JPH06235885A - Stereoscopic picture display device - Google Patents

Stereoscopic picture display device

Info

Publication number
JPH06235885A
JPH06235885A JP5020256A JP2025693A JPH06235885A JP H06235885 A JPH06235885 A JP H06235885A JP 5020256 A JP5020256 A JP 5020256A JP 2025693 A JP2025693 A JP 2025693A JP H06235885 A JPH06235885 A JP H06235885A
Authority
JP
Japan
Prior art keywords
image
image display
line
eye
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5020256A
Other languages
Japanese (ja)
Inventor
Shojiro Osada
昌次郎 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP5020256A priority Critical patent/JPH06235885A/en
Publication of JPH06235885A publication Critical patent/JPH06235885A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a stereoscopic picture display device adequate to being used in a virtual actuality feeling device, etc. CONSTITUTION:A picture display unit 1 or the position of an optical system 2 enlarging and image-forming a picture displayed on the unit 1 as a virtual picture is changed by a controlling and driving part 4 as the line of sight direction of both right and left eyes of an observer is changed (or eye movement), so that the position of the virtual image is aligned with a congestion position obtained from the change of the line of sight direction (or eye movement).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は仮想現実感装置等への使
用に適した立体映像表示装置に係り、とくに接眼型や頭
部搭載型など拡大光学系を用いた立体映像表示装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic image display device suitable for use in a virtual reality device or the like, and more particularly to a stereoscopic image display device using a magnifying optical system such as an eyepiece type or a head mounted type.

【0002】[0002]

【従来の技術】この種類の従来の立体映像表示装置の例
を図4に示す。図4において、1は左右両眼視差像に基
づいて立体映像を表示することができ、左右両眼の直前
に配置した左眼用と右眼用からなる1対の映像表示器で
ある。この表示器1に表示された映像を拡大光学系とし
ての1対の凸レンズ2により空間に想定する表示面(以
下A面という)に虚像として拡大結像させるようにして
いる。これにより映画のスクリーンのように限られた範
囲に立体映像を表示するのと違って、視界のすべてに立
体映像が映出され、仮想現実感を体験することができる
ため、最近かなりの遊戯施設やテーマパーク等で利用さ
れてきている。
2. Description of the Related Art An example of a conventional stereoscopic image display device of this type is shown in FIG. In FIG. 4, reference numeral 1 denotes a pair of image displays, which can display a stereoscopic image based on the left and right binocular parallax images, and are arranged immediately in front of the left and right eyes for the left eye and the right eye. The image displayed on the display 1 is magnified and imaged as a virtual image on a display surface (hereinafter referred to as A surface) assumed in space by a pair of convex lenses 2 as a magnifying optical system. As a result, unlike the case where a stereoscopic image is displayed in a limited area like a movie screen, stereoscopic images are projected in the entire field of view, and it is possible to experience virtual reality. It has been used in and theme parks.

【0003】[0003]

【発明が解決しようとする課題】図4について説明した
従来の立体映像表示装置は、1対の映像表示器1と1対
の凸レンズ2が固定的に配置され、それぞれ光軸方向に
関する位置関係が固定されているために、虚像は常にA
面に拡大結像している。
In the conventional stereoscopic image display device described with reference to FIG. 4, a pair of image display 1 and a pair of convex lenses 2 are fixedly arranged, and the positional relations in the optical axis direction are provided. Since it is fixed, the virtual image is always A
The image is magnified on the surface.

【0004】一方、観察者の左右両眼の視線は輻輳運動
によって対象となる表示映像に指向し、両眼の視線が公
差する位置が眼球輻輳位置(以下単に輻輳位置という)
となり、この位置が奥行方向に変化していることにより
遠近が判断され、立体感を感じる。従ってこの輻輳位置
は表示器1に表示される映像の中央の部分であっても、
映出される被写体によって●印で示すようにたまたま虚
像と同じA面の位置になることもあれば、このA面より
背後に×印で示すような位置になることもあり、表示映
像の内容によって定まるものである。
On the other hand, the lines of sight of the left and right eyes of the observer are directed toward the target display image by the vergence movement, and the position where the lines of sight of both eyes are tolerated is the eye vergence position (hereinafter simply referred to as the vergence position).
Since this position changes in the depth direction, the perspective is judged and a three-dimensional effect is felt. Therefore, even if this convergence position is in the center of the image displayed on the display 1,
Depending on the subject to be projected, it may happen that the position is on the same A plane as the virtual image, as shown by the ● mark, or it may be at the position shown by the X mark behind this A face, depending on the contents of the displayed image. It is fixed.

【0005】我々が生活している実空間でも輻輳位置に
よって遠近を判断していることに変わりないが、輻輳位
置の変化に伴い見ようとしている点に対する眼の焦点調
節が自動的に連繋して行われている。しかるに、従来の
立体映像表示装置のように輻輳位置は表示映像の内容に
より変化するが、映像の結像位置は固定というのでは極
めて不自然で観察者に視覚的な負担を強いることにな
る。
Even in the real space in which we live, the perspective is determined by the position of convergence, but the focus adjustment of the eye to the point to be viewed is automatically linked with the change of the position of convergence. It is being appreciated. However, although the vergence position changes depending on the contents of the displayed image as in the conventional stereoscopic image display device, if the image forming position is fixed, it is extremely unnatural and imposes a visual burden on the observer.

【0006】とくに表示された仮想の立体像(映像)と
実物とを光学的に重ねて観察するSee−Through表示装
置に構成した場合には、同一の遠近を示す映像の結像位
置と実物の位置が奥行き的に違うところにあることか
ら、一層視覚的負担が増加する。この問題を解決し、で
きるだけ実空間視の状態に近づけ視覚的負担を和らげよ
うと画面上における注視点を検出し、その対象点以外の
映像をぼかすという能動的な画像処理を施した立体映像
表示装置も考えられているが、この方法では表示映像の
奥行きを分析する必要があるなど簡単でない。
In particular, in the case of a See-Through display device for optically superimposing a displayed virtual three-dimensional image (image) and an actual object, the image forming position of the image showing the same perspective and the actual object are displayed. Since the positions are different in depth, the visual burden is further increased. To solve this problem, we detect the gazing point on the screen to make it as close as possible to the state of real space to ease the visual burden, and stereoscopic image display with active image processing that blurs the image other than the target point. A device is also considered, but this method is not easy because it is necessary to analyze the depth of the displayed image.

【0007】本発明の目的は、視覚的な負担をなくして
眼の疲労を軽減するような、より実空間視に近づけた立
体映像を表示することのできる立体映像表示装置を提供
することにある。
It is an object of the present invention to provide a stereoscopic image display device capable of displaying a stereoscopic image closer to real space vision so as to reduce visual fatigue and reduce eye fatigue. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明立体映像表示装置は、観察者の左右両眼に接近
してそれぞれ配置され立体映像を構成する左眼用と右眼
用の映像をそれぞれ表示する1対の映像表示手段と、該
手段にそれぞれ表示された映像を虚像として空間に拡大
結像する1対の拡大光学系とを備えて、前記虚像に関し
観察者の左右両眼に立体感を生じさせるようにした立体
映像表示装置において、観察者の左右両眼の視線方向を
それぞれ検出する視線方向検出器と、該検出器により検
出された視線方向に基づいて眼球輻輳位置を決定し、該
決定した眼球輻輳位置に前記虚像が結像するように前記
1対の映像表示手段および/または前記1対の拡大光学
系を制御駆動する制御駆動手段とを備えたことを特徴と
するものである。
In order to achieve the above object, a stereoscopic image display device of the present invention is for a left eye and a right eye which are respectively arranged close to the left and right eyes of an observer to form a stereoscopic image. A pair of image display means for displaying images respectively and a pair of magnifying optical systems for magnifying and forming the images displayed on the means as virtual images in space are provided, and the left and right eyes of the observer with respect to the virtual images. In the stereoscopic image display device to generate a stereoscopic effect, a line-of-sight direction detector that detects the line-of-sight directions of the left and right eyes of the observer, and the eye convergence position based on the line-of-sight direction detected by the detector. And a control drive means for controlling and driving the pair of image display means and / or the pair of magnifying optical systems so that the virtual image is formed at the determined eye convergence position. To do.

【0009】[0009]

【作用】観察者の眼に視覚的負担をなくすため、左右両
眼の輻輳位置の変化に合わせて表示映像の結像位置を自
動調整し、輻輳位置に結像位置を一致させるのが本発明
の原理であるが、これについて図1および図2を参照し
て説明する。
In order to eliminate the visual burden on the eyes of the observer, the present invention automatically adjusts the image forming position of the display image according to the change of the vergence positions of the left and right eyes, and makes the image forming position coincide with the vergence position. This will be described with reference to FIGS. 1 and 2.

【0010】図1は、本発明立体映像表示装置におい
て、表示映像の結像位置を変化させたときの表示映像の
奥行き位置と横位置(サイズ)、ならびに輻輳位置と立
体像の位置を示す線図であり、眼の位置を原点にとって
そこからの距離で示している。輻輳位置が奥行き的にz
の位置(以下A面という)に●印で示す位置にあって、
また同時に虚像の結像面もA面に一致し、この場合は輻
輳位置、結像位置が一致しているため眼に負担は生じて
いない。次に、この状態から輻輳位置のみが奥行き的に
z′の位置(以下B面という)に×印で示す位置に移動
したとする。虚像の結像面は依然としてA面上にあり、
輻輳位置と結像位置が一致しないので眼に負担が生じ
る。
FIG. 1 is a line showing a depth position and a lateral position (size) of a display image, and a convergence position and a position of a stereoscopic image when the image forming position of the display image is changed in the stereoscopic image display device of the present invention. It is a figure, and shows the position of the eye as the distance from the origin. The vergence position is z in depth
At the position indicated by ● at the position
At the same time, the image forming plane of the virtual image also coincides with the A surface, and in this case, the convergence position and the image forming position coincide with each other, so that no strain is applied to the eye. Next, from this state, it is assumed that only the vergence position is moved to the position z'in the depth direction (hereinafter referred to as the B surface) to the position indicated by the cross mark. The image plane of the virtual image is still on the A plane,
Since the vergence position and the image formation position do not coincide with each other, a burden is placed on the eye.

【0011】そこで、図示の凸レンズ2は固定したま
ま、映像表示器1を、当初の位置dからd′に移動させ
虚像の結像面をB面に一致させ、×で示す輻輳位置と虚
像の位置を一致させるようにする。これにより眼に負担
が生じなくなる。このとき左右両眼視差像の横位置(サ
イズ)がlからl′になったとすると、奥行位置zおよ
びz′との関係においてl′/l= z′/zが成立し
ている。
Therefore, with the convex lens 2 shown in the figure fixed, the image display 1 is moved from the initial position d to d ′ so that the image forming plane of the virtual image coincides with the B plane, and the convergence position and virtual image of the virtual image shown by x are formed. Try to match the positions. This eliminates strain on the eyes. At this time, if the lateral position (size) of the left and right binocular parallax images is changed from 1 to 1 ', then l' / l = z '/ z is established in relation to the depth positions z and z'.

【0012】図2は、映像表示器の位置を変化させたと
きの表示映像の奥行き位置と縦位置(サイズ)を示す線
図であり、ここでも眼の位置を原点にとりそこからの距
離で示し、図1で使用したのと同一符号を用いている。
図示のように、映像表示器1がdの位置からd′の位置
に変化したとすると、それぞれ実線および破線で示すよ
うにそれによる虚像の結像点はA面上からB面上に変化
する。眼の位置が凸レンズ2の焦点の位置にあると仮定
すると、h′/h=z′/zとなり、これは図1につい
て導いた奥行き位置と横位置(サイズ)の関係に一致す
る。なお、眼の位置については、凸レンズ2を挟んで映
像表示器1とは反対側の位置にあればよいので、必ずし
も凸レンズ2の焦点位置にあることは要しない。
FIG. 2 is a diagram showing the depth position and the vertical position (size) of the displayed image when the position of the image display is changed. Here, the eye position is taken as the origin and the distance from it is shown. , The same reference numerals as used in FIG. 1 are used.
As shown in the figure, if the image display 1 is changed from the position d to the position d ', the image forming point of the virtual image is changed from the A surface to the B surface as shown by the solid line and the broken line, respectively. . Assuming that the position of the eye is at the position of the focal point of the convex lens 2, h '/ h = z' / z, which matches the relationship between the depth position and the lateral position (size) derived in FIG. As for the position of the eye, it does not necessarily have to be at the focal position of the convex lens 2 because it may be at a position on the opposite side of the image display device 1 with the convex lens 2 interposed therebetween.

【0013】[0013]

【実施例】以上説明した本発明の原理に基づいて実際に
映像表示器の位置を変化させ、表示映像の位置を輻輳位
置に一致させるには次のようにする。本発明の一実施例
を図3に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to actually change the position of the image display and match the position of the displayed image with the convergence position based on the principle of the present invention described above, the following procedure is performed. One embodiment of the present invention is shown in FIG.

【0014】図3において、映像表示器1、凸レンズ2
および奥行位置を示すA面、B面は図1,図2と同じで
あるので説明を省略する。本例では輻輳位置に虚像の結
像位置を自動的に合わせるために、観察者の眼の近傍に
左右両眼の視線方向をそれぞれ検出する左右1対からな
る視線方向検出器3を配置する。この視線方向の検出
(例えば図1における角度θの検出)は輻輳作用のもと
となる眼球運動の検出にほかならない。
In FIG. 3, the image display 1 and the convex lens 2 are shown.
The planes A and B showing the depth position are the same as those in FIGS. In this example, in order to automatically adjust the image forming position of the virtual image to the vergence position, a pair of left and right line-of-sight direction detectors 3 for detecting the line-of-sight directions of the left and right eyes are arranged near the eyes of the observer. The detection of the line-of-sight direction (for example, the detection of the angle θ in FIG. 1) is nothing but the detection of the eye movement which causes the vergence action.

【0015】視線方向検出器3としては例えば左右両眼
について、近赤外光を眼球に照射してその反射光を黒眼
の両側に配置した光検出器で検出し、その黒目と白目の
境界で光量の変化を捉え、視線方向ないし眼球運動を検
出するものの使用が考えられる。他の方法としてスポッ
ト光を眼球に照射し、その反射光を2次元光位置検出器
で捉えるようにし、あるいは微小テレビジョンカメラを
用いて黒目の位置情報を得たりして眼球運動を検出する
ことができる。
As the line-of-sight direction detector 3, for example, for the left and right eyes, near-infrared light is applied to the eyeball and the reflected light is detected by photodetectors arranged on both sides of the black eye, and the boundary between the black eye and the white eye is detected. It is conceivable to use a device that detects changes in the amount of light and detects the direction of the line of sight or eye movement. As another method, the eyeball is irradiated with spot light and the reflected light is captured by a two-dimensional optical position detector, or the eye movement is detected by obtaining position information of the black eye using a micro television camera. You can

【0016】この視線方向検出器3により検出した視線
方向ないし眼球運動をもとに輻輳位置を計算し、その計
算結果に基づいて映像表示器1の位置の移動を行わせる
部分が図示の制御駆動部4である。
The convergence position is calculated based on the line-of-sight direction or eye movement detected by the line-of-sight direction detector 3, and the position for moving the position of the image display 1 based on the calculation result is the control drive shown in the figure. Part 4.

【0017】制御駆動部4では、輻輳位置z,z′に対
応して映像表示器1の位置d,d′を計算するが、これ
は視線方向検出器3により検出した左右両眼の視線が交
差する角度すなわち輻輳角をθ(ラジアン)(図1参
照)とすると以下の関係になる。まず輻輳位置zは
The control drive unit 4 calculates the positions d and d'of the image display device 1 corresponding to the vergence positions z and z ', but this is because the visual lines of the left and right eyes detected by the visual line direction detector 3 are calculated. If the angle of intersection, that is, the angle of convergence is θ (radian) (see FIG. 1), the following relationship is established. First, the convergence position z is

【数1】z=I/θ により表わされ、ここにIは瞳孔間隔(成人男性で約65
mm) である。これに併せて、原点を眼の位置、映像表示
器の基準位置をd、凸レンズ2の焦点距離をf、および
眼から凸レンズ2までの距離をkとすると、これらの間
の関係は
It is represented by z = I / θ, where I is the pupillary distance (about 65
mm). Along with this, when the origin is the eye position, the reference position of the image display is d, the focal length of the convex lens 2 is f, and the distance from the eye to the convex lens 2 is k, the relationship between them is

【数2】d−k=1/(1/(z−k)+1/f) により表わされる。これから映像表示器の位置dの可変
範囲は最大でもf(凸レンズ2の焦点距離)までであ
る。
## EQU2 ## It is represented by d-k = 1 / (1 / (z-k) + 1 / f). From this point, the variable range of the position d of the image display is at most f (focal length of the convex lens 2).

【0018】上記式で表わされる映像表示器1の基準位
置d、輻輳位置の基準位置zに対し、位置変化させた後
の新たな映像表示器1の位置d′、輻輳角θ′、輻輳位
置z′との関係は上記の各パラメータを用いて次式によ
り表わされる。
With respect to the reference position d of the image display 1 and the reference position z of the vergence position expressed by the above formula, a new position d ', vergence angle θ', vergence position of the image display 1 after the position change. The relationship with z'is expressed by the following equation using the above parameters.

【数3】z′=I/θ′ d′−k=1/(1/(z′−k)+1/f)## EQU3 ## z '= I / .theta.' D'-k = 1 / (1 / (z'-k) + 1 / f)

【0019】以上の説明においては、輻輳位置に虚像の
結像位置を一致させるのに映像表示装置1の位置を変化
させて行うものとしたが、これは凸レンズ2の位置を変
化させても、また映像表示装置1と凸レンズ2の両方の
位置を変化させてもよいことはいうまでもない。
In the above description, the position of the image display device 1 is changed to match the image formation position of the virtual image with the convergence position, but this is performed even if the position of the convex lens 2 is changed. Needless to say, the positions of both the image display device 1 and the convex lens 2 may be changed.

【0020】また、凸レンズに代えて他の光学系たとえ
ば映像拡大用の凹面鏡を用いてもよく、この場合は、映
像表示器とそれによる表示像とが視線上で重ならないよ
うにするために、例えば凹面鏡の前方に凹面鏡の光軸に
対し45度傾いた半透明鏡を置いて、凹面鏡の光軸と直
交する位置に映像表示器を配置する構成となる。
Further, instead of the convex lens, another optical system, for example, a concave mirror for magnifying an image may be used. In this case, in order to prevent the image display and the displayed image from overlapping with each other on the line of sight, For example, a semi-transparent mirror inclined 45 degrees with respect to the optical axis of the concave mirror is placed in front of the concave mirror, and the image display is arranged at a position orthogonal to the optical axis of the concave mirror.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、映
像表示器1(または凸レンズ2)の位置を観察者の左右
両眼の視線方向の変化(または眼球運動)に合わせて変
化させ、表示映像の結像位置を輻輳位置に一致させるこ
とにより、各立体像の位置関係を維持しつつ、輻輳位置
と立体像の虚像位置、すなわち眼球水晶体の焦点調節位
置を一致させることができる。このように両眼輻輳位置
にその表示映像の結像位置を一致させ、実空間視に近い
状態にすることにより、疲労感など視覚的負担をなくす
作用効果を得ることができる。
As described above, according to the present invention, the position of the image display 1 (or the convex lens 2) is changed in accordance with the change in the line-of-sight direction of the left and right eyes of the observer (or eye movement). By matching the image formation position of the display image with the vergence position, it is possible to match the vergence position with the virtual image position of the stereoscopic image, that is, the focus adjustment position of the eye lens while maintaining the positional relationship between the stereoscopic images. In this way, by making the image formation position of the display image coincide with the binocular vergence position and bringing it into a state close to real space vision, it is possible to obtain the effect of eliminating the visual burden such as fatigue.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明立体映像表示装置において、表
示映像の結像位置を変化させたときの表示映像の奥行き
位置と横位置(サイズ)、ならびに輻輳位置と立体像の
位置を示す線図である。
FIG. 1 shows a depth position and a lateral position (size) of a display image, and a convergence position and a position of a stereoscopic image when the image forming position of the display image is changed in the stereoscopic image display device of the present invention. It is a diagram.

【図2】図2は、本発明立体映像表示装置において、映
像表示器の位置を変化させたときの表示映像の奥行き位
置と縦位置(サイズ)を示す線図である。
FIG. 2 is a diagram showing a depth position and a vertical position (size) of a display image when the position of the image display is changed in the stereoscopic image display device of the present invention.

【図3】図3は、本発明立体映像表示装置の一実施例を
示す斜視図である。
FIG. 3 is a perspective view showing an embodiment of a stereoscopic image display device of the present invention.

【図4】図4は、従来の立体映像表示装置の例を示す斜
視図である。
FIG. 4 is a perspective view showing an example of a conventional stereoscopic image display device.

【符号の説明】[Explanation of symbols]

1 映像表示器 2 凸レンズ 3 視線方向検出器 4 制御駆動部 1 Image display 2 Convex lens 3 Line-of-sight direction detector 4 Control drive unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 観察者の左右両眼に接近してそれぞれ配
置され立体映像を構成する左眼用と右眼用の映像をそれ
ぞれ表示する1対の映像表示手段と、該手段にそれぞれ
表示された映像を虚像として空間に拡大結像する1対の
拡大光学系とを備えて、前記虚像に関し観察者の左右両
眼に立体感を生じさせるようにした立体映像表示装置に
おいて、観察者の左右両眼の視線方向をそれぞれ検出す
る視線方向検出器と、該検出器により検出された視線方
向に基づいて眼球輻輳位置を決定し、該決定した眼球輻
輳位置に前記虚像が結像するように前記1対の映像表示
手段および/または前記1対の拡大光学系を制御駆動す
る制御駆動手段とを備えたことを特徴とする立体映像表
示装置。
1. A pair of image display means for displaying left-eye and right-eye images, which are respectively arranged close to the left and right eyes of an observer and constitute a stereoscopic image, and a pair of image display means respectively displayed on the means. And a pair of magnifying optical systems for magnifying and forming a virtual image in a space as a virtual image to generate a stereoscopic effect on the virtual image on both the left and right eyes of the observer. A line-of-sight direction detector that detects the line-of-sight directions of both eyes, and determines the eyeball convergence position based on the line-of-sight direction detected by the detector, so that the virtual image is formed at the determined eyeball convergence position. A stereoscopic image display device comprising: a pair of image display means and / or a control drive means for controlling and driving the pair of magnifying optical systems.
JP5020256A 1993-02-08 1993-02-08 Stereoscopic picture display device Pending JPH06235885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020256A JPH06235885A (en) 1993-02-08 1993-02-08 Stereoscopic picture display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020256A JPH06235885A (en) 1993-02-08 1993-02-08 Stereoscopic picture display device

Publications (1)

Publication Number Publication Date
JPH06235885A true JPH06235885A (en) 1994-08-23

Family

ID=12022120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020256A Pending JPH06235885A (en) 1993-02-08 1993-02-08 Stereoscopic picture display device

Country Status (1)

Country Link
JP (1) JPH06235885A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223609A (en) * 1995-02-09 1996-08-30 Atr Tsushin Syst Kenkyusho:Kk Three-dimensional display method and display device for enabling focus control
JPH08234141A (en) * 1994-12-01 1996-09-13 Olympus Optical Co Ltd Head mounted video display device
JPH09138367A (en) * 1995-11-15 1997-05-27 Sony Corp Image display device and its system
JPH11355805A (en) * 1998-06-08 1999-12-24 Atr Chino Eizo Tsushin Kenkyusho:Kk Display controller for three-dimensional images
US6201517B1 (en) 1997-02-27 2001-03-13 Minolta Co., Ltd. Stereoscopic image display apparatus
JP2002341289A (en) * 2001-05-21 2002-11-27 Univ Waseda Stereoscopic video observation device
JP2015525365A (en) * 2012-05-09 2015-09-03 ノキア コーポレイション Method and apparatus for performing focus correction of display information
JP2017522587A (en) * 2014-05-30 2017-08-10 マジック リープ, インコーポレイテッド Method and system for creating focal planes in virtual and augmented reality
JP2017182069A (en) * 2015-08-31 2017-10-05 日本電信電話株式会社 Aerial image display device
CN110769243A (en) * 2019-10-22 2020-02-07 天津大学 Binocular eye movement acquisition system under stimulation of high-definition naked eye 3D (three-dimensional) video
JP2022059595A (en) * 2020-10-01 2022-04-13 株式会社東芝 Electronic apparatus and display method
WO2022196809A1 (en) * 2021-03-19 2022-09-22 株式会社Jvcケンウッド Display device, display control method, and display control program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292093A (en) * 1990-04-10 1991-12-24 Seiko Epson Corp Three-dimensional display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292093A (en) * 1990-04-10 1991-12-24 Seiko Epson Corp Three-dimensional display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234141A (en) * 1994-12-01 1996-09-13 Olympus Optical Co Ltd Head mounted video display device
JPH08223609A (en) * 1995-02-09 1996-08-30 Atr Tsushin Syst Kenkyusho:Kk Three-dimensional display method and display device for enabling focus control
JPH09138367A (en) * 1995-11-15 1997-05-27 Sony Corp Image display device and its system
US6201517B1 (en) 1997-02-27 2001-03-13 Minolta Co., Ltd. Stereoscopic image display apparatus
JPH11355805A (en) * 1998-06-08 1999-12-24 Atr Chino Eizo Tsushin Kenkyusho:Kk Display controller for three-dimensional images
JP2002341289A (en) * 2001-05-21 2002-11-27 Univ Waseda Stereoscopic video observation device
JP2015525365A (en) * 2012-05-09 2015-09-03 ノキア コーポレイション Method and apparatus for performing focus correction of display information
TWI613461B (en) * 2012-05-09 2018-02-01 諾基亞科技公司 Method and apparatus for providing focus correction of displayed information
JP2017522587A (en) * 2014-05-30 2017-08-10 マジック リープ, インコーポレイテッド Method and system for creating focal planes in virtual and augmented reality
JP2017182069A (en) * 2015-08-31 2017-10-05 日本電信電話株式会社 Aerial image display device
US10338462B2 (en) 2015-08-31 2019-07-02 Nippon Telegraph And Telephone Corporation Aerial image display device
CN110769243A (en) * 2019-10-22 2020-02-07 天津大学 Binocular eye movement acquisition system under stimulation of high-definition naked eye 3D (three-dimensional) video
JP2022059595A (en) * 2020-10-01 2022-04-13 株式会社東芝 Electronic apparatus and display method
WO2022196809A1 (en) * 2021-03-19 2022-09-22 株式会社Jvcケンウッド Display device, display control method, and display control program

Similar Documents

Publication Publication Date Title
EP0641132B1 (en) Stereoscopic image pickup apparatus
JP3802630B2 (en) Stereoscopic image generating apparatus and stereoscopic image generating method
JP3787939B2 (en) 3D image display device
US10382699B2 (en) Imaging system and method of producing images for display apparatus
US5635947A (en) Eye movement tracking display
JPH10210506A (en) Three-dimensional image information input device and three-dimensional image information input output device
EP3548955B1 (en) Display apparatus and method of displaying using image renderers and optical combiners
US6788274B2 (en) Apparatus and method for displaying stereoscopic images
TW201640181A (en) Autofocus head mounted display device
JPH03292093A (en) Three-dimensional display device
CN108632599B (en) Display control system and display control method of VR image
JPH06235885A (en) Stereoscopic picture display device
JPH09322197A (en) Stereoscopic vision display device
JP2006185448A (en) Distance computing device
JPH1013861A (en) Three-dimension image display method and its display device
JP2001290101A (en) System for detecting will to adjust visual point in length direction and method for driving the will and spectacles for automatic correction of perspective
JP2012244453A (en) Image display device, image display system, and three-dimensional spectacles
JP3577042B2 (en) Stereoscopic display device and screen control method in stereoscopic display device
JPH09218376A (en) Stereoscopic display device
JPH08191462A (en) Stereoscopic video reproducing device and stereoscopic image pickup device
JP3425402B2 (en) Apparatus and method for displaying stereoscopic image
JPH08223609A (en) Three-dimensional display method and display device for enabling focus control
JPH085955A (en) Device and method for displaying virtual image type stereoscopic picture
JPH11168755A (en) Stereoscopic video image-pickup device
JPH08211332A (en) Stereoscopic video reproducing device