷水
を流し、これと同時に、第一の流体の流入部に37℃の
牛血を4000ml/minで供給して、牛血の冷却および酸
素加、脱炭酸ガスを行った。
The following experiments were conducted using the oxygenators with heat exchangers of Examples 1 to 3 above. [Experiment 1] 60 ° C. cold water was introduced into the second fluid inflow part.
Supply oxygen at 00 ml / min and supply oxygen at 4000 ml / min
To supply cold water containing oxygen bubbles to the lumen of each hollow fiber membrane, and at the same time, supply 37 ° C bovine blood at 4000 ml / min to the inflow part of the first fluid. Was cooled, oxygenated, and decarbonated.

【0069】得られた牛血の温度および溶存酸素量を測
定し、この測定データから各熱交換器付人工肺の熱交換
能(熱交換係数)および酸素添加能を求めた。その結果
を下記表1に示す。
The temperature of the obtained bovine blood and the amount of dissolved oxygen were measured, and the heat exchange capacity (heat exchange coefficient) and oxygen addition capacity of each oxygenator with a heat exchanger were determined from the measured data. The results are shown in Table 1 below.

【0070】(実施例4)図4に示す構成の熱交換器付
人工肺を製造した。この人工肺のハウジング内には、有
効長さ90mm、内径約200μm のポリプロピレン製の
多孔質中空糸膜を多数本配設し、その有効膜面積を1.
8m2とした。なお、この中空糸膜の熱伝導率は、4×1
-4J/cm・s・Kであった。
Example 4 An artificial lung with a heat exchanger having the structure shown in FIG. 4 was manufactured. A large number of polypropylene hollow fiber membranes having an effective length of 90 mm and an inner diameter of about 200 μm are arranged in the housing of the artificial lung, and the effective membrane area is 1.
It was set to 8 m 2 . The thermal conductivity of this hollow fiber membrane is 4 × 1.
It was 0 −4 J / cm · s · K.

【0071】上記実施例4の熱交換器付人工肺を用い、
以下のような実験を行った。 [実験2]第二の流体の流入部に対し、液体流入口より
20℃の冷水を2000ml/minで供給するとともに、気
体流入口より純酸素を40000ml/minで供給し、これ
と同時に、第一の流体の流入部に37℃の牛血を400
0ml/minで供給して、牛血の冷却および酸素加、脱炭酸
ガスを行った。
Using the oxygenator with a heat exchanger of Example 4 above,
The following experiment was conducted. [Experiment 2] To the inflow part of the second fluid, cold water at 20 ° C. was supplied at 2000 ml / min from the liquid inlet, and pure oxygen was supplied at 40000 ml / min from the gas inlet. 400 ° C of 37 ° C cow blood into the inlet of one fluid
It was supplied at 0 ml / min to cool bovine blood, oxygenate it, and decarboxylate it.

【0072】なお、第二の流体の流入部を構成するカバ
ー部材13内において、気体と液体との体積比が2:5
となるように液面17のレベルが保持されていた。得ら
れた牛血の温度および溶存酸素量を測定し、この測定デ
ータから熱交換器付人工肺の熱交換能(熱交換係数)お
よび酸素添加能を求めた。その結果を下記表1に示す。
In the cover member 13 forming the inflow part of the second fluid, the volume ratio of gas to liquid is 2: 5.
The level of the liquid surface 17 was maintained so that The temperature and the dissolved oxygen content of the obtained bovine blood were measured, and the heat exchange capacity (heat exchange coefficient) and oxygen addition capacity of the oxygenator with a heat exchanger were determined from the measured data. The results are shown in Table 1 below.

【0073】[0073]

【表1】 [Table 1]

【0074】なお、表1中の酸素添加能は、1分間当り
の、人工肺の通過前後における血液中の溶存酸素量の差
を示すものである。また、表1中の熱交換係数Kは、下
記の数1の式で示されるものである。
The oxygen addition ability in Table 1 shows the difference in the amount of dissolved oxygen in blood before and after passing through the artificial lung per minute. Further, the heat exchange coefficient K in Table 1 is expressed by the following equation (1).

【0075】[0075]

【数1】 [Equation 1]

【0076】上記表1の結果から明らかなように、実施
例1〜3の熱交換器付人工肺は、いずれも優れた熱交換
能および酸素添加能を有しており、また、実施例4の熱
交換器付人工肺は、優れた熱交換能と有効な酸素添加能
を有していることが確認された。
As is clear from the results shown in Table 1 above, the oxygenators with heat exchangers of Examples 1 to 3 all have excellent heat exchange capacity and oxygen addition capacity, and Example 4 It was confirmed that the artificial lung with a heat exchanger had excellent heat exchange ability and effective oxygen addition ability.

【0077】[実験3]実施例1〜3の熱交換器付人工
肺を用い、冷水の代わりに40℃の温水を用いた以外は
実験1と同様にして、牛血(23℃)の加温および酸素
加、脱炭酸ガスを行った。
[Experiment 3] Bovine blood (23 ° C.) was added in the same manner as in Experiment 1 except that the artificial lungs with heat exchangers of Examples 1 to 3 were used and hot water of 40 ° C. was used instead of cold water. Warming, oxygenation, and decarbonation were performed.

【0078】また、実施例4の熱交換器付人工肺を用
い、冷水の代わりに40℃の温水を用いた以外は実験2
と同様にして、牛血(23℃)の加温および酸素加、脱
炭酸ガスを行った。
Experiment 2 was repeated except that the artificial lung with a heat exchanger of Example 4 was used and hot water at 40 ° C. was used instead of cold water.
In the same manner as above, heating of bovine blood (23 ° C.), addition of oxygen, and decarboxylation gas were performed.

【0079】これらの結果、実施例1〜4の熱交換器付
人工肺は、いずれも、上記表1と同様の熱交換能および
酸素添加能を示した。
As a result, the oxygenators with heat exchangers of Examples 1 to 4 all showed the same heat exchange ability and oxygen addition ability as in Table 1 above.

【0080】[0080]

【発明の効果】以上述べたように、本発明の熱およびガ
ス交換器によれば、1つの交換器で熱交換とガス交換と
を行うことができ、熱交換能およびガス交換能も優れて
いる。従って、本発明を熱交換器付人工肺に適用した場
合、血液体外循環回路の回路構成を簡素化することおよ
び回路中の血液のプライミング量を減少させることがで
きる。
As described above, according to the heat and gas exchanger of the present invention, heat exchange and gas exchange can be performed by one exchanger, and the heat exchange ability and the gas exchange ability are excellent. There is. Therefore, when the present invention is applied to the artificial lung with a heat exchanger, the circuit configuration of the extracorporeal blood circulation circuit can be simplified and the priming amount of blood in the circuit can be reduced.

【0081】また、本発明の熱およびガス交換器では、
必要に応じ、熱交換とガス交換との比率を所望に設定す
ることも可能であるため、最適な条件を得ることがで
き、また、用途も拡大する。
Further, in the heat and gas exchanger of the present invention,
If necessary, the ratio of heat exchange to gas exchange can be set as desired, so that optimum conditions can be obtained, and the application is expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱およびガス交換器を熱交換器付人工
肺に適用した場合の構成例を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a configuration example when a heat and gas exchanger of the present invention is applied to an oxygenator with a heat exchanger.

【図2】本発明の熱およびガス交換器を熱交換器付人工
肺に適用した場合の他の構成例を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing another configuration example when the heat and gas exchanger of the present invention is applied to an oxygenator with a heat exchanger.

【図3】本発明の熱およびガス交換器を熱交換器付人工
肺に適用した場合の他の構成例を示す縦断面図である。
FIG. 3 is a longitudinal cross-sectional view showing another configuration example when the heat and gas exchanger of the present invention is applied to an oxygenator with a heat exchanger.

【図4】本発明の熱およびガス交換器を熱交換器付人工
肺に適用した場合の他の構成例を示す断面側面図であ
る。
FIG. 4 is a cross-sectional side view showing another configuration example when the heat and gas exchanger of the present invention is applied to an oxygenator with a heat exchanger.

【符号の説明】 1A、1B、1C、1D 熱交換器付人工肺 2 ハウジング 3 筒状本体 30 中央部 31 流入部 32 流出部 33 第一流路 34 流入口 35 流出口 4 カバー部材 41 流入部 42 多孔質シート 43 第一流入空間 44 第二流入空間 45 気体流入口 46 液体流入口 5 カバー部材 51 流出部 52 流出口 6 中空糸膜 7、8 隔壁 9 カバー部材 91 流入部 92 液体流入口 93 送気管 94 多孔質体 10 カバー部材 101 流入部 102 液体流入口 103 ノズル 11 ハウジング 12 ハウジング本体 121 流入部 122 流出部 123 第一流路 124 流入口 125 流出口 13 カバー部材 131 流入部 132 気体流入口 133 液体流入口 14 カバー部材 141 流出部 142 気体流出口 143 液体流出口 15、16 隔壁 17、18 液面[Explanation of Codes] 1A, 1B, 1C, 1D Oxygenator with heat exchanger 2 Housing 3 Tubular body 30 Central part 31 Inflow part 32 Outflow part 33 First flow path 34 Inflow port 35 Outflow port 4 Cover member 41 Inflow part 42 Porous sheet 43 First inflow space 44 Second inflow space 45 Gas inflow port 46 Liquid inflow port 5 Cover member 51 Outflow portion 52 Outflow port 6 Hollow fiber membrane 7, 8 Partition wall 9 Cover member 91 Inflow portion 92 Liquid inflow port 93 Feed Trachea 94 Porous body 10 Cover member 101 Inflow part 102 Liquid inflow port 103 Nozzle 11 Housing 12 Housing body 121 Inflow part 122 Outflow part 123 First flow path 124 Inflow port 125 Outlet port 13 Cover member 131 Inflow part 132 Gas inflow port 133 Liquid Inflow port 14 Cover member 141 Outflow part 142 Gas outflow port 143 Liquid outflow 15, 16 partition wall 17, 18 liquid level

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ハウジング内に、ガス透過性の膜と、第
一の流体の流入部と、第一の流体の流出部と、前記第一
の流体の流入部から流出部へ至る第一流路と、第二の流
体の流入部と、第二の流体の流出部と、前記第二の流体
の流入部から流出部へ至る第二流路とを有し、 前記第一流路と前記第二流路とが前記ガス透過性の膜で
隔てられている熱およびガス交換器であって、 前記第一流路に前記第一の流体を流すとともに、前記第
二流路に前記第一の流体と温度が異なる液体と前記第一
の流体とガス分圧の異なる気体とを流し、前記ガス透過
性の膜を介して、前記第一の流体と前記第二の流体との
間で熱交換およびガス交換を行うことを特徴とする熱お
よびガス交換器。
1. A gas permeable membrane, a first fluid inflow portion, a first fluid outflow portion, and a first flow path from the first fluid inflow portion to the outflow portion in a housing. A second fluid inflow portion, a second fluid outflow portion, and a second flow path from the second fluid inflow portion to the outflow portion, the first flow path and the second flow path. A heat and gas exchanger separated from the flow path by the gas-permeable membrane, wherein the first fluid is caused to flow through the first flow path, and the first fluid is passed through the second flow path. A liquid having a different temperature, the first fluid, and a gas having a different gas partial pressure are caused to flow, and heat exchange and gas exchange between the first fluid and the second fluid through the gas-permeable membrane. A heat and gas exchanger, characterized in that it is exchanged.
JP50A 1993-02-15 1993-02-15 Heat and gas exchanger Pending JPH06237992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06237992A (en) 1993-02-15 1993-02-15 Heat and gas exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06237992A (en) 1993-02-15 1993-02-15 Heat and gas exchanger

Publications (1)

Publication Number Publication Date
JPH06237992A true JPH06237992A (en) 1994-08-30

Family

ID=12845632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06237992A (en) 1993-02-15 1993-02-15 Heat and gas exchanger

Country Status (1)

Country Link
JP (1) JPH06237992A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147562B2 (en) 2002-09-23 2012-04-03 The General Hospital Corporation Three dimensional construct for the design and fabrication of physiological fluidic networks
US8266791B2 (en) 2007-09-19 2012-09-18 The Charles Stark Draper Laboratory, Inc. Method of fabricating microfluidic structures for biomedical applications
US8357528B2 (en) 2003-05-21 2013-01-22 The General Hospital Corporation Microfabricated compositions and processes for engineering tissues containing multiple cell types
US8591597B2 (en) 2007-04-12 2013-11-26 The General Hospital Corporation Biomimetic vascular network and devices using the same
WO2016052206A1 (en) * 2014-09-30 2016-04-07 テルモ株式会社 Artificial lung and artificial heart-lung circuit device
WO2016052204A1 (en) * 2014-09-30 2016-04-07 テルモ株式会社 Artificial lung and artificial heart-lung circuit device
US9408959B2 (en) 2010-07-27 2016-08-09 University Of Strathclyde Integrated perfusion device
US9595206B2 (en) 2008-02-11 2017-03-14 The General Hospital System and method for in vitro blood vessel modeling
JP2018503491A (en) * 2015-01-28 2018-02-08 ヘムエアー リミテッド Mass exchange apparatus and method of use thereof
CN111494741A (en) * 2020-05-25 2020-08-07 清华大学 Artificial lung for extracorporeal circulation

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147562B2 (en) 2002-09-23 2012-04-03 The General Hospital Corporation Three dimensional construct for the design and fabrication of physiological fluidic networks
US8357528B2 (en) 2003-05-21 2013-01-22 The General Hospital Corporation Microfabricated compositions and processes for engineering tissues containing multiple cell types
US8951302B2 (en) 2007-04-12 2015-02-10 The General Hospital Corporation Biomimetic vascular network and devices using the same
US8591597B2 (en) 2007-04-12 2013-11-26 The General Hospital Corporation Biomimetic vascular network and devices using the same
US10265698B2 (en) 2007-09-19 2019-04-23 The Charles Stark Draper Laboratory, Inc. Microfluidic structures for biomedical applications
US8266791B2 (en) 2007-09-19 2012-09-18 The Charles Stark Draper Laboratory, Inc. Method of fabricating microfluidic structures for biomedical applications
US9181082B2 (en) 2007-09-19 2015-11-10 The Charles Stark Draper Laboratory, Inc. microfluidic structures for biomedical applications
US9595206B2 (en) 2008-02-11 2017-03-14 The General Hospital System and method for in vitro blood vessel modeling
US9408959B2 (en) 2010-07-27 2016-08-09 University Of Strathclyde Integrated perfusion device
EP3202436A4 (en) * 2014-09-30 2018-05-23 Terumo Kabushiki Kaisha Artificial lung and artificial heart-lung circuit device
CN106714866A (en) * 2014-09-30 2017-05-24 泰尔茂株式会社 Artificial lung and artificial heart-lung circuit device
JPWO2016052206A1 (en) * 2014-09-30 2017-07-20 テルモ株式会社 Artificial lung and cardiopulmonary circuit device
WO2016052204A1 (en) * 2014-09-30 2016-04-07 テルモ株式会社 Artificial lung and artificial heart-lung circuit device
EP3202438A4 (en) * 2014-09-30 2018-05-23 Terumo Kabushiki Kaisha Artificial lung and artificial heart-lung circuit device
WO2016052206A1 (en) * 2014-09-30 2016-04-07 テルモ株式会社 Artificial lung and artificial heart-lung circuit device
JP2018503491A (en) * 2015-01-28 2018-02-08 ヘムエアー リミテッド Mass exchange apparatus and method of use thereof
AU2016211046B2 (en) * 2015-01-28 2019-11-14 Haemair Limited Mass exchange apparatus and methods for the use thereof
AU2016211046B9 (en) * 2015-01-28 2019-11-21 Haemair Limited Mass exchange apparatus and methods for the use thereof
EP3250253B1 (en) * 2015-01-28 2020-07-22 Haemair Limited Mass exchange apparatus and methods for the use thereof
US10730018B2 (en) 2015-01-28 2020-08-04 Haemair Limited Mass exchange apparatus and methods for the use thereof
CN111494741A (en) * 2020-05-25 2020-08-07 清华大学 Artificial lung for extracorporeal circulation

Similar Documents

Publication Publication Date Title
US11065375B2 (en) Blood oxygenator
US5043140A (en) Blood oxygenator
US4902476A (en) Heat exchanger and blood oxygenator apparatus
US4791054A (en) Heat exchanger and blood oxygenating device furnished therewith
US4151088A (en) Membrane diffusion device with integral heat exchanger and reservoir
US4067696A (en) Blood oxygenator
JPH0622620B2 (en) Integrated blood membrane oxygenator / heat exchanger
EP1557185B1 (en) Device for treating blood for extracorporeal circulation
US4556489A (en) Membrane oxygenator
US4585056A (en) Heat exchanger
JPH06237992A (en) Heat and gas exchanger
US4183961A (en) Method of oxygenating blood
US3769163A (en) Blood oxygenator flow guide
US4874581A (en) O2 /CO2 control in blood oxygenators
US4336224A (en) Bubble oxygenator
EP0114732A2 (en) Blood oxygenator
US6001306A (en) Integrated oxygenator and heat exchanger
JPH06237993A (en) Fluid supply device
WO2003042432A1 (en) Device and method for exchanging oxygen and carbon dioxide between a gas and an aqueous liquid
JPH042067B2 (en)
JPS6237993B2 (en)
EP0249308A2 (en) O2/CO2 control in blood oxygenators
JP4114020B2 (en) Extracorporeal blood circulation apparatus having gas heat exchange means
JPS6237994B2 (en)
JP2613217B2 (en) Hollow fiber type artificial lung