JPH062347A - Anticorrosion method of water supply pipe line and device - Google Patents

Anticorrosion method of water supply pipe line and device

Info

Publication number
JPH062347A
JPH062347A JP18286992A JP18286992A JPH062347A JP H062347 A JPH062347 A JP H062347A JP 18286992 A JP18286992 A JP 18286992A JP 18286992 A JP18286992 A JP 18286992A JP H062347 A JPH062347 A JP H062347A
Authority
JP
Japan
Prior art keywords
water
water supply
nitrogen gas
receiving tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18286992A
Other languages
Japanese (ja)
Other versions
JP3162192B2 (en
Inventor
Takeo Hanaoka
威夫 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP18286992A priority Critical patent/JP3162192B2/en
Publication of JPH062347A publication Critical patent/JPH062347A/en
Application granted granted Critical
Publication of JP3162192B2 publication Critical patent/JP3162192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Domestic Plumbing Installations (AREA)

Abstract

PURPOSE:To easily prevent a water supply pipe line from corrosion by bubbling nitrogen gas into water before it is supplied to the water supply pipe line of steel pipes. CONSTITUTION:City water is supplied to a water storage tank installed at a basement of a building from a city water pipe 2 through a stop cock 3 and a water meter 4 and, at the same time, it is pumped up to a high placed tank 6 by a pump 5. Nitrogen gas obtained through a nitrogen gas generator 7 is introduced to positions under the surfaces of the waters of the water storage tank 1 and high placed tank 6 through a gas releasing means 8. Dissolved oxygen in the water is nearly and completely mixed with nitrogen gas bubbles, and an amount of dissolved oxygen in the water is decreased. According to the constitution, the formation of iron (11) hydroxide is suppressed, and the corrosion of a water supply pipe line of steel pipes is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,給水管路の防食法およ
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anticorrosion method and apparatus for water supply lines.

【0002】[0002]

【従来の技術】既設建物における給水管路の漏水事故が
起きると,その責任の所在が建物の設計者,管理者また
は施工者にあるのか,管の製造者または施工者にあるの
かといった問題はもとより,補修にあたっても簡単に済
まない場合が多い。
2. Description of the Related Art When a water leak in a water supply line in an existing building occurs, the question of whether the responsibility of the leak lies with the building designer, manager or builder, or with the pipe manufacturer or builder. Of course, repairing is often not easy.

【0003】とりわけ,腐食が原因となっている場合に
は,一部の補修のみならず,全面改修を必要とする事態
すら生ずる。したがって,給水管の腐食は可能な限り防
止されねばならない。
In particular, when corrosion is the cause, not only a part of repair but also a situation where full repair is required occurs. Therefore, corrosion of the water supply pipe should be prevented as much as possible.

【0004】耐食性に優れた材料,例えばステンレス鋼
管を使用することも提案されているが,これも半永久的
な施設や特別な建物,或いは特定の管路位置に限られ,
一般建物に対してのすべての給水管路をステンレス鋼管
にする程の安全対策が採られることは,建物の耐用年数
や経済性から勘案しても稀なことである。
It has been proposed to use a material having excellent corrosion resistance, for example, a stainless steel pipe, but this is also limited to a semi-permanent facility, a special building, or a specific pipeline position,
It is rare to take safety measures such as using stainless steel pipes for all water supply pipes for general buildings, considering the useful life and economy of the building.

【0005】一方,最近のビルの高層化や複雑化に伴
い,耐圧や強度さらには加工性・溶接性等の点から水路
を構成する部材(受水槽,高置槽,縦管,横管,ジヨイ
ント,弁等)も鋼に依存するところが多く,給水路を構
成する材料として鋼管または鋼板の使用が不可避であ
る。
On the other hand, with the recent increase in the height and complexity of buildings, the members (water receiving tank, high-position tank, vertical pipe, horizontal pipe, etc.) that form a water channel from the viewpoint of pressure resistance, strength, workability, weldability, etc. (Joints, valves, etc.) also depend on steel in many cases, and it is unavoidable to use steel pipes or steel plates as materials for the water supply channel.

【0006】かような給水路に使用される鋼の腐食を防
止するために,従来より,防食被膜をもつ鋼材料(例え
ば樹脂塗装鋼板や溶融亜鉛めっき鋼板)を使用すること
が行われており,また,水槽などでは犠牲陽極による防
食対策が採られている。
In order to prevent corrosion of the steel used in such a water supply channel, it has been customary to use a steel material having an anticorrosion coating (for example, a resin-coated steel sheet or a hot-dip galvanized steel sheet). In addition, sacrificial anodes are used to prevent corrosion in water tanks.

【0007】[0007]

【発明が解決しようとする課題】防食被膜をもつ鋼材料
を給水管路材料に使用した場合でも,完全且つ永久的に
防食機能を果たすことは困難である。
Even when a steel material having an anticorrosion coating is used as a water supply conduit material, it is difficult to completely and permanently perform the anticorrosion function.

【0008】例えば溶融亜鉛めっき鋼板を用いた場合で
も,弁体等の他の金属部材と接合する部分ではイオン化
電位の差から腐食を促進することがあるし,隙間腐食も
完全には防止できない。そして,亜鉛が溶出して母材の
鋼が露出した部分が生ずると腐食を促進する場合もあ
る。また,溶接や螺合,さらには加工によって,管の内
面の亜鉛めっき層が破壊されることもある。
For example, even when a hot-dip galvanized steel sheet is used, corrosion may be promoted due to a difference in ionization potential at a portion joined to another metal member such as a valve body, and crevice corrosion cannot be completely prevented. Corrosion may be accelerated if zinc elutes and the base metal steel is exposed. Further, the galvanized layer on the inner surface of the pipe may be destroyed by welding, screwing, or working.

【0009】溶融亜鉛めっき鋼板の表面にさらに樹脂コ
ーテングを施した材料でも,使用環境によっては樹脂が
分解したり,膨潤や割れを発生させたりすることがあ
り,この場合も同様な問題がある。
[0009] Even in a material in which a surface of a hot-dip galvanized steel sheet is further coated with resin, the resin may be decomposed, or swelling or cracking may occur depending on the use environment, and in this case, there is a similar problem.

【0010】犠牲陽極を用いる防食法は温水器等の貯水
槽に対しては一般化しているが,一般の給水管路系に適
用することは,水流が存在することや電極の設置事態が
困難であることなどから,無理がある。
Although the anticorrosion method using a sacrificial anode has been generalized for water tanks such as water heaters, it is difficult to apply it to a general water supply pipeline system because of the existence of water flow and the installation situation of electrodes. It is impossible because it is.

【0011】本発明は,給水管路に生ずる鋼の腐食を,
その腐食原因を除去することによって簡便に防止しよう
とするものである。
The present invention prevents the corrosion of steel occurring in the water supply line
It is intended to prevent the corrosion easily by removing the cause of the corrosion.

【0012】[0012]

【課題を解決するための手段】本発明によれば,鋼管製
の給水管路を備えた建物において,該給水管路に供給す
る前の水に窒素ガスをバブリングさせることを特徴とす
る給水管の防食法を提供する。窒素ガスのバブリング
は,給水管路の上流側に設置された受水槽内で行うのが
好都合である。また窒素ガスは,中空糸膜を用いて空気
から分離されたもので十分である。
According to the present invention, in a building provided with a water supply pipe made of steel pipe, nitrogen gas is bubbled through the water before being supplied to the water supply pipe. To provide anti-corrosion methods. Nitrogen gas bubbling is conveniently performed in a water receiving tank installed upstream of the water supply pipeline. The nitrogen gas is sufficient if it is separated from air using a hollow fiber membrane.

【0013】本発明はまた,受水槽から鋼製給水管を経
て建物内の各所に給水するようにした建物の給水設備に
おいて,該受水槽を大気と遮断された閉鎖容器に構成し
たうえ,この受水槽の水面下に窒素ガス源に接続された
ポーラスチューブを設置し,受水槽内空間から大気圧雰
囲気に通ずる排ガス管路を設けたことを特徴とする給水
管の防食装置を提供する。
The present invention also provides a building water supply facility in which water is supplied from a water receiving tank to various parts of the building through a steel water supply pipe, and the water receiving tank is constructed as a closed container which is isolated from the atmosphere. Provided is a corrosion preventive device for a water supply pipe, characterized in that a porous tube connected to a nitrogen gas source is installed below the water surface of the water receiving tank, and an exhaust gas pipe communicating from the space inside the water receiving tank to the atmospheric pressure atmosphere is provided.

【0014】[0014]

【作用】給水管路の鋼の腐食は水と酸素の共存によって
生ずる。その腐食理論は学術的に研究されているが,モ
デル的に言えば,水中には水の一部が解離して水素イオ
ンH+と水酸化イオンOH-が存在するが, 鉄の一部が陽
イオンとなって溶出し,鉄母材は陰に帯電して水素イオ
ンと結合し,鉄の表面は水素被膜で覆われた状態とな
る。一方, 溶出した第一鉄イオン (Fe2+ ) はOH-
結合して水酸化第一鉄Fe(OH)2を形成し, 鉄の表面上
に安定して存在するようになる。
Function: Corrosion of steel in the water supply line is caused by the coexistence of water and oxygen. Although the theory of corrosion has been studied academically, in model terms, part of water dissociates in water and hydrogen ions H + and hydroxide ions OH exist, but part of iron is It elutes as cations, the iron base material is negatively charged and binds to hydrogen ions, and the iron surface is covered with a hydrogen film. On the other hand, the eluted ferrous ion (Fe 2+ ) combines with OH to form ferrous hydroxide Fe (OH) 2 and becomes stable on the surface of iron.

【0015】この水素被膜および水酸化第一鉄被膜で覆
われた一種の平衡状態にあれば,腐食の進行はほぼ停止
するが,ここに酸素が共存すると,鉄表面の水素が酸素
と反応して結合して該平衡が崩れ, また水酸第一鉄も酸
素と次式のように反応して水酸化第二鉄となって沈澱し
てしまうので,鉄のイオンの溶出が始まり,腐食が進行
することになる。
In a kind of equilibrium state covered with this hydrogen film and ferrous hydroxide film, the progress of corrosion almost stops, but when oxygen coexists there, hydrogen on the iron surface reacts with oxygen. And the equilibrium is lost due to binding, and ferrous hydroxide also reacts with oxygen as shown in the following formula to form ferric hydroxide and precipitate, so the elution of iron ions begins and corrosion occurs. It will proceed.

【0016】 4Fe(OH)2+O2+2H2O=4Fe(OH)3 4Fe (OH) 2 + O 2 + 2H 2 O = 4Fe (OH) 3

【0017】一般の淡水では,溶存ガスの種類や量,p
H値,温度,流速,水質などの変化要因によって,腐食
度は様々な挙動を示すが,水中に酸素が共存していると
鋼の腐食が促進することは疑いのないところであり,こ
れは亜鉛被膜を有する鋼の場合にも言える。
In general fresh water, the type and amount of dissolved gas, p
Corrosion shows various behaviors due to factors such as H value, temperature, flow velocity, and water quality, but it is undoubted that the coexistence of oxygen in water accelerates the corrosion of steel. The same is true for coated steels.

【0018】大気圧下におかれた水は,空気,酸素およ
び窒素を溶存するが,これらの溶解度は温度依存性があ
り,温度が低いほど溶存量は多くなる。例えば20℃で
あれば,大気圧下において空気は約23ppm,窒素は
約15ppm,酸素は9ppm溶解するとされている。
窒素と酸素の溶解度は空気中の窒素分圧と酸素分圧に関
係している。
Water placed under atmospheric pressure dissolves air, oxygen and nitrogen, but their solubilities are temperature dependent, and the dissolved amount increases as the temperature decreases. For example, at 20 ° C., it is said that about 23 ppm of air, about 15 ppm of nitrogen, and 9 ppm of oxygen are dissolved under atmospheric pressure.
The solubility of nitrogen and oxygen is related to the partial pressure of nitrogen and the partial pressure of oxygen in the air.

【0019】本発明に従って,水中に窒素ガスをバブリ
ングさせて窒素ガス気泡を多数導入すると,水と窒素ガ
ス気泡と接する界面では,酸素分圧が実質的にゼロ若し
くは極めて低い気相と水が接することになるので,水中
の溶存酸素は気相に移行する現象が生ずる。このため,
水中に窒素ガス気泡を連続的に多数発生させ続け且つこ
の気泡を連続的に除去し続ければ,水中の溶存酸素はほ
ぼ完全に気泡中に移行し,水中の溶存酸素量を低減させ
ることができる。
According to the present invention, when nitrogen gas is bubbled into water and a large number of nitrogen gas bubbles are introduced into the water, at the interface where the water and the nitrogen gas bubbles contact, the gas phase having substantially zero oxygen partial pressure or extremely low contact with water. Therefore, the phenomenon that dissolved oxygen in water shifts to the gas phase occurs. For this reason,
If a large number of nitrogen gas bubbles are continuously generated in the water and the bubbles are continuously removed, the dissolved oxygen in the water is almost completely transferred into the bubbles and the dissolved oxygen amount in the water can be reduced. .

【0020】給水管路に供給される前の水中に窒素ガス
気泡を導入して溶存酸素量を低減させると,給水管路の
鋼の腐食の進行が防止される。中空糸膜を利用した窒素
発生装置を用いれば,空気を原料として窒素ガスを連続
的に供給できる。
If nitrogen gas bubbles are introduced into the water before being supplied to the water supply line to reduce the amount of dissolved oxygen, the progress of corrosion of steel in the water supply line is prevented. If a nitrogen generator using a hollow fiber membrane is used, nitrogen gas can be continuously supplied using air as a raw material.

【0021】[0021]

【実施例】図1は,中層建物の代表的な給水経路を示し
たものである。建物の地階に受水槽1が設置される。こ
の受水槽1には市水管2から止水栓3および量水器4を
経て市水が供給される。受水槽1に受入れられた水はポ
ンプ5によって,高置タンク6に揚水され,この高置タ
ンク6から各階の給水位置に送水される。
EXAMPLE FIG. 1 shows a typical water supply route for a middle-rise building. The water tank 1 is installed in the basement of the building. City water is supplied to the water receiving tank 1 from a city water pipe 2 through a water stopcock 3 and a water meter 4. The water received in the water receiving tank 1 is pumped up to the elevated tank 6 by the pump 5, and is sent from this elevated tank 6 to the water supply position on each floor.

【0022】かような建物の給水経路において,本発明
では受水槽1の水中に多数の窒素ガス気泡を連続的に導
入する。その詳細は後に示すが,図1において,7は空
気を原料とする窒素ガス発生装置を示し,この窒素ガス
発生手段7で得られた窒素ガスを受水槽1および高置タ
ンク6の水面下の位置にガス放出手段8を介して導入す
る。
In the water supply path of such a building, according to the present invention, a large number of nitrogen gas bubbles are continuously introduced into the water in the water receiving tank 1. Although the details will be shown later, in FIG. 1, reference numeral 7 denotes a nitrogen gas generating device using air as a raw material, and the nitrogen gas obtained by the nitrogen gas generating means 7 is stored under the water surface of the water receiving tank 1 and the elevated tank 6. It is introduced into the position via the gas releasing means 8.

【0023】図2は,中間タンク9を用いた高層建物に
おける給水経路の例を示しており,図2Aでは受水槽1
から高置タンク6と中間タンク9にそれぞれポンプ5と
5’によって揚水し,高置タンク6からは上層階ゾーン
に,中間タンク9からは下層階ゾーンに給水する例を示
す。
FIG. 2 shows an example of a water supply route in a high-rise building using the intermediate tank 9, and in FIG. 2A, the water tank 1
In this example, the pumps 5 and 5'are used to pump water from the high tank 6 to the intermediate tank 9 and water is supplied to the upper floor zone from the high tank 6 and to the lower floor zone from the intermediate tank 9.

【0024】図2Bでは受水槽1からポンプ5によって
中間タンク9に揚水し,この中間タンク9から一部の水
をポンプ5”によって高置タンク6に揚水する例を,ま
た図2Cでは受水槽1からポンプ5によって高置タンク
6に揚水したうえ,この高置タンク6から中間タンク9
に一部の水を落水させる例を示しており,いずれも,高
置タンク6からは上層階ゾーンに,中間タンク9からは
下層階ゾーンに給水する点では図2Aと変わりはない。
FIG. 2B shows an example in which water is pumped from the water receiving tank 1 to the intermediate tank 9 by the pump 5 and a part of water is pumped from the intermediate tank 9 to the elevated tank 6 by the pump 5 ″, and in FIG. 2C, the water receiving tank. Pumping water from 1 to the elevated tank 6 by the pump 5, and then from this elevated tank 6 to the intermediate tank 9
2A shows an example in which a part of water is dropped, and both are the same as FIG. 2A in that water is supplied from the high tank 6 to the upper floor zone and from the intermediate tank 9 to the lower floor zone.

【0025】図2のいずれの例でも,受水槽1,中間タ
ンク9および高置タンク6の水中に窒素ガス気泡を導入
する点では図1と同様である。
2 is the same as that of FIG. 1 in that nitrogen gas bubbles are introduced into the water of the water receiving tank 1, the intermediate tank 9 and the elevated tank 6.

【0026】図3は,減圧弁10を設けた高層建物にお
ける給水経路の例を示している。図3Aでは落水主管に
減圧弁10を,Bでは下層の各階の分岐管に減圧弁10
を,そしてCでは下層のグループに減圧弁10を設けた
例を表しており,いずれも,これら減圧弁10の作動に
よって高置タンク6への揚水圧を緩和する。このような
給水管路においても,本発明においては前記同様に受水
槽1および高置タンク6の水中に窒素ガス気泡を導入す
る。
FIG. 3 shows an example of a water supply path in a high-rise building provided with the pressure reducing valve 10. In FIG. 3A, the pressure reducing valve 10 is installed in the main falling water pipe, and in B, the pressure reducing valve 10 is installed in the branch pipes on the lower floors.
Further, C shows an example in which the pressure reducing valve 10 is provided in the lower group, and in each case, the pumping pressure to the elevated tank 6 is relaxed by the operation of these pressure reducing valves 10. Also in such a water supply line, in the present invention, nitrogen gas bubbles are introduced into the water in the water receiving tank 1 and the elevated tank 6 in the same manner as described above.

【0027】図4と5は,受水槽1の水中に窒素ガス気
泡を導入する本発明例を示したものである。受水槽1
は,蓋体12を取付けることによって閉鎖容器に構成さ
れている。13は受水槽への水受入口,14は受水槽か
らの水送出口である。この水受入口13から水送出口1
4に至るまで槽内を水が一方向性にジグザグ状に流れる
ように槽内に仕切壁15が設けてある。この仕切壁15
は,図5の平面に示したように,前壁または後壁との間
に互い違いに所定の隙間をあけて多数枚並設してあり,
これにより,図示の矢印の方向に水がジグザグ状に流れ
る。
4 and 5 show an example of the present invention in which nitrogen gas bubbles are introduced into the water in the water receiving tank 1. Water tank 1
Is configured as a closed container by attaching the lid 12. Reference numeral 13 is a water receiving inlet to the water receiving tank, and 14 is a water feeding outlet from the water receiving tank. From this water inlet 13 to the water outlet 1
A partition wall 15 is provided in the tank so that water flows unidirectionally in a zigzag manner up to No. 4. This partition wall 15
As shown in the plane of FIG. 5, a large number of sheets are arranged side by side with a predetermined gap alternately with the front wall or the rear wall,
As a result, water flows in a zigzag shape in the direction of the arrow shown.

【0028】このようにして,受水槽1内に一方向性の
水の通路を形成したうえ,この通路を横切るように通路
底部にポーラスチューブ16を配置する。そして,この
ポーラスチューブ16を槽外に設けた窒素ガス発生装置
17に連結する。
In this way, a unidirectional water passage is formed in the water receiving tank 1, and the porous tube 16 is arranged at the bottom of the passage so as to cross the passage. Then, the porous tube 16 is connected to a nitrogen gas generator 17 provided outside the tank.

【0029】図示の例では,該水路における水の流れが
反転する位置の槽底部に複数のポーラスチューブ16を
配置し,各ポーラスチューブ16を一台の窒素ガス発生
装置17にガス管18を用いて接続してある。これによ
り,窒素ガス発生装置17を駆動することにより各ポー
ラスチューブ16の細孔から窒素ガスが噴出し,水中で
微細な窒素ガス気泡を形成する。
In the illustrated example, a plurality of porous tubes 16 are arranged at the bottom of the tank at a position where the flow of water in the water channel is reversed, and each porous tube 16 is used as a single nitrogen gas generator 17 with a gas pipe 18. Connected. As a result, by driving the nitrogen gas generator 17, nitrogen gas is ejected from the pores of each porous tube 16 to form fine nitrogen gas bubbles in water.

【0030】したがって,水受入口15から水送出口1
4に至るまでの間に,槽内水は複数回窒素ガス気泡と接
触する機会を与えられ,水中に溶存している酸素はその
分圧差から窒素ガス気泡中に移行し,水送出口14を出
る時点では溶存酸素は殆んど存在しなくなる。
Therefore, from the water inlet 15 to the water outlet 1
During the process up to 4, the water in the tank was given multiple opportunities to contact with the nitrogen gas bubbles, and the oxygen dissolved in the water migrated into the nitrogen gas bubbles due to the partial pressure difference, and the water was discharged through the water outlet 14. Almost no dissolved oxygen exists at the time of exit.

【0031】一方,水中を上昇する過程で酸素ガスを吸
収したガス気泡は,水面上の槽内空間19から排気ガス
管路20を経て,系外に放出される。この排ガス管路2
0は逆止弁21を介して大気に連通している。逆止弁2
1は,装置休止中に受水槽1内に大気が侵入するのを防
止する。
On the other hand, the gas bubbles that have absorbed the oxygen gas in the process of rising in water are discharged from the space 19 in the tank on the water surface to the outside of the system through the exhaust gas pipeline 20. This exhaust gas line 2
0 communicates with the atmosphere via the check valve 21. Check valve 2
1 prevents the atmospheric air from entering the water receiving tank 1 while the apparatus is at rest.

【0032】受水槽1内への受水量が送水量を超えた場
合のオーバーフローを取り出すために,オーバーフロー
管23が取付けられるが,本発明設備ではこのオーバー
フロー管23に溢水槽24が取付けられている。
An overflow pipe 23 is attached to take out an overflow when the amount of water received in the water receiving tank 1 exceeds the amount of water to be sent. In the facility of the present invention, an overflow tank 24 is attached to the overflow pipe 23. .

【0033】溢水槽24は閉鎖容器からなり,溢水口2
5を所定レベルの高さに設置することにより,この溢水
槽24内に水が貯留するようにすると共に,オーバーフ
ロー管23と溢水口25とが水面上の空間を通じて連通
しないように,水封板26が取付けてある。また,この
溢水槽24に窒素ガス発生装置17からガス配管27が
接続されており,溢水槽24内にも窒素ガスが導入され
る。28は給水管を示しており,受水槽1からのオーバ
ーフローが無いときでも溢水槽24内に常時水が貯留す
るように制御弁29によって給水される。
The overflow tank 24 comprises a closed container, and the overflow port 2
5 is installed at a predetermined height so that water can be stored in the overflow tank 24 and the overflow pipe 23 and the overflow port 25 do not communicate with each other through the space above the water surface. 26 is attached. A gas pipe 27 is connected to the overflow tank 24 from the nitrogen gas generator 17, and nitrogen gas is also introduced into the overflow tank 24. Reference numeral 28 denotes a water supply pipe, which is supplied by a control valve 29 so that water is always stored in the overflow tank 24 even when there is no overflow from the water receiving tank 1.

【0034】この構成により,受水槽1内にオーバーフ
ロー管23を通じて大気が侵入することが防止される。
この結果,受水槽1内の水に酸素が溶存することが防止
される。また,槽1内で発生した窒素・酸素の混合ガス
もオーバーフロー管を経て外部に漏出することが防止さ
れる。
With this configuration, the atmosphere is prevented from entering the water receiving tank 1 through the overflow pipe 23.
As a result, oxygen is prevented from being dissolved in the water in the water receiving tank 1. Also, the mixed gas of nitrogen and oxygen generated in the tank 1 is prevented from leaking outside through the overflow pipe.

【0035】図6は,受水槽1内の底部に配置するポー
ラスチューブ16の詳細を示したものである。多孔質の
セラミツクス管30の一方の端を閉鎖部材31で塞ぎ,
他方の端をガスヘッダー32で塞いである。閉鎖部材3
1とガスヘッダー32はフレーム33によって互いに固
定されている。ガスヘッダー32に設けられたガス供給
口34から窒素ガスが導入されると,セラミツクス管3
0の多孔質壁を通過して周面から全体的に窒素ガスが噴
出する。
FIG. 6 shows details of the porous tube 16 arranged at the bottom of the water receiving tank 1. One end of the porous ceramic tube 30 is closed with a closing member 31,
The other end is closed by the gas header 32. Closure member 3
1 and the gas header 32 are fixed to each other by a frame 33. When nitrogen gas is introduced from the gas supply port 34 provided in the gas header 32, the ceramic pipe 3
Nitrogen gas is jetted entirely from the peripheral surface through the porous wall of 0.

【0036】図7は,本発明で使用するガス発生装置1
7の詳細を示したものである。多数本の中空糸膜35が
一方の端をガス供給ヘッダー36に,他方の端をガス排
出ヘッダー37に開口して容器38内に配置される。ま
た,中空糸膜35の群のほぼ全長は仕切板39と40で
囲われる内部空間に露出しており,この内部空間は排ガ
ス管路41に通じている。
FIG. 7 shows a gas generator 1 used in the present invention.
7 shows details of No. 7. A large number of hollow fiber membranes 35 are arranged in a container 38 with one end opened to the gas supply header 36 and the other end opened to the gas discharge header 37. Also, almost the entire length of the group of hollow fiber membranes 35 is exposed in the internal space surrounded by the partition plates 39 and 40, and this internal space communicates with the exhaust gas pipe 41.

【0037】供給ヘッダー36に圧縮空気を導入し,中
空糸膜35内に送り込まれると,透過速度の速い酸素ガ
スやCO2ガスがこの中空糸膜35を選択的に透過し,
透過速度の遅い窒素ガスは透過しないで排出ヘッダー3
7側に流れる。中空糸膜35は各種のものが開発されて
いるが,ポリオレフイン系の多孔質中空糸にシリコン系
ポリマーを積層した複合膜が市場で入手可能であり,こ
れを用いれば空気から酸素富化ガスと窒素ガスを分離で
きる。
When compressed air is introduced into the supply header 36 and sent into the hollow fiber membrane 35, oxygen gas or CO 2 gas having a high permeation rate selectively permeates the hollow fiber membrane 35,
Exhaust header 3 without permeating nitrogen gas with a slow permeation rate
It flows to the 7 side. Although various hollow fiber membranes 35 have been developed, a composite membrane obtained by laminating a silicone polymer on a polyolefin porous hollow fiber is available on the market. Nitrogen gas can be separated.

【0038】分離された窒素ガスは前述のように受水槽
1さらには高置タンク6や中間タンク9の底部に設けら
れたポーラスチューブ16,更には溢水槽24に圧送さ
れ,水中の溶存酸素除去のために使用され,他方の酸素
富化ガスは室内空気の酸素濃度を高めるために空気調和
器に導入され,場合によって貯蔵して室内放出用または
その他の用途に使用される。
The separated nitrogen gas is pressure-fed to the water receiving tank 1, the porous tube 16 provided at the bottom of the high tank 6 and the intermediate tank 9, and the overflow tank 24 as described above, to remove the dissolved oxygen in the water. The other oxygen-enriched gas is introduced into the air conditioner to increase the oxygen concentration in the room air, and is optionally stored and used for indoor discharge or other purposes.

【0039】[0039]

【発明の効果】以上説明したように,本発明によれば,
既設建物の給水管路の腐食という極めて厄介なトラブル
を回避または減少させるのに大きな効果を発揮する。特
に無害な窒素ガスによって,しかも簡単な設備によって
給水管路の防食が達成されたことは,安全性の面でも経
済的な面でも有利であり,一たん施設された後の建物内
の給水管路の延命を図る上で多大の貢献をなし得るもの
である。
As described above, according to the present invention,
It is very effective in avoiding or reducing the extremely troublesome trouble of corrosion of the water supply line of the existing building. In particular, the fact that the corrosion of the water supply pipe has been achieved with harmless nitrogen gas and with a simple facility is advantageous in terms of both safety and economy, and the water supply pipe in the building after it has been constructed once has been achieved. It can make a great contribution to prolonging the life of the road.

【0040】かような本発明の効果は,防食被膜を施し
た鋼管や鋼板を使用した給水管路に対しても発揮され
る。
The effect of the present invention as described above is also exerted on a water supply pipe using a steel pipe or a steel plate coated with an anticorrosion coating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の給水管路の防食法を説明するための給
水系統を示す図である。
FIG. 1 is a diagram showing a water supply system for explaining a method of preventing corrosion of a water supply pipe of the present invention.

【図2】本発明の防食法を説明するための高層建物の給
水系統を示す図である。
FIG. 2 is a diagram showing a water supply system of a high-rise building for explaining the anticorrosion method of the present invention.

【図3】本発明の防食法を説明するための高層建物の給
水系統を示す図である。
FIG. 3 is a diagram showing a water supply system of a high-rise building for explaining the anticorrosion method of the present invention.

【図4】本発明に従う防食を実施する受水槽の例を示す
略断面図である。
FIG. 4 is a schematic cross-sectional view showing an example of a water tank for carrying out corrosion protection according to the present invention.

【図5】図4の受水槽の内部を平面的に見た図である。5 is a plan view of the inside of the water receiving tank of FIG. 4. FIG.

【図6】本発明で使用するポーラスチューブの例を示す
略断面図である。
FIG. 6 is a schematic cross-sectional view showing an example of a porous tube used in the present invention.

【図7】本発明で使用する窒素ガス発生装置の例を示す
略断面図である。
FIG. 7 is a schematic cross-sectional view showing an example of a nitrogen gas generator used in the present invention.

【符号の説明】[Explanation of symbols]

1 受水槽 5 揚水ポンプ 6 高置タンク 13 水受入口 14 水送出口 15 仕切壁 16 ポーラスチューブ 17 窒素ガス発生装置 18 ガス管 20 排ガス管路 24 溢水槽 30 多孔質セラミツクス管 35 中空糸膜 1 Water Tank 5 Pumping Pump 6 High Tank 13 Water Inlet 14 Water Outlet 15 Partition Wall 16 Porous Tube 17 Nitrogen Gas Generator 18 Gas Pipe 20 Exhaust Gas Pipeline 24 Overflow Tank 30 Porous Ceramics Pipe 35 Hollow Fiber Membrane

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鋼管製の給水管路を備えた建物におい
て,該給水管路に供給する前の水に窒素ガスをバブリン
グさせることを特徴とする給水管の防食法。
1. A method for preventing corrosion of a water supply pipe in a building having a water supply pipe made of steel, wherein nitrogen gas is bubbled through the water before being supplied to the water supply pipe.
【請求項2】 窒素ガスのバブリングは,給水管路の上
流側に設置された受水槽内で行う請求項1に記載の給水
管路の防食法。
2. The method for preventing corrosion of a water supply line according to claim 1, wherein the bubbling of nitrogen gas is performed in a water receiving tank installed upstream of the water supply line.
【請求項3】 窒素ガスは,中空糸膜を用いて空気から
分離されたものである請求項1または2に記載の給水管
路の防食法。
3. The method for preventing corrosion of a water supply line according to claim 1, wherein the nitrogen gas is separated from air by using a hollow fiber membrane.
【請求項4】 受水槽から鋼製給水管を経て建物内の各
所に給水するようにした建物の給水設備において,該受
水槽を大気と遮断された閉鎖容器に構成したうえ,この
受水槽の水面下に,窒素ガス源に接続されたポーラスチ
ューブを設置し,受水槽内空間から大気圧雰囲気に通ず
る排ガス管路を設けたことを特徴とする給水管路の防食
装置。
4. In a water supply facility of a building in which water is supplied from a water receiving tank to various places in the building through a steel water supply pipe, the water receiving tank is constructed as a closed container that is shielded from the atmosphere, and An anticorrosion device for a water supply line, characterized in that a porous tube connected to a nitrogen gas source is installed below the surface of the water, and an exhaust gas line that communicates from the space inside the water receiving tank to the atmosphere is provided.
【請求項5】 受水槽は,この受水槽への水受入口と受
水槽からの水送出口との間で一方向性の水路が形成され
るように,その内部に仕切壁が設けられており,ポーラ
スチューブは該水路を横切るように配置されている請求
項4に記載の防食装置。
5. A partition wall is provided inside the water receiving tank so that a unidirectional water channel is formed between the water receiving inlet to the water receiving tank and the water sending outlet from the water receiving tank. The corrosion prevention device according to claim 4, wherein the porous tube is arranged so as to cross the water channel.
【請求項6】 受水槽は,水封された溢水口を備えてお
り,この水封部に窒素ガスが封入される請求項4または
5に記載の防食装置。
6. The anticorrosion device according to claim 4, wherein the water receiving tank is provided with a water-tight overflow port, and the water-sealing portion is filled with nitrogen gas.
JP18286992A 1992-06-18 1992-06-18 Corrosion protection method and equipment for water supply pipeline Expired - Fee Related JP3162192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18286992A JP3162192B2 (en) 1992-06-18 1992-06-18 Corrosion protection method and equipment for water supply pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18286992A JP3162192B2 (en) 1992-06-18 1992-06-18 Corrosion protection method and equipment for water supply pipeline

Publications (2)

Publication Number Publication Date
JPH062347A true JPH062347A (en) 1994-01-11
JP3162192B2 JP3162192B2 (en) 2001-04-25

Family

ID=16125860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18286992A Expired - Fee Related JP3162192B2 (en) 1992-06-18 1992-06-18 Corrosion protection method and equipment for water supply pipeline

Country Status (1)

Country Link
JP (1) JP3162192B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035949A (en) * 2006-08-02 2008-02-21 Nohmi Bosai Ltd Fire-fighting equipment
WO2014185467A1 (en) * 2013-05-14 2014-11-20 芝浦メカトロニクス株式会社 Liquid supply device and substrate processing device
JP2016102336A (en) * 2014-11-28 2016-06-02 株式会社ウェルシィ Method for preventing increase in dissolved oxygen content of groundwater
US11242999B2 (en) 2004-07-23 2022-02-08 Oy Halton Group Ltd. Control of exhaust systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242999B2 (en) 2004-07-23 2022-02-08 Oy Halton Group Ltd. Control of exhaust systems
JP2008035949A (en) * 2006-08-02 2008-02-21 Nohmi Bosai Ltd Fire-fighting equipment
WO2014185467A1 (en) * 2013-05-14 2014-11-20 芝浦メカトロニクス株式会社 Liquid supply device and substrate processing device
CN105229777A (en) * 2013-05-14 2016-01-06 芝浦机械电子株式会社 Liquid feed device and substrate board treatment
US20160062372A1 (en) * 2013-05-14 2016-03-03 Shibaura Mechatronics Corporation Liquid feeding device and substrate treating device
JPWO2014185467A1 (en) * 2013-05-14 2017-02-23 芝浦メカトロニクス株式会社 Liquid supply apparatus and substrate processing apparatus
US9811096B2 (en) 2013-05-14 2017-11-07 Shibaura Mechatronics Corporation Liquid feeding device and substrate treating device
TWI619155B (en) * 2013-05-14 2018-03-21 Shibaura Mechatronics Corp Liquid supply device and substrate processing device
JP2016102336A (en) * 2014-11-28 2016-06-02 株式会社ウェルシィ Method for preventing increase in dissolved oxygen content of groundwater

Also Published As

Publication number Publication date
JP3162192B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US5378355A (en) Direct delivery in-situ diffuser cleaning
JP3162192B2 (en) Corrosion protection method and equipment for water supply pipeline
RU2752438C1 (en) Nitrogen fire extinguishing system for special structure
JP4409047B2 (en) Equipment for reducing dissolved oxygen in water
JPH062894A (en) Method and apparatus for preventing corrosion of heat source water route for air conditioning
JP3497185B2 (en) Equipment for simultaneous corrosion protection and air conditioning of water pipes
CN205442740U (en) Electrically driven (operated) membrane desalination unit
JP2004154260A (en) Pressurized water supply device
JP2929039B2 (en) How to clean the water pipe
Andrianov Pitting corrosion of galvanized pipes in hot water supply systems
FI76061B (en) FOERFARANDE FOER AVLAEGSNING ELLER FOERHINDRANDE AV IGENSAETTNING I BOTTENLUFTARE VID VATTENBEHANDLING OCH AVLOPPSVATTENBEHANDLING UNDER DRIFTBETINGELSEN.
CN207330407U (en) A kind of sealing gland of reaction tank internal partition wall blocks up discharging device
CN207334259U (en) A kind of water collecting and drainage system for carbon dioxide gas mixture conveyance conduit
CN111056717A (en) Integrated percolating water treatment system
JPH0216224A (en) Piping structure of water storage tank and maintaining of water amount
JPH10118218A (en) Corrosion preventing device for fire extinguishing facility
FI128482B (en) Corrosion-free method and system for flushing and filling closed liquid circulation networks
JPS595034B2 (en) How to mix disinfectant into purified water
SU1028797A1 (en) Multistage sewerage height drop
JPH0410216Y2 (en)
McMillen et al. Large-Scale Oxygen Injection for Odor Control at Primary Clarifiers at the Trinity River Authority of Texas
JPH10177088A (en) Flow control orifice
JP3227058B2 (en) Corrosion protection method for piping system connected to heat storage tank
CN115784357A (en) Device for effectively reducing and controlling corrosion rate of water pipeline for fire fighting
RU1827415C (en) Installation for treatment of wells with chemical agents

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees