JPH06235861A - Rear focus type zoom lens - Google Patents

Rear focus type zoom lens

Info

Publication number
JPH06235861A
JPH06235861A JP4580593A JP4580593A JPH06235861A JP H06235861 A JPH06235861 A JP H06235861A JP 4580593 A JP4580593 A JP 4580593A JP 4580593 A JP4580593 A JP 4580593A JP H06235861 A JPH06235861 A JP H06235861A
Authority
JP
Japan
Prior art keywords
group
lens
telephoto end
refractive power
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4580593A
Other languages
Japanese (ja)
Other versions
JP3028696B2 (en
Inventor
Akinaga Horiuchi
昭永 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5045805A priority Critical patent/JP3028696B2/en
Publication of JPH06235861A publication Critical patent/JPH06235861A/en
Application granted granted Critical
Publication of JP3028696B2 publication Critical patent/JP3028696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To shorten a super near distance at a telephoto end to increase a magnification, and to attain a superior optical performance by appropriately setting the lateral magnification of the second group, the synthetic lateral magnification of the third and fourth groups, the focal distance of an entire system, open F number, and a photographic half-field angle. CONSTITUTION:A variable power from a wide angle edge to the telephoto end is performed by moving the second group L2 on an image surface side, an image surface fluctuation accompanied with the variable power is corrected by moving the forth group L4, and a focusing is performed by moving the fourth group L4. The second group L2 is constituted of three single lenses, that is, the negative 21th lens whose concave with a strong refractive power is faced on the image surface side, the negative 22th lens whose both lens surfaces are concaves, and the positive 23th lens whose convex with the strong refractive power is faced to an object side. Then, in the case of an infinite distant object at the telephoto end, the lateral magnification of the second group L2 is defined as beta2T, the synthetic lateral magnification of the third group L3 and the fourth group L4 is defined as beta34T, the focal distances of the entire system at the wide angle end and the telephoto end are respectively fW and fT, and the open F number and photographic half-field angle at the telephoto end are respectively FNOT and WT. then, when S2T is shown by an expression I, one of an expressions II is fulfilled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリヤーフォーカス式のズ
ームレンズに関し、特に写真用カメラやビデオカメラ、
そして放送用カメラ等に用いられる変倍比13、Fナン
バー1.8程度の大口径比で高変倍比のリヤーフォーカ
ス式のズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rear focus type zoom lens, and more particularly to a photographic camera, a video camera,
Further, the present invention relates to a rear focus type zoom lens having a large aperture ratio with a variable power ratio of 13, an F number of about 1.8 and a high variable power ratio, which is used for broadcasting cameras and the like.

【0002】[0002]

【従来の技術】最近、ホームビデオカメラ等の小型軽量
化に伴い、撮像用のズームレンズの小型化にも目覚まし
い進歩が見られ、特にレンズ全長の短縮化や前玉径の小
型化、構成の簡略化に力が注がれている。
2. Description of the Related Art Recently, as home video cameras have become smaller and lighter, remarkable progress has been made in the miniaturization of zoom lenses for image pickup. Especially, the total lens length and front lens diameter have been reduced. The effort is focused on simplification.

【0003】これらの目的を達成する一つの手段とし
て、物体側の第1群以外のレンズ群を移動させてフォー
カスを行う、所謂リヤーフォーカス式のズームレンズが
知られている。
As one means for achieving these objects, there is known a so-called rear focus type zoom lens in which a lens unit other than the first lens unit on the object side is moved for focusing.

【0004】一般にリヤーフォーカス式のズームレンズ
は第1群を移動させてフォーカスを行うズームレンズに
比べて第1群の有効径が小さくなり、レンズ系全体の小
型化が容易になり、又近接撮影、特に極近接撮影が容易
となり、更に比較的小型軽量のレンズ群を移動させて行
っているので、レンズ群の駆動力が小さくてすみ迅速な
焦点合わせができる等の特長がある。
Generally, in a rear focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the first lens group is moved to perform focusing, which facilitates downsizing of the entire lens system and close-up photography. In particular, since extremely close-up photography is facilitated and the relatively small and lightweight lens group is moved, the driving force of the lens group is small, and quick focusing is possible.

【0005】このようなリヤーフォーカス式のズームレ
ンズとして例えば特開昭62−24213号公報や、特
開昭63−247316号公報そして特開平4−433
11号公報では、物体側より順に正の屈折力の第1群、
負の屈折力の第2群、正の屈折力の第3群、そして正の
屈折力の第4群の4つのレンズ群を有し、第2群を移動
させて変倍を行い、第4群を移動させて変倍に伴う像面
変動とフォーカスを行っている。
As such a rear focus type zoom lens, for example, JP-A-62-24213, JP-A-63-247316 and JP-A-4-433.
In the publication No. 11, the first group having positive refracting power in order from the object side,
It has four lens groups, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power, and the second lens group is moved to perform zooming. The group is moved to perform image plane variation and focusing due to zooming.

【0006】特開平4−43311号公報で提案してい
るリヤーフォーカス式のズームレンズでは、第4群が広
角端に比べて望遠端において像面側に位置している。こ
れにより望遠側での第4群のフォーカスの際の移動距離
を多くして、超至近距離(テレマクロ撮影)物体へのフ
ォーカスを可能としている。
In the rear focus type zoom lens proposed in Japanese Patent Laid-Open No. 4-43311, the fourth lens unit is located closer to the image plane at the telephoto end than at the wide-angle end. As a result, the moving distance during focusing of the fourth lens unit on the telephoto side is increased, and it is possible to focus on a super close-range (tele-macro shooting) object.

【0007】[0007]

【発明が解決しようとする課題】一般にズームレンズに
おいてリヤーフォーカス方式を採用すると前述の如くレ
ンズ系全体が小型化され又迅速なるフォーカスが可能と
なり、更に近接撮影が容易となる等の特長が得られる。
Generally, when a rear focus system is adopted in a zoom lens, the entire lens system is downsized as described above, quick focusing is possible, and further close-up photography is facilitated. .

【0008】しかしながら反面、フォーカスの際の収差
変動が大きくなり、無限遠物体から近距離物体に至る物
体距離全般にわたり高い光学性能を得るのが大変難しく
なってくるという問題点が生じてくる。
On the other hand, however, the aberration variation at the time of focusing becomes large, and it becomes very difficult to obtain high optical performance over the entire object distance from an object at infinity to a near object.

【0009】特に大口径比で高変倍のズームレンズでは
全変倍範囲にわたり、又物体距離全般にわたり高い光学
性能を得るのが大変難しくなってくるという問題点が生
じてくる。
Particularly in a zoom lens having a large aperture ratio and a high zoom ratio, it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance.

【0010】この他ズームレンズとしての近軸屈折力配
置を適切に行い、かつ望遠端での超至近距離に置ける拡
大率の増加を十分に行なわないと拡大率が少なくなり、
迫力のある拡大画像が得られないという問題点が生じて
くる。
In addition to this, if the paraxial refractive power arrangement as a zoom lens is properly arranged and the magnifying power at the super close range at the telephoto end is not sufficiently increased, the magnifying power will decrease.
There is a problem that a powerful enlarged image cannot be obtained.

【0011】本発明はリヤーフォーカス方式を採用しつ
つ、大口径比化及び高変倍化を図る際、望遠端での超至
近距離を短くし、拡大率を大きくしつつ、広角端から望
遠端に至る全変倍範囲にわたり、又無限遠物体から超至
近物体に至る物体距離全般にわたり、良好なる光学性能
を有したリヤーフォーカス式のズームレンズの提供を目
的とする。
The present invention adopts the rear focus method, and at the time of achieving a large aperture ratio and a high zoom ratio, shortens the super close distance at the telephoto end and increases the enlargement ratio, and at the same time, from the wide-angle end to the telephoto end. It is an object of the present invention to provide a rear-focus type zoom lens having good optical performance over the entire zoom range up to, and over the entire object distance from an object at infinity to a super close object.

【0012】[0012]

【課題を解決するための手段】本発明のリヤーフォーカ
ス式のズームレンズは、 (1−1)物体側より順に正の屈折力の第1群、負の屈
折力の第2群、正の屈折力の第3群、そして正の屈折力
の第4群の4つのレンズ群を有し、該第2群を像面側へ
移動させて広角端から望遠端への変倍を行い、変倍に伴
う像面変動を該第4群を移動させて補正すると共に該第
4群を移動させてフォーカスを行い、該第2群は像面側
に強い屈折力の凹面を向けた負の第21レンズ、両レン
ズ面が凹面の負の第22レンズ、そして物体側に強い屈
折力の凸面を向けた正の第23レンズの3つの単レンズ
より成り、望遠端における無限遠物体のときの該第2群
の横倍率をβ2T、該第3群と第4群の合成の横倍率をβ
34T 、広角端と望遠端における全系の焦点距離を各々f
W ,fT 、望遠端における開放Fナンバーと撮影半画角
を各々FNOT ,ωT とし、 S2T={1−(β2T2 }・(β34T2 とおいたとき
The rear focus type zoom lens of the present invention comprises (1-1) a first group having a positive refractive power, a second group having a negative refractive power, and a positive refractive power in order from the object side. It has four lens groups, a third lens group of power and a fourth lens group of positive refracting power, and moves the second lens group to the image side to perform zooming from the wide-angle end to the telephoto end, and zooming. The image plane variation caused by the movement is corrected by moving the fourth lens group, and the fourth lens group is moved to perform focusing. The second lens group has a negative 21st surface with a concave surface having a strong refractive power facing the image surface side. It consists of three single lenses: a lens, a negative 22nd lens whose both lens surfaces are concave surfaces, and a positive 23rd lens with a convex surface having a strong refractive power facing the object side. The lateral magnification of the second group is β 2T , and the lateral magnification of the composite of the third and fourth groups is β
34T , the focal length of the entire system at the wide-angle end and the telephoto end is f
When W , f T , the open F number at the telephoto end and the shooting half angle of view are F NOT and ω T , respectively, and S 2T = {1- (β 2T ) 2 } ・ (β 34T ) 2

【0013】[0013]

【数4】 の、いずれか一方を満足することを特徴としている。[Equation 4] It is characterized by satisfying either one of the above.

【0014】(1−2)物体側より順に正の屈折力の第
1群、負の屈折力の第2群、正の屈折力の第3群、そし
て正の屈折力の第4群の4つのレンズ群を有し、該第2
群を像面側へ移動させて広角端から望遠端への変倍を行
い、変倍に伴う像面変動を該第4群を移動させて補正す
ると共に該第4群を移動させてフォーカスを行い、該第
4群は少なくとも1組の負レンズと正レンズとを接合し
た貼合わせレンズと、少なくとも1つの正レンズとを有
しており、該第4群の広角端と望遠端における無限遠物
体のときの横倍率を各々β4W,β4Tとしたとき
(1-2) The first group having a positive refracting power, the second group having a negative refracting power, the third group having a positive refracting power, and the fourth group having a positive refracting power in order from the object side. Has two lens groups, the second
The lens unit is moved to the image plane side to change the magnification from the wide-angle end to the telephoto end, and the image plane variation due to the magnification change is corrected by moving the fourth unit and moving the fourth unit. The fourth group has a cemented lens in which at least one set of a negative lens and a positive lens are cemented together, and at least one positive lens, and the fourth group has a wide-angle end and a telephoto end at infinity. When the lateral magnifications of the object are β 4W and β 4T , respectively

【0015】[0015]

【数5】 なる条件を満足することを特徴としている。[Equation 5] It is characterized by satisfying the following condition.

【0016】[0016]

【実施例】図1は本発明のリヤーフォーカス式のズーム
レンズの後述する数値実施例1のレンズ断面図、図2〜
図4は数値実施例1、図5〜図7は数値実施例2、図8
〜図10は数値実施例3、図11〜図13は数値実施例
4、図14〜図16は数値実施例5、図17〜図19は
数値実施例6、図20〜図22は数値実施例7の諸収差
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a lens cross-sectional view of Numerical Embodiment 1 to be described later of a rear focus type zoom lens of the present invention, and FIGS.
4 is a numerical example 1, FIGS. 5 to 7 are numerical examples 2, 8
10 is a numerical example 3, FIGS. 11 to 13 is a numerical example 4, FIGS. 14 to 16 are numerical examples 5, FIGS. 17 to 19 are numerical examples 6, and FIGS. 20 to 22 are numerical examples. 16 is a diagram of various types of aberration in Example 7. FIG.

【0017】収差図において図2,5,8,11,1
4,17,20は広角端、図3,6,9,12,15,
18,21は中間、図4,7,10,13,16,1
9,22は望遠端を示す。
In the aberration diagrams, FIGS. 2, 5, 8, 11, 1
4, 17, 20 are wide-angle end,
18 and 21 are intermediate, FIGS. 4, 7, 10, 13, 16, and 1.
Reference numerals 9 and 22 indicate the telephoto end.

【0018】図中L1は正の屈折力の第1群、L2は負
の屈折力の第2群、L3は正の屈折力の第3群、L4は
正の屈折力の第4群である。SPは開口絞りであり、第
3群L3の前方に配置している。Gはフェースプレート
やフィルター等のガラスブロックである。
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. . SP is an aperture stop, which is arranged in front of the third lens unit L3. G is a glass block such as a face plate or a filter.

【0019】本実施例では広角端から望遠端への変倍に
際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を移動させて補正して
いる。
In this embodiment, the second lens unit is moved to the image plane side as indicated by the arrow when the magnification is changed from the wide-angle end to the telephoto end, and the image plane variation due to the magnification change is corrected by moving the fourth lens unit. ing.

【0020】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。
Further, a rear focus type is adopted in which the fourth lens unit is moved on the optical axis for focusing. The solid curve 4a and the dotted curve 4b of the fourth group shown in the same figure represent image plane fluctuations due to zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and a near object, respectively. The movement locus for correction is shown. The first and third groups are fixed during zooming and focusing.

【0021】本実施例においては第4群を移動させて変
倍に伴う像面変動の補正を行うと共に第4群を移動させ
てフォーカスを行うようにしている。特に同図の曲線4
a、4bに示すように広角端から望遠端への変倍に際し
て物体側へ凸状の軌跡を有するように移動させている。
これにより第3群と第4群との空間の有効利用を図りレ
ンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth lens unit is moved to correct the image plane variation due to zooming, and the fourth lens unit is moved to perform focusing. Curve 4 in the figure
As shown in a and 4b, the zoom lens is moved so as to have a convex locus toward the object side during zooming from the wide-angle end to the telephoto end.
As a result, the space between the third group and the fourth group is effectively used, and the total lens length is effectively shortened.

【0022】本実施例において、例えば望遠端において
無限遠物体から近距離物体へフォーカスを行う場合は同
図の直線4cに示すように第4群を前方へ繰り出すこと
により行っている。
In the present embodiment, for example, when focusing from an object at infinity to a near object at the telephoto end, the fourth lens unit is moved forward as indicated by a straight line 4c in FIG.

【0023】次にレンズ構成上の特徴について順次説明
する。
Next, the features of the lens structure will be sequentially described.

【0024】まず本実施例では、第2群を前述の如く構
成することにより、ズーミングする際に特に歪曲収差の
変動量を少なくしている。従来の一般的なズームレンズ
では歪曲収差が広角端で−5%を越え、望遠端で+5%
前後あった。
First, in the present embodiment, the second lens unit is constructed as described above, so that the amount of fluctuation of the distortion aberration is particularly reduced during zooming. With conventional general zoom lenses, distortion aberration exceeds -5% at the wide-angle end and + 5% at the telephoto end.
It was around.

【0025】これに対して本実施例では歪曲収差が広角
端で−5%を下回り、望遠端では+3%以下と激減させ
ている。
On the other hand, in this embodiment, the distortion aberration is less than -5% at the wide-angle end and is drastically reduced to + 3% or less at the telephoto end.

【0026】又、第2群の前側主点の位置をより物体側
に設定し、第1群との主点間隔を短くし、又第1群を絞
り位置に近づけている。これにより第1群に入射する軸
外光束の光軸からの高さが低くなり、第1群のレンズ径
を小さくし、レンズ全長の短縮及び小型軽量化を図って
いる。
Further, the position of the front principal point of the second group is set closer to the object side, the principal point distance from the first group is shortened, and the first group is brought closer to the diaphragm position. As a result, the height of the off-axis light beam entering the first group from the optical axis is lowered, the lens diameter of the first group is reduced, and the overall lens length is shortened and the size and weight are reduced.

【0027】本実施例では第2群中の負の第22レンズ
と正の第23レンズを単レンズで構成することにより、
双方のレンズで形成される空気レンズにより収差補正を
行なっている。これにより球面収差、コマ収差、軸上色
収差等の諸収差の補正をバランス良く行なっている。
In this embodiment, the negative 22nd lens and the positive 23rd lens in the second lens group are composed of a single lens.
Aberration correction is performed by an air lens formed by both lenses. As a result, various aberrations such as spherical aberration, coma and axial chromatic aberration are corrected in good balance.

【0028】又本実施例においては第22レンズと第2
3レンズとを単レンズで構成したために第2群中を通過
する軸上光束が第22レンズを出射後、第23レンズに
入射する際の光軸からの高さが従来の一般的な貼合わせ
レンズのときよりも高くなる。
In the present embodiment, the 22nd lens and the 2nd lens
Since the three lenses are composed of a single lens, the height from the optical axis when the on-axis light flux passing through the second lens group enters the 23rd lens after exiting the 22nd lens, the conventional general bonding It will be higher than when using a lens.

【0029】このため第23レンズで補正する諸収差の
効果が強くなりすぎる。このためその分、第23レンズ
の物体側のレンズ面の曲率、第21レンズの像面側のレ
ンズ面の曲率そして第22レンズの両レンズ面の曲率を
緩くすることができる。
Therefore, the effects of various aberrations corrected by the 23rd lens become too strong. Therefore, the curvature of the object-side lens surface of the 23rd lens, the curvature of the image-side lens surface of the 21st lens, and the curvatures of both lens surfaces of the 22nd lens can be reduced accordingly.

【0030】本実施例ではこれにより第2群から発生す
る諸収差を少なくし、変倍に伴なう収差変動を良好に補
正している。
In this embodiment, various aberrations generated from the second lens group are thereby reduced, and aberration fluctuations due to zooming are corrected well.

【0031】次に本実施例では第4群を少なくとも1組
の負レンズと正レンズとを接合した貼合わせレンズと1
枚の正レンズより構成することにより第4群でフォーカ
スの際の、球面収差や非点収差等の諸収差の変動を良好
に補正している。
Next, in the present embodiment, the fourth group is composed of a cemented lens having at least one set of a negative lens and a positive lens cemented together.
By using a single positive lens, the fluctuations of various aberrations such as spherical aberration and astigmatism at the time of focusing in the fourth group are favorably corrected.

【0032】又、第3群を少なくとも1枚の正レンズと
負レンズを有するようにし、広角端における球面収差と
コマ収差を良好に補正している。特に、該正レンズで発
生する球面収差を、該負レンズで補正するようにしてい
る。
Further, the third lens unit has at least one positive lens and one negative lens to favorably correct spherical aberration and coma at the wide-angle end. In particular, the spherical aberration generated by the positive lens is corrected by the negative lens.

【0033】又、該正レンズと負レンズとで形成される
空気レンズによりコマ収差を良好に補正している。尚、
第3群中の少なくとも1つのレンズ面に非球面を施すこ
とにより画面全体にわたり高い光学性能を得ている。
Further, coma aberration is satisfactorily corrected by the air lens formed by the positive lens and the negative lens. still,
By providing an aspherical surface on at least one lens surface in the third group, high optical performance is obtained over the entire screen.

【0034】このときの第3群中の非球面形状は、非球
面の光軸の点とその非球面を通過する最大光線高の点を
結んだ曲率(参照曲率)と少なくとも1点以上の交点を
有するレンズ形状になっている。
At this time, the aspherical shape in the third lens group is the intersection of at least one point with the curvature (reference curvature) connecting the point of the optical axis of the aspherical surface and the point of the maximum ray height passing through the aspherical surface. Has a lens shape.

【0035】以上のように本実施例においては各レンズ
群のレンズ構成そして各レンズ群の横倍率、広角端と望
遠端での全系の焦点距離等の光学的諸定数を適切に設定
することにより、望遠端において超至近距離(テレマク
ロ距離)を短くし、拡大率を大きくしつつ、全変倍範囲
にわたり更に物体距離全般にわたり良好なる光学性能を
有した高変倍比のズームレンズを得ている。
As described above, in this embodiment, the lens configuration of each lens unit, the lateral magnification of each lens unit, and optical constants such as the focal length of the entire system at the wide-angle end and the telephoto end are properly set. This makes it possible to obtain a zoom lens with a high zoom ratio that has a very short distance (tele-macro distance) at the telephoto end and a large magnifying power, and has good optical performance over the entire zoom range and over the entire object distance. There is.

【0036】次に前述の各条件式の技術的な意味につい
て説明する。
Next, the technical meanings of the above conditional expressions will be described.

【0037】条件式(1)は無限遠物体に合焦したとき
の望遠端と広角端の焦点距離の比fT /fW ,即ち、ズ
ーム比の平方根と第2群の望遠端における横倍率β2T
比に関し、主に超至近距離をより短くするためのもので
ある。
Conditional expression (1) is the ratio f T / f W of the focal lengths at the telephoto end and the wide-angle end when focusing on an object at infinity, that is, the square root of the zoom ratio and the lateral magnification of the second lens unit at the telephoto end. Regarding the ratio of β 2T , it is mainly for making the super close range shorter.

【0038】従来のズームレンズでは第2群の横倍率はIn the conventional zoom lens, the lateral magnification of the second lens unit is

【0039】[0039]

【数6】 の近傍を使用している。[Equation 6] Using the neighborhood of.

【0040】これにより第4群の光軸上の位置は、広角
端と望遠端で略同じ位置になっていた。そのため望遠端
における第4群の移動可能距離が短くなり、超至近距離
が比較的長かった。
As a result, the position of the fourth lens unit on the optical axis was substantially the same at the wide-angle end and the telephoto end. Therefore, the movable distance of the fourth lens unit at the telephoto end was shortened, and the super close distance was relatively long.

【0041】条件式(1)は超至近距離を効果的に短く
するためのものである。条件式(1)の下限値を越えて
小さくなると先に述べた従来例に近くなり、よくない。
又上限値を越えて大きくなると望遠端時における第4群
の光軸上の位置が広角端よりも像面側に近づき、第4群
の移動可能距離が長くなり、超至近距離を短くできる
が、第4群と像面の距離が短くなりすぎてレンズ鏡筒の
構成が物理的に干渉してしまいよくない。
Conditional expression (1) is for effectively shortening the super close range. If the lower limit value of the conditional expression (1) is exceeded and the value becomes smaller, the value becomes closer to the conventional example described above, which is not good.
On the other hand, when the value exceeds the upper limit and becomes larger, the position of the fourth lens unit on the optical axis at the telephoto end becomes closer to the image plane side than at the wide-angle end, and the movable distance of the fourth lens unit becomes longer, which makes it possible to shorten the super close distance. However, the distance between the fourth lens group and the image plane becomes too short, and the configuration of the lens barrel physically interferes.

【0042】条件式(2)は望遠端における第2群の縦
倍率とFナンバーの比を像高で規格したものである。条
件式(2)の上限値を越えて望遠端におけるFナンバー
が大きくなると、第2群の光軸上の位置が任意の停止位
置より大きくズレても画面上のボケが小さく問題になら
ないが、Fナンバーの明るいズームレンズを達成するこ
とができない。
Conditional expression (2) defines the ratio of the vertical magnification of the second lens unit at the telephoto end to the F number by the image height. If the F-number at the telephoto end becomes larger than the upper limit of conditional expression (2), the blur on the screen will not be a problem even if the position on the optical axis of the second lens unit deviates more than an arbitrary stop position. It is impossible to achieve a bright F-number zoom lens.

【0043】又、像高が大きくなるとレンズ系全体が大
型になってしまいよくない。下限値を越えて望遠端にお
ける第2群の縦倍率が大きくなると第2群の停止位置が
任意の位置より大きくズレたときに画面上のボケが大き
くなり好ましくない。
Further, when the image height becomes large, the whole lens system becomes large, which is not good. If the vertical magnification of the second lens unit at the telephoto end becomes larger than the lower limit value and the stop position of the second lens unit deviates more than an arbitrary position, blurring on the screen becomes large, which is not preferable.

【0044】又、それを改善するために第2群の位置を
精度良く制御しなければならなくなり、高精度なレンズ
鏡筒やアクチュエータやセンサー等が必要になってくる
のでよくない。
Further, in order to improve it, the position of the second lens group must be controlled with high accuracy, which requires a highly accurate lens barrel, actuator, sensor, etc., which is not good.

【0045】条件式(3)は第4群が無限遠物体に合焦
したときの望遠端と広角端の横倍率の比β4T/β4W
関する。
Conditional expression (3) relates to the lateral magnification ratio β 4T / β 4W at the telephoto end and the wide-angle end when the fourth lens unit focuses on an object at infinity.

【0046】従来のズームレンズでは第4群の光軸上の
位置が無限遠物体に合焦したとき広角端と望遠端で略同
じ位置になっていた。そのため、望遠端における第4群
と第3群の距離が短くなり、至近物体に合焦するための
第4群の移動距離を確保するのが困難だった。
In the conventional zoom lens, the position on the optical axis of the fourth lens unit is substantially the same at the wide-angle end and the telephoto end when focusing on an object at infinity. Therefore, the distance between the fourth lens unit and the third lens unit at the telephoto end becomes short, and it is difficult to secure the moving distance of the fourth lens unit for focusing on the closest object.

【0047】条件式(3)は超至近距離を効果的に短く
するためのものであり、条件式(3)の下限値を越えて
小さくなると先に述べた従来例と近くなり、よくない。
The conditional expression (3) is for effectively shortening the super close distance, and if it becomes smaller than the lower limit value of the conditional expression (3), it becomes close to the above-mentioned conventional example and is not good.

【0048】又、上限値を越えて大きくなると第4群の
移動可能距離が長くなり超至近距離を短くできるが、合
焦による収差変動が大きくなり好ましくない。又、第4
群のレンズ枚数を増加しなければならず、移動レンズ群
として大型化し、重くなってしまうのでよくない。
On the other hand, if the value exceeds the upper limit, the movable distance of the fourth lens unit becomes long and the super close distance can be shortened. However, aberration variation due to focusing becomes large, which is not preferable. Also, the fourth
It is not good because the number of lenses in the group must be increased and the moving lens group becomes large and heavy.

【0049】本発明の目的とするリヤーフォーカス式の
ズームレンズは以上の諸条件を各々満足することにより
達成されるが、更にレンズ系全体の小型化を図りつつ全
変倍範囲・物体距離全般にわたり良好なる光学性能を得
るには次の諸条件を満足させるのがよい。
The rear focus type zoom lens, which is the object of the present invention, can be achieved by satisfying the above-mentioned various conditions, respectively, but further downsizing the entire lens system while covering the entire zooming range and the entire object distance. In order to obtain good optical performance, the following conditions should be satisfied.

【0050】(2−1)前記第i群の焦点距離をfi
望遠端における全系の焦点距離をf T 、望遠端における
開放Fナンバーと撮影半画角を各々FNOT ,ωT とした
とき、
(2-1) Let f be the focal length of the i-th group.i ,
The focal length of the entire system at the telephoto end is f T At the telephoto end
Open F number and shooting half angle of view are FNOT , ΩT And
When

【0051】[0051]

【数7】 なる条件を満足することである。[Equation 7] To satisfy the condition.

【0052】条件式(4)の上限値を越えて第1群の屈
折力が弱くなってくると収差補正は容易になるが、第1
群と絞りとの間隔が増大し、軸外光束を確保するための
第1群のレンズ径が増大してくる。下限値を越えて第1
群の屈折力が強くなるとレンズ全長は短くなるが第2群
との間隔が短くなり物理的に干渉してしまいよくない。
If the upper limit of conditional expression (4) is exceeded and the refracting power of the first lens unit becomes weaker, aberration correction will become easier.
The distance between the group and the diaphragm increases, and the lens diameter of the first group for securing the off-axis light beam increases. 1st below the lower limit
When the refracting power of the group becomes strong, the total lens length becomes short, but the interval with the second group becomes short, which causes physical interference, which is not good.

【0053】尚本発明において超至近距離(テレマク
ロ)時の撮影範囲を35mm以内とし、迫力のある拡大
画像を得るには望遠端における超至近距離物体に合焦し
たときの全系の横倍率をM(M=像高/被写体高)とし
たとき
In the present invention, the photographing range at the super close range (tele-macro) is set within 35 mm, and in order to obtain a powerful magnified image, the lateral magnification of the entire system when focusing on the super close range object at the telephoto end is set. When M (M = image height / subject height)

【0054】[0054]

【数8】 なる条件を満足させるのがよい。この範囲を外れると良
好なる画像が得られなくなってくる。
[Equation 8] It is better to satisfy the following condition. Outside this range, good images cannot be obtained.

【0055】次に本発明の数値実施例を示す。数値実施
例においてRiは第1共役点側より順に第i番目のレン
ズ面の曲率半径、Diは第1共役点側より第i番目のレ
ンズ厚及び空気間隔、Niとνiは各々第1共役点側よ
り順に第i番目のレンズのガラスの屈折率とアッベ数で
ある。但しR22,R23はフェースプレート、フィル
ター等のガラスブロックを示している。
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the first conjugate point side, Di is the i-th lens thickness and air gap from the first conjugate point side, and Ni and νi are the first conjugate points respectively. From the side, the refractive index and the Abbe number of the glass of the i-th lens are in order. However, R22 and R23 represent glass blocks such as a face plate and a filter.

【0056】非球面形状は光軸方向にX軸、光軸と垂直
方向にY軸、光の進行方向を正とし、γを近軸曲率半径
k,A2 ,A3 ,A4 ,A5 を各々非球面係数としたと
The aspherical shape has an X axis in the optical axis direction, a Y axis in the direction perpendicular to the optical axis, and a traveling direction of light is positive, and γ is a paraxial radius of curvature k, A 2 , A 3 , A 4 , A 5. Where each is an aspherical coefficient

【0057】[0057]

【数9】 なる式で表している。又、「D−0X」の表示は「10
-X」を意味している。
[Equation 9] It is expressed by the formula. The display of "D-0X" is "10.
-X "means.

【0058】又前述の各条件式と数値実施例における諸
数値との関係を表−1に示す。
Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.

【0059】[0059]

【外1】 [Outer 1]

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【外2】 [Outside 2]

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【外3】 [Outside 3]

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【外4】 [Outside 4]

【0066】[0066]

【表4】 [Table 4]

【0067】[0067]

【外5】 [Outside 5]

【0068】[0068]

【表5】 [Table 5]

【0069】[0069]

【外6】 [Outside 6]

【0070】[0070]

【表6】 [Table 6]

【0071】[0071]

【外7】 [Outside 7]

【0072】[0072]

【表7】 [Table 7]

【0073】[0073]

【表8】 [Table 8]

【0074】[0074]

【発明の効果】本発明によれば以上のようにレンズ構成
を設定することにより、リヤーフォーカス方式を採用し
つつ、大口径比化及び高変倍化を図る際、望遠端での超
至近距離を短くし、拡大率を大きくしつつ、広角端から
望遠端に至る全変倍範囲にわたり、又無限遠物体から超
至近物体に至る物体距離全般にわたり、良好なる光学性
能を有したリヤーフォーカス式のズームレンズを達成す
ることができる。
According to the present invention, by setting the lens configuration as described above, when a rear focus system is adopted and a large aperture ratio and a high zoom ratio are achieved, the super close range at the telephoto end is achieved. The rear focus type with good optical performance over the entire zoom range from the wide-angle end to the telephoto end, and the entire object distance from the infinity object to the ultra close object while shortening the zoom ratio and increasing the magnification ratio. A zoom lens can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の数値実施例1のレンズ断面図FIG. 1 is a lens cross-sectional view of Numerical Example 1 of the present invention.

【図2】 本発明の数値実施例1の広角端の収差図FIG. 2 is an aberration diagram at the wide-angle end according to Numerical Example 1 of the present invention.

【図3】 本発明の数値実施例1の中間の収差図FIG. 3 is an intermediate aberration diagram of Numerical Example 1 of the present invention.

【図4】 本発明の数値実施例1の望遠端の収差図FIG. 4 is an aberration diagram at a telephoto end according to Numerical Example 1 of the present invention.

【図5】 本発明の数値実施例2の広角端の収差図FIG. 5 is an aberration diagram at a wide-angle end according to Numerical Example 2 of the present invention.

【図6】 本発明の数値実施例2の中間の収差図FIG. 6 is an intermediate aberration diagram of Numerical example 2 of the present invention.

【図7】 本発明の数値実施例2の望遠端の収差図FIG. 7 is an aberration diagram at a telephoto end according to Numerical Example 2 of the present invention.

【図8】 本発明の数値実施例3の広角端の収差図FIG. 8 is an aberration diagram at a wide-angle end according to Numerical Example 3 of the present invention.

【図9】 本発明の数値実施例3の中間の収差図FIG. 9 is an intermediate aberration diagram of Numerical Example 3 of the present invention.

【図10】 本発明の数値実施例3の望遠端の収差図FIG. 10 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.

【図11】 本発明の数値実施例4の広角端の収差図FIG. 11 is an aberration diagram at a wide-angle end according to Numerical Example 4 of the present invention.

【図12】 本発明の数値実施例4の中間の収差図FIG. 12 is an intermediate aberration diagram of Numerical Example 4 of the present invention.

【図13】 本発明の数値実施例4の望遠端の収差図FIG. 13 is an aberration diagram at a telephoto end according to Numerical Example 4 of the present invention.

【図14】 本発明の数値実施例5の広角端の収差図FIG. 14 is an aberration diagram at a wide-angle end according to Numerical Example 5 of the present invention.

【図15】 本発明の数値実施例5の中間の収差図FIG. 15 is an intermediate aberration diagram of Numerical example 5 of the present invention.

【図16】 本発明の数値実施例5の望遠端の収差図FIG. 16 is an aberration diagram at a telephoto end according to Numerical Example 5 of the present invention.

【図17】 本発明の数値実施例6の広角端の収差図FIG. 17 is an aberration diagram at a wide-angle end according to Numerical Example 6 of the present invention.

【図18】 本発明の数値実施例6の中間の収差図FIG. 18 is an intermediate aberration diagram of Numerical Example 6 of the present invention.

【図19】 本発明の数値実施例6の望遠端の収差図FIG. 19 is an aberration diagram at a telephoto end according to Numerical Example 6 of the present invention.

【図20】 本発明の数値実施例7の広角端の収差図FIG. 20 is an aberration diagram at a wide-angle end according to Numerical Example 7 of the present invention.

【図21】 本発明の数値実施例7の中間の収差図FIG. 21 is an intermediate aberration diagram of Numerical Example 7 of the present invention.

【図22】 本発明の数値実施例7の望遠端の収差図FIG. 22 is an aberration diagram at a telephoto end according to Numerical Example 7 of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り d d線 g g線 ΔS サジタル像面 ΔM メリディオナル像面 L1 1st group L2 2nd group L3 3rd group L4 4th group SP Aperture d d line g g line ΔS Sagittal image surface ΔM Meridional image surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、該第2群を像面
側へ移動させて広角端から望遠端への変倍を行い、変倍
に伴う像面変動を該第4群を移動させて補正すると共に
該第4群を移動させてフォーカスを行い、該第2群は像
面側に強い屈折力の凹面を向けた負の第21レンズ、両
レンズ面が凹面の負の第22レンズ、そして物体側に強
い屈折力の凸面を向けた正の第23レンズの3つの単レ
ンズより成り、望遠端における無限遠物体のときの該第
2群の横倍率をβ2T 、該第3群と第4群の合成の横倍
率をβ34T 、広角端と望遠端における全系の焦点距離を
各々fW ,fT 、望遠端における開放Fナンバーと撮影
半画角を各々FNOT ,ωT とし、 S2T ={1−(β2T2 }・(β34T2 とおいたとき 【数1】 の、いずれか一方を満足することを特徴とするリヤーフ
ォーカス式のズームレンズ。
1. Four lens groups, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. And moving the second lens group toward the image plane side to perform zooming from the wide-angle end to the telephoto end, and moving the fourth lens group to correct the image plane variation due to zooming and The second group is moved to perform focusing, and the second group has a negative 21st lens with a concave surface having a strong refractive power facing the image side, a negative 22nd lens with both lens surfaces concave, and a strong refraction toward the object side. It consists of three single lenses, the positive 23rd lens with the convex surface of the power directed, and the lateral magnification of the second group at the telephoto end at infinity is β 2T , and the lateral magnification of the third group and the fourth group is The lateral magnification is β 34T , the focal lengths of the entire system at the wide-angle end and the telephoto end are f W and f T , respectively, and the open F number and the shooting half-angle at the telephoto end are F NOT and ω, respectively. Letting T be S 2T = {1- (β 2T ) 2 } ・ (β 34T ) 2 [ Equation 1] A rear focus type zoom lens characterized by satisfying either of the above conditions.
【請求項2】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、該第2群を像面
側へ移動させて広角端から望遠端への変倍を行い、変倍
に伴う像面変動を該第4群を移動させて補正すると共に
該第4群を移動させてフォーカスを行い、該第4群は少
なくとも1組の負レンズと正レンズとを接合した貼合わ
せレンズと、少なくとも1つの正レンズとを有してお
り、該第4群の広角端と望遠端における無限遠物体のと
きの横倍率を各々β4W,β4Tとしたとき 【数2】 なる条件を満足することを特徴とするリヤーフォーカス
式のズームレンズ。
2. Four lens groups, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power, in order from the object side. And moving the second lens group toward the image plane side to perform zooming from the wide-angle end to the telephoto end, and moving the fourth lens group to correct the image plane variation due to zooming and The fourth group includes a cemented lens in which at least one negative lens and a positive lens are cemented together, and at least one positive lens, and the fourth group has a wide angle. When the lateral magnifications of an object at infinity at the end and at the telephoto end are β 4W and β 4T , respectively, A rear-focus type zoom lens that satisfies the following conditions.
【請求項3】 前記第i群の焦点距離をfi 、望遠端に
おける全系の焦点距離をfT 、望遠端における開放Fナ
ンバーと撮影半画角を各々FNOT ,ωT としたとき、 【数3】 なる条件を満足することを特徴とする請求項1又は2の
リヤーフォーカス式のズームレンズ。
3. When the focal length of the i-th group is f i , the focal length of the entire system at the telephoto end is f T , and the open F number and the shooting half angle of view at the telephoto end are F NOT and ω T , respectively, [Equation 3] The rear focus type zoom lens according to claim 1 or 2, wherein the following condition is satisfied.
【請求項4】 前記第3群は少なくとも1枚の正レンズ
と負レンズを有していることを特徴とする請求項1,2
又は3のリヤーフォーカス式のズームレンズ。
4. The third lens unit has at least one positive lens and at least one negative lens.
Or 3 rear focus type zoom lens.
JP5045805A 1993-02-10 1993-02-10 Camera including rear focus zoom lens Expired - Fee Related JP3028696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5045805A JP3028696B2 (en) 1993-02-10 1993-02-10 Camera including rear focus zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5045805A JP3028696B2 (en) 1993-02-10 1993-02-10 Camera including rear focus zoom lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11213367A Division JP3109520B2 (en) 1999-07-28 1999-07-28 Camera including rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH06235861A true JPH06235861A (en) 1994-08-23
JP3028696B2 JP3028696B2 (en) 2000-04-04

Family

ID=12729485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5045805A Expired - Fee Related JP3028696B2 (en) 1993-02-10 1993-02-10 Camera including rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP3028696B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP2007271710A (en) * 2006-03-30 2007-10-18 Canon Inc Zoom lens and imaging apparatus having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP2007271710A (en) * 2006-03-30 2007-10-18 Canon Inc Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP3028696B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4976867B2 (en) Zoom lens and imaging apparatus having the same
JP3478637B2 (en) Small zoom lens
JP3147167B2 (en) Zoom lens
JP3506691B2 (en) High magnification zoom lens
JPH05173071A (en) Wide angle zoom lens
JPH075361A (en) Zoom lens
JP2001033703A (en) Rear focus type zoom lens
JP2001021804A (en) Zoom lens
JP3266653B2 (en) Telephoto zoom lens
JP2000180722A (en) Rear focusing type zoom lens
JP2862272B2 (en) Wide-angle zoom lens
JP3184581B2 (en) Zoom lens
JP4454731B2 (en) Zoom lens
JP3619153B2 (en) Zoom lens and optical apparatus using the same
JPH0560971A (en) Rear focus zoom lens
JP3431996B2 (en) Zoom lens
JP4072276B2 (en) Zoom lens
JP4672860B2 (en) Zoom lens and optical apparatus using the same
JP3008711B2 (en) Small zoom lens
JP3423508B2 (en) Rear focus zoom lens
JPH08179215A (en) Zoom lens
JP4955875B2 (en) Zoom lens and optical apparatus having the same
JP2003149552A (en) Zoom lens and optical equipment having the same
JP2002365547A (en) Zoom lens and optical equipment having the same
JPH0792390A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees