JPH06236795A - Induction heating plate - Google Patents

Induction heating plate

Info

Publication number
JPH06236795A
JPH06236795A JP2155493A JP2155493A JPH06236795A JP H06236795 A JPH06236795 A JP H06236795A JP 2155493 A JP2155493 A JP 2155493A JP 2155493 A JP2155493 A JP 2155493A JP H06236795 A JPH06236795 A JP H06236795A
Authority
JP
Japan
Prior art keywords
plate
induction heating
magnetic
metal plate
support leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2155493A
Other languages
Japanese (ja)
Inventor
Atsushi Okubo
温 大久保
Tetsuo Matsunaga
哲夫 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2155493A priority Critical patent/JPH06236795A/en
Publication of JPH06236795A publication Critical patent/JPH06236795A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To provide an induction heating plate as a heating element capable of easily conducting the induction heating at a constant temperature at low cost. CONSTITUTION:An induction heating plate is constituted in such a manner that an iron plate 1 as a heating body and a plastic plate 2 as an nonmagnetic insulating body are supported in the opposed state by a support leg 3. The support leg 3 is formed from a material having a large thermal expansion coefficient or a highly thermally deformable material. The plate has a form such that the heat conduction from the iron plate can be received to sufficiently expand and contract the length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘導加熱による温度一定
制御に用いられる発熱体としての誘導加熱用板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating plate as a heating element used for constant temperature control by induction heating.

【0002】[0002]

【従来の技術】従来誘導加熱におけるこの種の温度一定
制御方法としては、温度センサで検出した加熱対象物の
温度をフィードバックし調整装置によって誘導加熱電力
の制御を行うもの、或いは磁性体のキュリー温度の前後
における透磁率の変化を利用したものが知られている。
2. Description of the Related Art Conventionally, as a constant temperature control method of this kind in induction heating, the temperature of an object to be heated detected by a temperature sensor is fed back to control the induction heating power by an adjusting device, or the Curie temperature of a magnetic material. It is known to utilize the change in magnetic permeability before and after.

【0003】因みに前記の透磁率変化を利用するもの
は、その透磁率がキュリー温度を境に急変する磁性体層
を発熱体とこれに鎖交する交番磁束を発生させるコイル
との間に設け、該磁性体層の温度が前記発熱体からの温
度伝達により前記キュリー温度の前後で変化する場合、
前記発熱体温度の変化方向と反対方向にて前記交番磁束
を増減させる如く前記磁性体層の透磁率が急変すること
を利用し、前記交番磁束の増減を介し前記キュリー温度
をその安定点として前記発熱体温度を整定させるもので
ある。
By the way, in the one utilizing the above-mentioned change in magnetic permeability, a magnetic layer whose magnetic permeability changes abruptly at the Curie temperature is provided between the heating element and the coil for generating an alternating magnetic flux interlinking with it. When the temperature of the magnetic layer changes before and after the Curie temperature due to temperature transfer from the heating element,
Utilizing the fact that the magnetic permeability of the magnetic layer suddenly changes so as to increase / decrease the alternating magnetic flux in the direction opposite to the direction in which the heating element temperature changes, the Curie temperature is used as a stable point through the increase / decrease in the alternating magnetic flux. The heating element temperature is set.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前記の如
き誘導加熱による温度一定制御において、温度センサを
用いた誘導加熱電力のフィードバック制御システムに関
しては、前記温度センサの取付けが困難な場合があると
共に前記制御システム自体が一般的にその構成において
複雑且つ高価なものとなる。また前記の如くキュリー温
度の前後におけるその透磁率の変化を利用するものは、
温度整定精度を高めるためにその透磁率の急変を要し、
従って所要の磁性体材料としてフェライト等の高価なも
のを必要とし発熱体全体として高価なものとならざるを
得なかった。
However, in the above-described constant temperature control by induction heating, in the feedback control system of the induction heating power using the temperature sensor, it may be difficult to attach the temperature sensor and the control may be performed. The system itself is typically complex and expensive in its construction. Further, as described above, the one utilizing the change in magnetic permeability before and after the Curie temperature is:
A sudden change in magnetic permeability is required to increase the temperature setting accuracy,
Therefore, an expensive material such as ferrite is required as a required magnetic material, and the heating element as a whole is inevitably expensive.

【0005】上記に鑑み本発明は温度一定の誘導加熱
を、複雑な温度制御システムを用いることなく、安価且
つ簡易になし得る発熱体としての誘導加熱用板の提供を
目的とするものである。
In view of the above, it is an object of the present invention to provide an induction heating plate as a heating element that can inexpensively and easily perform induction heating at a constant temperature without using a complicated temperature control system.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の誘導加熱用板は、磁性体金属板と非磁性体絶
縁板とをそれぞれの所定部位に配置された支脚により互
いに対面状態にて固定接続し、且つ該支脚を熱膨張係数
の大なる材料にて形成すると共にその加熱状態に応じそ
の長さを変化させる如き形状となし、前記支脚へ熱供給
する前記金属板の加熱状態に応じて該支脚により接続さ
れている該金属板と前記絶縁板との相互間隔を変化させ
る如く構成するものとし、或いは前記支脚を熱膨張係数
の大なる材料にて形成することに代えて熱変形するバイ
メタルにより形成するものとし、また同様に前記支脚を
熱変形する形状記憶合金によって形成するものとし、ま
た前記の金属板と絶縁板両者の前記支脚による接続に関
し、該両者を共に固定接続することに代え該両者の何れ
か一方のみを固定接続するものとし、更にまた前記絶縁
板へ対向する側の前記金属板の表面に複数の突起部を設
け且つ該各突起部と対をなして磁路を形成する強磁性材
ブロックを前記絶縁板に取り付けた構成をなすものとす
る。
In order to achieve the above object, the induction heating plate of the present invention has a magnetic metal plate and a non-magnetic insulating plate facing each other by supporting legs arranged at respective predetermined portions. Is fixedly connected, and the supporting leg is formed of a material having a large coefficient of thermal expansion, and has a shape such that its length is changed according to the heating state, and the heating state of the metal plate for supplying heat to the supporting leg. The metal plate and the insulating plate, which are connected by the support leg, are changed in mutual distance in accordance with the above, or the support leg is made of a material having a large coefficient of thermal expansion, instead of being formed of heat. It is assumed that the support leg is formed of a deformable bimetal, and the support leg is also formed of a shape-memory alloy that thermally deforms. Further, regarding the connection between the metal plate and the insulating plate by the support leg, both of them are connected together. Instead of constant connection, only one of the two is fixedly connected, and a plurality of protrusions are provided on the surface of the metal plate on the side facing the insulating plate, and each protrusion is paired with the protrusion. A ferromagnetic material block forming a magnetic path is attached to the insulating plate.

【0007】[0007]

【作用】一般に誘導加熱は、交番磁界中に置かれた導電
体に生じる誘導電流がその通電経路の抵抗分において発
生させる抵抗損失による発熱を利用するものである。こ
こに前記誘導電流はその通電経路における誘起電圧に比
例し、該誘起電圧は前記導電体に鎖交する交番磁束量と
その時間的変化率に比例し、該磁束量はその通過経路に
おける磁気抵抗に逆比例すると共に起磁力に比例し、ま
た該磁気抵抗は磁束通過経路の長さに比例すると共にそ
の透磁率に逆比例する。
In general, the induction heating utilizes the heat generated by the resistance loss generated by the induced current generated in the conductor placed in the alternating magnetic field in the resistance component of the conduction path. Here, the induced current is proportional to the induced voltage in the conduction path, the induced voltage is proportional to the amount of alternating magnetic flux interlinking with the conductor and its temporal change rate, and the amount of magnetic flux is the magnetic resistance in the passage. Is inversely proportional to the magnetomotive force, and the magnetic resistance is proportional to the length of the magnetic flux passage and inversely proportional to its magnetic permeability.

【0008】即ち前記誘導電流は前記磁束通過経路の長
さの増大と共に減少する。従って、前記導電体としての
磁性体金属板と該金属板への鎖交交番磁束を発生させる
通電コイルとの距離を該金属板の加熱温度に応じて変化
させ、前記磁気抵抗を可変となすことにより前記金属板
の加熱温度の一定化を図ることが可能となる。本発明
は、磁性体金属板と非磁性体絶縁板とをそれぞれの所定
の部位に配置された支脚により互いに対面状態にて支持
し該両者相互の間隔の保持をなし、且つ該支脚の長さが
それ自体の温度により所要の伸縮変化をなす如く形成さ
れた誘導加熱用板を、該加熱用板の前記絶縁板側に設置
されたコイルへの交流電流通電により加熱し、前記の金
属板と絶縁板間間隔の伸縮を利用し該金属板における加
熱温度の一定化を図るものであり、前記支脚を熱膨張率
の大なる材質により、或いは熱変形の大なるバイメタル
或いは形状記憶合金により形成するものである。
That is, the induced current decreases as the length of the magnetic flux passage increases. Therefore, the magnetic resistance is made variable by changing the distance between the magnetic metal plate as the conductor and the energizing coil for generating the interlinking magnetic flux to the metal plate according to the heating temperature of the metal plate. Thereby, it becomes possible to make the heating temperature of the metal plate constant. According to the present invention, a magnetic metal plate and a non-magnetic insulating plate are supported in a face-to-face relationship with each other by supporting legs arranged at respective predetermined portions, and the distance between the two is maintained, and the length of the supporting leg is long. Heats an induction heating plate formed so as to make a required expansion / contraction change depending on its own temperature by heating the coil installed on the insulating plate side of the heating plate with an alternating current, The heating temperature of the metal plate is made constant by utilizing the expansion and contraction of the distance between the insulating plates, and the supporting leg is formed of a material having a large coefficient of thermal expansion, or a bimetal or a shape memory alloy having a large thermal deformation. It is a thing.

【0009】更に前記の如き誘導加熱用板における前記
の金属板と絶縁板両者の支脚による接続に関し、該両者
を共に固定接続となすか、或いは前記の金属板から支脚
への円滑な熱伝達を図りながら該支脚と該金属板又は絶
縁板との何れか一方とのみの固定接続をなし他の一方を
着脱自在となして洗浄或いは掃除のための分解の便を図
るものであり、また、前記のコイルと金属板間磁路の分
布の均等化を図るために前記絶縁板へ対向する側の該金
属板表面に複数の突起部を設けると共に、該各突起部と
対をなして磁路を形成する強磁性材ブロックを前記絶縁
板に取り付けた構成をなすものである。
Further, regarding the connection of both the metal plate and the insulating plate by the supporting legs in the induction heating plate as described above, both of them are fixedly connected, or smooth heat transfer from the metal plate to the supporting leg is performed. While making a fixed connection with only one of the supporting leg and the metal plate or the insulating plate, the other one is made detachable to facilitate disassembly for cleaning or cleaning. In order to equalize the distribution of the magnetic path between the coil and the metal plate, a plurality of protrusions are provided on the surface of the metal plate on the side facing the insulating plate, and a magnetic path is formed in pairs with each protrusion. The ferromagnetic material block to be formed is attached to the insulating plate.

【0010】[0010]

【実施例】以下本発明の実施例を図1乃至図6に示す誘
導加熱用板の斜視図或いは側面図に従って説明する。な
お該各図においては同一機能の構成要素に対しては同一
の表示符号を付している。図1は本発明の第一の実施例
を示すものであり、図1の(イ)は誘導加熱用板の斜視
図、同(ロ)と(ハ)とはそれぞれその側面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to a perspective view or a side view of an induction heating plate shown in FIGS. In addition, in each of the drawings, the same reference numeral is given to the component having the same function. FIG. 1 shows a first embodiment of the present invention. FIG. 1A is a perspective view of an induction heating plate, and FIGS. 1B and 1C are side views thereof.

【0011】先ず図1(イ)において、1は発熱体とし
ての鉄板、2は誘導加熱用板の全体構成の基礎をなす非
磁性絶縁体としてのプラスチック板、3は熱膨張率の大
なる材質から形成され前記鉄板からの熱伝達を受け伸縮
変化する支脚、3aは該支脚と前記鉄板とを接続する該
支脚の上側固定部、3bは前記の支脚とプラスチック板
とを接続する該支脚の下側固定部である。なお前記支脚
は所定の重量物を積載した前記鉄板を支持するに足る本
数だけ設けられるものとする。
First, in FIG. 1A, 1 is an iron plate as a heating element, 2 is a plastic plate as a non-magnetic insulator which forms the basis of the overall structure of the induction heating plate, and 3 is a material having a large coefficient of thermal expansion. A support leg which is formed of and which expands and contracts due to heat transfer from the iron plate, 3a is an upper fixing portion of the support leg that connects the support leg and the iron plate, and 3b is a lower part of the support leg that connects the support leg and the plastic plate It is a side fixing part. It should be noted that the supporting legs are provided in a sufficient number to support the iron plate on which a predetermined heavy object is loaded.

【0012】次に図1(ロ)は、鉄板1がその定常状態
よりも高温の状態となり前記各支脚が伸長して該鉄板と
前記プラスチック板との間隔がその定常状態時よりも広
くなった状態を示すものである。また図1(ハ)は鉄板
1がその定常状態よりも低温の状態となり前記各支脚が
縮小して該鉄板と前記プラスチック板との間隔がその定
常状態時よりも狭くなった状態を示すものである。
Next, as shown in FIG. 1B, the iron plate 1 is at a higher temperature than its steady state and each of the supporting legs is extended so that the distance between the iron plate and the plastic plate becomes wider than in the steady state. It shows the state. Further, FIG. 1C shows a state in which the iron plate 1 is at a temperature lower than that in the steady state, and the supporting legs are contracted so that the distance between the iron plate and the plastic plate becomes narrower than in the steady state. is there.

【0013】更に図2は、交流電流を通電し鉄板1に鎖
交する磁束を発生させる誘導コイル4の上側に前記の誘
導加熱用板を配置した状態を示し、該コイル4の作る磁
力線10をその通過経路を含め一点鎖線にて代表模擬し
たものである。今、誘導コイル4とプラスチック板2と
の間隔を固定した状態で鉄板1がその定常状態よりも高
温の状態となり該両板間間隔がその定常状態時よりも広
くなれば、前記鉄板と鎖交する磁束はその定常状態量よ
りも減少して該鉄板への加熱量もまた減少することにな
り前記両板間間隔はその定常値に向かいやがて縮小する
ことになる。逆に、前記鉄板がその定常状態よりも低温
の状態となり前記両板間間隔がその定常状態時よりも狭
くなれば、前記の鉄板鎖交磁束はその定常状態量よりも
増大して前記鉄板への加熱量もまた増大することになり
前記両板間間隔はその定常値に向かいやがて伸びること
になる。
Further, FIG. 2 shows a state in which the induction heating plate is arranged above the induction coil 4 for generating a magnetic flux interlinking with the iron plate 1 by passing an alternating current, and the magnetic field lines 10 formed by the coil 4 are shown. This is a representative simulation including the passing route with a chain line. Now, with the spacing between the induction coil 4 and the plastic plate 2 fixed, if the iron plate 1 becomes a higher temperature than its steady state and the space between both plates becomes wider than in its steady state, the iron plate 1 is linked with the iron plate. The generated magnetic flux is reduced from the steady state amount, and the heating amount to the iron plate is also reduced, so that the distance between the two plates is gradually reduced toward the steady value. On the contrary, if the iron plate becomes a temperature lower than its steady state and the distance between both plates becomes narrower than that in its steady state, the iron plate interlinkage magnetic flux increases more than its steady state amount to the iron plate. The amount of heating of the plate also increases, and the distance between the plates gradually extends toward its steady value.

【0014】即ち、前記の如き熱応答をなす支脚の採用
により前記鉄板の温度は、該鉄板と前記プラスチック板
との間隔に連動して前記誘導コイルに通電される交流電
流値に比例する起磁力によって規定される定常値に一定
化されることになる。次に図3は本発明の第二の実施例
を示すものであり、図1に示す誘導加熱用板における支
脚3をバイメタルにより形成してこれを支脚5となすと
共にその上下各固定部をそれぞれ5aと5bとなしたも
のであり、その熱応答による前記板間間隔の変化につい
ては図1の場合と同様になる。
That is, the temperature of the iron plate is increased in accordance with the distance between the iron plate and the plastic plate by the adoption of the above-described support leg that produces a thermal response, and the magnetomotive force is proportional to the value of the alternating current supplied to the induction coil. Will be fixed to a steady value defined by. Next, FIG. 3 shows a second embodiment of the present invention, in which the supporting leg 3 in the induction heating plate shown in FIG. 1 is formed of bimetal to form the supporting leg 5, and the upper and lower fixing portions thereof are respectively formed. 5a and 5b, and the change in the plate-to-plate spacing due to the thermal response is the same as in the case of FIG.

【0015】また図4は本発明の第三の実施例を示すも
のであり、図1に示す誘導加熱用板における支脚3を形
状記憶合金により形成しこれを支脚6となすと共にその
上下各固定部をそれぞれ6aと6bとなしたものであ
り、その記憶温度を基準に支脚6がその伸長をなすこと
により、その熱応答による前記の板間間隔の変化につい
ては図1の場合と同様になる。
FIG. 4 shows a third embodiment of the present invention, in which the support leg 3 in the induction heating plate shown in FIG. 1 is formed of a shape memory alloy, and this is used as the support leg 6 and the upper and lower parts thereof are fixed. Parts 6a and 6b are provided, respectively, and the support leg 6 extends based on the stored temperature, so that the change in the plate-to-plate spacing due to the thermal response is the same as in the case of FIG. .

【0016】また図5は本発明の第四の実施例を示すも
のであり、図1乃至図4に示す誘導加熱用板に対し共通
に適用できるものであり、前記の金属板とプラスチック
板との接続に関し、前記支脚下部における前記プラスチ
ック板との接続を固定とせず着脱自在となし、洗浄或い
は掃除のための分解の便を図るものである。更に図6は
本発明の第五の実施例を示すものであり、図1乃至図4
に示す誘導加熱用板に対して共通に適用出来るものであ
り、前記プラスチック板へ対向する側の鉄板表面に複数
の突起部を設け且つ該各突起部と対をなして磁路を形成
する強磁性材ブロックとしてフェライトコア8を前記プ
ラスチック板に取付け、前記の誘導コイルと鉄板間磁路
の分布の均等化を図ったものである。
FIG. 5 shows a fourth embodiment of the present invention, which can be commonly applied to the induction heating plates shown in FIGS. 1 to 4, and includes the metal plate and the plastic plate. With regard to the connection, the connection with the plastic plate in the lower part of the supporting leg is not fixed but detachable, and the disassembly for cleaning or cleaning is facilitated. Further, FIG. 6 shows a fifth embodiment of the present invention, and FIGS.
It can be commonly applied to the induction heating plate shown in Fig. 1 and has a plurality of protrusions provided on the surface of the iron plate facing the plastic plate and forms a magnetic path by forming a pair with each protrusion. A ferrite core 8 is attached to the plastic plate as a magnetic material block to equalize the distribution of the magnetic paths between the induction coil and the iron plate.

【0017】[0017]

【発明の効果】本発明によれば、誘導加熱用板を、鉄板
等の磁性体金属板とプラスチック等の非磁性体絶縁板と
をそれぞれの所定部位に配置された支脚により互いに対
面状態にて接続構成し且つ該支脚を熱膨張係数の大なる
材料或いは熱変形の大なる材料にて形成することによ
り、前記金属板と絶縁板間間隔の金属板温度に応じた自
動伸長がなされて該金属板温度の一定化が可能となり、
温度一定の誘導加熱を複雑な温度制御システムを用いる
ことなく、安価且つ簡易な発熱体としての誘導加熱板に
より実現することができる。
According to the present invention, the induction heating plate is made of a magnetic metal plate such as an iron plate and a non-magnetic insulating plate such as plastic in a state of facing each other by supporting legs arranged at respective predetermined portions. By connecting and forming the supporting leg with a material having a large thermal expansion coefficient or a material having a large thermal deformation, the metal plate and the insulating plate are automatically stretched in accordance with the temperature of the metal plate and the metal is formed. The plate temperature can be kept constant,
Induction heating at a constant temperature can be realized by an inexpensive and simple induction heating plate as a heating element, without using a complicated temperature control system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示すものであり、図
(イ)はその斜視図、図(ロ)と図(ハ)とはそれぞれ
その側面図である。
1 shows a first embodiment of the present invention, FIG. 1 (a) is a perspective view thereof, and FIG. 1 (b) and FIG. 1 (c) are side views thereof, respectively.

【図2】誘導コイル上に配置した誘導加熱用板の側面図FIG. 2 is a side view of an induction heating plate arranged on an induction coil.

【図3】本発明の第二の実施例を示す誘導加熱用板の側
面図
FIG. 3 is a side view of an induction heating plate showing a second embodiment of the present invention.

【図4】本発明の第三の実施例を示す誘導加熱用板の側
面図
FIG. 4 is a side view of an induction heating plate showing a third embodiment of the present invention.

【図5】本発明の第四の実施例を示す誘導加熱用板の側
面図
FIG. 5 is a side view of an induction heating plate showing a fourth embodiment of the present invention.

【図6】本発明の第五の実施例を示す誘導加熱用板の側
面図
FIG. 6 is a side view of an induction heating plate showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 鉄板 2 プラスチック板 3 支脚 3a 支脚上側固定部 3b 支脚下側固定部 4 誘導コイル 5 支脚 6 支脚 7 鉄板 8 フェライトコア 10 磁力線 1 Iron plate 2 Plastic plate 3 Support leg 3a Support leg upper fixed part 3b Support leg lower fixed part 4 Induction coil 5 Support leg 6 Support leg 7 Iron plate 8 Ferrite core 10 Magnetic field line

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】磁性体金属板と非磁性体絶縁板とをそれぞ
れの所定部位に配置された支脚により互いに対面状態に
て固定接続し、且つ該支脚を熱膨張係数の大なる材料に
て形成すると共にその加熱状態に応じその長さを変化さ
せる如き形状となし、前記支脚へ熱供給する前記金属板
の加熱状態に応じて該支脚により接続されている該金属
板と前記絶縁板との相互間隔を変化させる如く構成した
ことを特徴とする誘導加熱用板。
1. A magnetic metal plate and a non-magnetic insulating plate are fixedly connected in a face-to-face relationship with each other by supporting legs arranged at respective predetermined portions, and the supporting legs are made of a material having a large thermal expansion coefficient. The shape of the metal plate is such that its length is changed according to its heating state, and the metal plate and the insulating plate are connected to each other according to the heating state of the metal plate for supplying heat to the supporting leg. A plate for induction heating, characterized in that it is configured so as to change the interval.
【請求項2】請求項1記載の誘導加熱用板において、前
記支脚を熱膨張係数の大なる材料にて形成することに代
えて、該支脚を熱変形するバイメタルにより形成するこ
とを特徴とする誘導加熱用板。
2. The induction heating plate according to claim 1, wherein the supporting leg is formed of a bimetal that is thermally deformed, instead of forming the supporting leg of a material having a large thermal expansion coefficient. Induction heating plate.
【請求項3】請求項1記載の誘導加熱用板において、前
記支脚を熱膨張係数の大なる材料にて形成することに代
えて、該支脚を熱変形する形状記憶合金により形成する
ことをを特徴とする誘導加熱用板。
3. The induction heating plate according to claim 1, wherein the support leg is formed of a shape-memory alloy that thermally deforms, instead of forming the support leg by a material having a large thermal expansion coefficient. Characteristic induction heating plate.
【請求項4】請求項1記載の誘導加熱用板において、前
記の金属板と絶縁板両者の前記支脚による接続に関し、
該両者を共に固定接続することに代え該両者の何れか一
方のみを固定接続することを特徴とする誘導加熱用板。
4. The induction heating plate according to claim 1, wherein the metal plate and the insulating plate are both connected by the supporting leg,
An induction heating plate, characterized in that instead of fixedly connecting both of them, only one of them is fixedly connected.
【請求項5】請求項1記載の誘導加熱用板において、前
記絶縁板へ対向する側の前記金属板の表面に複数の突起
部を設け、且つ該各突起部と対をなして磁路を形成する
強磁性材ブロックを前記絶縁板に取り付けた構成をなす
ことを特徴とする誘導加熱用板。
5. The induction heating plate according to claim 1, wherein a plurality of protrusions are provided on the surface of the metal plate on the side facing the insulating plate, and a magnetic path is formed by forming a pair with each protrusion. A plate for induction heating, characterized in that a ferromagnetic material block to be formed is attached to the insulating plate.
JP2155493A 1993-02-10 1993-02-10 Induction heating plate Pending JPH06236795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2155493A JPH06236795A (en) 1993-02-10 1993-02-10 Induction heating plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155493A JPH06236795A (en) 1993-02-10 1993-02-10 Induction heating plate

Publications (1)

Publication Number Publication Date
JPH06236795A true JPH06236795A (en) 1994-08-23

Family

ID=12058230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155493A Pending JPH06236795A (en) 1993-02-10 1993-02-10 Induction heating plate

Country Status (1)

Country Link
JP (1) JPH06236795A (en)

Similar Documents

Publication Publication Date Title
KR100370444B1 (en) Mri magnetic field generator
US2284383A (en) Thermostatic control device
JPH06236795A (en) Induction heating plate
EP0323005B1 (en) Hot wire type air flow meter
JP2000075702A (en) Heating device and fixing device using it
US20100237059A1 (en) Resistive heating element for electrical heating
JPS59230117A (en) Electromagnetic force generating device
US3259832A (en) Electrical control device
WO2004030413A1 (en) Frying hob arrangement
JP6963601B2 (en) Temperature operation switch
US4699228A (en) Mass transducer with electromagnetic compensation
RU2699920C1 (en) Thermoelectric battery
US2620469A (en) Temperature responsive variable reactance
US2881302A (en) Electric heating unit
JPH08213245A (en) Variable inductance element
JP7268494B2 (en) induction heating device
JPS592536Y2 (en) electromagnetic oscillograph
EP1582627A1 (en) Rail heating device
JP4123842B2 (en) Temperature sensitive switch
US3487201A (en) Compensator for thermoelectric control circuit
JP2518001B2 (en) Magnetic circuit for electromagnetic balance
JP2000311772A (en) Heat plate device
JPH05326123A (en) Induction heater plate
US1831558A (en) Thermal responsive device
US1171208A (en) Voltage regulation.