JPH06232583A - Ferrite radiowave absorber - Google Patents

Ferrite radiowave absorber

Info

Publication number
JPH06232583A
JPH06232583A JP3923293A JP3923293A JPH06232583A JP H06232583 A JPH06232583 A JP H06232583A JP 3923293 A JP3923293 A JP 3923293A JP 3923293 A JP3923293 A JP 3923293A JP H06232583 A JPH06232583 A JP H06232583A
Authority
JP
Japan
Prior art keywords
ferrite
wave absorber
absorber
resistivity
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3923293A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawamoto
博 河本
Toyohito Ito
豊人 伊藤
Toshikatsu Hayashi
利勝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP3923293A priority Critical patent/JPH06232583A/en
Publication of JPH06232583A publication Critical patent/JPH06232583A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a ferrite radiowave absorber wherein the resistivity of a baked ferrite is so controlled as to be 10<-1>-10<-2>OMEGA-m. CONSTITUTION:The resistivity of a ferrite is so adjusted as to be 10<-1>-10<-2>OMEGA-m. Thereby, the magnetic loss of the ferrite is made nearly equal to its dielectric loss and its radiowave absorbing characteristic in a comparably low-frequency region of 20M-100MHz is so improved that it can be used effectively as a radiowave absorber in that frequency region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抵抗率を10-1〜10
-2Ω-mに制御したフェライト焼結体よりなるフェライト
電波吸収体、特に同程度の磁気損失と誘電損失とを示
し、低周波域、特に20M〜100MHz での周波数に対
し有効な電波吸収特性を示すフェライト電波吸収体に関
するものである。
The present invention has a resistivity of 10 -1 to 10 -1.
A ferrite electromagnetic wave absorber made of a ferrite sintered body controlled to -2 Ω-m, particularly showing the same magnetic loss and dielectric loss, and effective electromagnetic wave absorption characteristics in the low frequency range, especially in the frequency range of 20M to 100MHz. The present invention relates to a ferrite electromagnetic wave absorber.

【0002】[0002]

【従来の技術】電波吸収体として、磁気損失を利用した
フェライトや、誘電損失を持つカーボンなどをウレタン
などに含浸させたものが製品化されている。しかし、こ
れらは電磁波の持つ2つの成分(磁界成分と電界成分)
の片方のみを損失させることにより、(フェライトは磁
界成分のみ、カーボンは電界成分のみ)電磁波エネルギ
ーを吸収するという特長がある。
2. Description of the Related Art As a radio wave absorber, a product in which ferrite having magnetic loss or carbon having dielectric loss is impregnated in urethane has been commercialized. However, these are two components of electromagnetic waves (magnetic field component and electric field component).
One of the characteristics is that by absorbing only one of them (ferrite only magnetic field component, carbon only electric field component), electromagnetic wave energy is absorbed.

【0003】一般的に電波吸収体の吸収特性として、2
0dB以上の吸収特性を電波吸収体は必要とすると考えら
れている。例えば電波吸収体を電波暗室に使用する場
合、電波暗室の性能をえるため、少くとも20dBの電波
吸収特性を有する電波吸収体を使用する必要がある。又
電波暗室は、現在30M〜1GHz の周波数に対応するこ
とが要求されている。
Generally, the absorption characteristics of a radio wave absorber are 2
It is considered that a radio wave absorber requires an absorption characteristic of 0 dB or more. For example, when using an electromagnetic wave absorber in an anechoic chamber, it is necessary to use an electromagnetic wave absorber having an electromagnetic wave absorption characteristic of at least 20 dB in order to obtain the performance of the anechoic chamber. The anechoic chamber is currently required to support frequencies of 30M to 1GHz.

【0004】然しながら、これまでのフェライト電波吸
収体は、磁気損失の周波数分散のみを利用しているた
め、20dB以上の特性を示す周波数域が50M〜400
MHz と狭く、それ以外の周波数に対応するには、別の吸
収体で対応するか、電波暗室の形状を変えるなどして対
応しているのが現状である。400M〜1GHz のように
高い周波数域では、波長が短くなるため、別の吸収体を
使用してもある程度薄い吸収体で対応可能であるが、3
0M〜50MHz のような低い周波域では、吸収体の厚さ
が厚くなり、実用上電波吸収体が使用され難いという問
題を内蔵している。従って30M〜50MHzのような低
周波域で20dB以上の吸収特性を示す電波吸収体の開発
は、重要な課題である。
However, since the conventional ferrite electromagnetic wave absorbers use only the frequency dispersion of magnetic loss, the frequency range showing a characteristic of 20 dB or more is 50M to 400.
At the present, it is narrow as MHz, and in order to support frequencies other than that, it is currently handled by using another absorber or changing the shape of the anechoic chamber. In a high frequency range such as 400M to 1GHz, the wavelength becomes shorter, so even if another absorber is used, it is possible to use a thin absorber to some extent.
In a low frequency range such as 0M to 50MHz, the thickness of the absorber becomes thicker, and there is a built-in problem that the radio wave absorber is practically difficult to use. Therefore, the development of a radio wave absorber exhibiting an absorption characteristic of 20 dB or more in a low frequency region such as 30 M to 50 MHz is an important issue.

【0005】[0005]

【発明が解決しようとする課題】本発明は、高磁気損失
と高誘電損失とを併せもつことにより、低周波域、特に
20M〜100MHz の周波数域で、20dB以上の吸収特
性を示すフェライト電波吸収体を提供することを課題と
している。
DISCLOSURE OF THE INVENTION The present invention has a high magnetic loss and a high dielectric loss in combination, and thereby exhibits a ferrite electromagnetic wave absorption exhibiting an absorption characteristic of 20 dB or more in a low frequency range, particularly in a frequency range of 20 M to 100 MHz. The challenge is to provide the body.

【0006】[0006]

【課題を解決するための手段及び作用】一般に、高周波
域における物質の磁気損失(μ″)及び誘電損失
(ε″)は、その物質の基本的特性を表わすものであ
り、前者は複素比透磁率μr =μ′−jμ″(又は損失
角 tanδ=μ″/μ′)で、後者は複素比誘電率εr
ε′−jε″(又は損失角 tanδ=ε″/ε′)で示さ
れる。複素比透磁率及び複素比誘電率が分かれば、その
物質の反射率(入射電磁波が物質に垂直入射した場合に
物質表面で反射される割合)が求められ、また物質の吸
収特性は、図1の吸収体の特性として知ることができ
る。
Generally, the magnetic loss (μ ″) and dielectric loss (ε ″) of a substance in a high frequency range represent the basic characteristics of the substance, and the former is a complex relative permeability. The magnetic permittivity μ r = μ′−jμ ″ (or loss angle tan δ = μ ″ / μ ′), and the latter is the complex relative permittivity ε r =
ε′-jε ″ (or loss angle tan δ = ε ″ / ε ′). If the complex relative permeability and the complex relative permittivity are known, the reflectance of the substance (the ratio of the incident electromagnetic wave reflected by the surface of the substance when vertically incident on the substance) is obtained, and the absorption characteristics of the substance are shown in FIG. It can be known as the characteristics of the absorber.

【0007】本発明の制御された抵抗率を有する電波吸
収体は、目的とする周波数域で、所望の磁気損失μ″を
えるとともに、誘電損失ε″をも生じさせることによ
り、吸収特性を改良するものである。
The radio wave absorber having a controlled resistivity of the present invention improves absorption characteristics by obtaining a desired magnetic loss μ ″ and a dielectric loss ε ″ in a target frequency range. To do.

【0008】各周波数域における必要とする複素比透磁
率と複素比誘電率とをえるため種々検討した結果、フェ
ライト焼結体の抵抗率を制御することにより、或はフェ
ライト焼結体の誘電率に周波数特性を持たせることによ
り、目的が達成されることを認めた。即ち本発明は、制
御された抵抗率、10-1〜10-2Ω-mに制御された抵抗
率を有するフェライト焼結体を用いた電波吸収体を提案
するものである。
As a result of various studies to obtain the required complex relative magnetic permeability and complex relative permittivity in each frequency range, the dielectric constant of the ferrite sintered body was controlled by controlling the resistivity of the ferrite sintered body. It was confirmed that the purpose could be achieved by adding frequency characteristics to. That is, the present invention proposes a radio wave absorber using a ferrite sintered body having a controlled resistivity of 10 -1 to 10 -2 Ω-m.

【0009】一般に使用されているNi-Zn 系フェライト
電波吸収体は107 Ω-m以上の抵抗率を有しているが、
本発明に使用する制御された抵抗率を有するフェライト
焼結体は、Ni-Zn 系フェライトを還元雰囲気中で高温
で、長時間焼結することにより容易にえられる。このよ
うに処理してえられた制御された10-1〜10-2Ω-mの
抵抗率を有するフェライトは、図2に示したように同程
度の磁気損失と誘電損失とを示し、低周波域、特に20
M〜100MHz の周波域で図5に示したようにすぐれた
電波吸収特性を示した。
The commonly used Ni-Zn ferrite electromagnetic wave absorber has a resistivity of 10 7 Ω-m or more.
The ferrite sintered body having a controlled resistivity used in the present invention can be easily obtained by sintering Ni—Zn ferrite at a high temperature in a reducing atmosphere for a long time. The ferrite having a controlled resistivity of 10 -1 to 10 -2 Ω-m obtained by the above-mentioned treatment shows the same magnetic loss and dielectric loss as shown in FIG. Frequency range, especially 20
In the frequency range of M to 100 MHz, it showed excellent electromagnetic wave absorption characteristics as shown in FIG.

【0010】このように処理してえられたフェライト焼
結体を図7に示したように反射板上に積層して使用す
る。反射板としては一般的な金属板であればいかなるも
のでも使用可能であり、積層するフェライト焼結体の厚
さは、その複素比透磁率及び複素比誘電率により適宜選
択することができる。
The ferrite sintered body obtained by the above treatment is used by laminating it on a reflecting plate as shown in FIG. As the reflection plate, any general metal plate can be used, and the thickness of the ferrite sintered body to be laminated can be appropriately selected depending on its complex relative permeability and complex relative dielectric constant.

【0011】[0011]

【実施例】一般に使用されているNi-Zn 系フェライト電
波吸収体の比誘電率(εr =ε′−jε″)、比透磁率
(μr =μ′−jμ″)の測定結果を図1に、その電波
吸収特性を図4に示した。誘電損失(ε″)は0に近
く、周波数特性が極めて小さく、20dB吸収帯域は、5
0M〜400MHz と狭い、従ってフェライト電波吸収体
のみで形成されている簡易電波暗室では、低周波数側で
充分な電波吸収特性がえられていないことが明らかで
る。前記の方法により、Ni-Zn 系フェライト電波吸収体
の抵抗率を10-1Ω-mに制御した本願発明による電波吸
収体のε′、ε″、μ′及びμ″の測定結果を図2に、
その電波吸収特性を図5に示した。比誘電率が高くな
り、磁気損失μ″と誘電損失ε″とが重なり、それによ
り低周波域、特に20M〜50MHz での吸収特性が改善
されていることがわかる。更にNi-Zn 系フェライト電波
吸収体において、その抵抗率を10-3Ω-mに制御した場
合のε′、ε″、μ′及びμ″の測定結果を図3に、そ
の電波吸収特性を図6に示した。比透磁率が下がり、吸
収特性が悪くなっていることがわかる。
[Examples] The measurement results of the relative permittivity (ε r = ε′-jε ″) and the relative permeability (μ r = μ′−jμ ″) of a commonly used Ni-Zn ferrite wave absorber are shown in the figure. The electromagnetic wave absorption characteristics are shown in FIG. The dielectric loss (ε ″) is close to 0, the frequency characteristic is extremely small, and the 20 dB absorption band is 5
It is clear that the anechoic chamber, which is as narrow as 0M to 400MHz and therefore is made up of only ferrite electromagnetic wave absorbers, does not have sufficient electromagnetic wave absorption characteristics on the low frequency side. FIG. 2 shows the measurement results of ε ′, ε ″, μ ′ and μ ″ of the radio wave absorber according to the present invention in which the resistivity of the Ni—Zn ferrite radio wave absorber is controlled to 10 −1 Ω-m by the above method. To
The radio wave absorption characteristics are shown in FIG. It can be seen that the relative permittivity is increased and the magnetic loss μ ″ and the dielectric loss ε ″ are overlapped with each other, thereby improving the absorption characteristics in the low frequency region, particularly in the range of 20M to 50MHz. Furthermore, in the Ni-Zn ferrite electromagnetic wave absorber, the measurement results of ε ', ε ", μ'and μ" when the resistivity is controlled to 10 -3 Ω-m are shown in Fig. 3, and its electromagnetic wave absorption characteristics are shown. It is shown in FIG. It can be seen that the relative magnetic permeability decreases and the absorption characteristics deteriorate.

【0012】[0012]

【発明の効果】本発明によるフェライト電波吸収体は、
同程度の複素比透磁率と複素比誘電率とを併せ有するた
め、従来使用されているフェライト電波吸収体に比し、
低周波域、特に20M〜100MHz での吸収特性がすぐ
れ、従来の電波吸収体における欠点を解決できる。
The ferrite wave absorber according to the present invention is
Since it has a complex relative permeability and a complex relative permittivity of the same degree, compared to the conventional ferrite wave absorber,
It has excellent absorption characteristics in the low frequency range, especially in the range of 20M to 100MHz, and can solve the drawbacks of conventional wave absorbers.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のNi-Zn 系フェライト電波吸収体の比透磁
率、比誘電率と周波数との関係を示したグラフ図であ
る。
FIG. 1 is a graph showing the relationship between the relative magnetic permeability, relative permittivity and frequency of a conventional Ni-Zn ferrite radio wave absorber.

【図2】本願発明により、抵抗率を10-1Ω-mに制御し
たNi-Zn 系フェライト電波吸収体の比透磁率、比誘電率
と周波数との関係を示したグラフ図である。
FIG. 2 is a graph showing the relationship between the relative permeability, relative permittivity and frequency of a Ni—Zn ferrite radio wave absorber whose resistivity is controlled to 10 −1 Ω-m according to the present invention.

【図3】抵抗率を10-3Ω-mに制御したNi-Zn 系フェラ
イト電波吸収体の比透磁率、比誘電率と周波数との関係
を示したグラフ図である。
FIG. 3 is a graph showing the relationship between the relative permeability, relative permittivity, and frequency of a Ni—Zn ferrite radio wave absorber whose resistivity is controlled to 10 −3 Ω-m.

【図4】従来のNi-Zn 系フェライト電波吸収体の電波吸
収特性を示したグラフ図である。
FIG. 4 is a graph showing a radio wave absorption characteristic of a conventional Ni-Zn ferrite radio wave absorber.

【図5】本発明により抵抗率を10-1Ω-mに制御したNi
-Zn 系フェライト電波吸収体の電波吸収特性を示したグ
ラフ図である。
FIG. 5: Ni whose resistivity is controlled to 10 -1 Ω-m according to the present invention
FIG. 6 is a graph showing the electromagnetic wave absorption characteristics of a Zn-based ferrite electromagnetic wave absorber.

【図6】抵抗率を10-3Ω-mに制御したNi-Zn 系フェラ
イト電波吸収体の電波吸収特性を示したグラフ図であ
る。
FIG. 6 is a graph showing a radio wave absorption characteristic of a Ni-Zn ferrite radio wave absorber whose resistivity is controlled to 10 −3 Ω-m.

【図7】フェライト焼結体を反射板上に積層してえたフ
ェライト電波吸収体の構成を示した図である。
FIG. 7 is a diagram showing a configuration of a ferrite electromagnetic wave absorber obtained by laminating a ferrite sintered body on a reflection plate.

【符号の説明】[Explanation of symbols]

μ′ 比透磁率の実部 μ″ 比透磁率の虚部(磁気損失) ε′ 比誘電率の実部 ε″ 比誘電率の虚部(誘電損失) f 周波数(MHz) 1 反射板 2 焼結フェライト電波吸収体 3 電波 μ ′ Real part of relative permeability μ ″ Relative part of magnetic permeability (magnetic loss) ε ′ Real part of relative permittivity ε ″ Imaginary part of relative permittivity (dielectric loss) f Frequency (MHz) 1 Reflector 2 Burn Bonded ferrite wave absorber 3 radio wave

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フェライト焼結体の抵抗率を10-1〜1
-2Ω-mに制御したことを特徴とするフェライト電波吸
収体。
1. A ferrite sintered body having a resistivity of 10 -1 to 1
A ferrite electromagnetic wave absorber characterized by being controlled to 0 -2 Ω-m.
【請求項2】 磁気損失と誘電損失とを同程度に制御す
ることにより、低周波、特に20M〜100MHz での電
波吸収特性が20dB以上有するフェライト電波吸収体。
2. A ferrite radio wave absorber having a radio wave absorption characteristic of 20 dB or more at a low frequency, especially at 20 M to 100 MHz, by controlling the magnetic loss and the dielectric loss to the same degree.
JP3923293A 1993-02-04 1993-02-04 Ferrite radiowave absorber Pending JPH06232583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3923293A JPH06232583A (en) 1993-02-04 1993-02-04 Ferrite radiowave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3923293A JPH06232583A (en) 1993-02-04 1993-02-04 Ferrite radiowave absorber

Publications (1)

Publication Number Publication Date
JPH06232583A true JPH06232583A (en) 1994-08-19

Family

ID=12547388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3923293A Pending JPH06232583A (en) 1993-02-04 1993-02-04 Ferrite radiowave absorber

Country Status (1)

Country Link
JP (1) JPH06232583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246168A (en) * 2001-02-14 2002-08-30 Matsushita Electric Ind Co Ltd Transmission line, electromagnetic wave shielding device and microwave oven
US6745057B1 (en) 1999-05-10 2004-06-01 Nec Corporation Portable telephone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745057B1 (en) 1999-05-10 2004-06-01 Nec Corporation Portable telephone
JP2002246168A (en) * 2001-02-14 2002-08-30 Matsushita Electric Ind Co Ltd Transmission line, electromagnetic wave shielding device and microwave oven
JP4724925B2 (en) * 2001-02-14 2011-07-13 パナソニック株式会社 Electromagnetic wave shielding device and microwave oven

Similar Documents

Publication Publication Date Title
CN108061929B (en) Infrared, laser and microwave low-detectability compatible sub-wavelength structural material
CN103700951B (en) Complex media double-deck FSS structure SRR metal level ultra-thin absorbing material
CN110416742B (en) Light and thin broadband wave-absorbing metamaterial
CN109037956A (en) A kind of super surface system of radar invisible with wave beam aggregation feature, radar
CN110429389B (en) Wave-absorbing structure
JPH04354103A (en) Wideband radio wave absorbing device
JP2002158483A (en) Radio wave absorber
KR101961302B1 (en) Hybrid Radar Absorbing Structure for Aircraft
JPH06232583A (en) Ferrite radiowave absorber
KR20140021756A (en) Device apparatus using of meta-structure
CN109802243A (en) A kind of active-passive compatible composite radar absorber based on AFSS
WO2017157216A1 (en) Dual-polarized antenna
JPH06224583A (en) Ferrite radio absorptive material
CN110994188A (en) Strong coupling frequency selective surface structure insensitive to incident electromagnetic wave full angle
JP2806528B2 (en) Magnesium-zinc ferrite material for radio wave absorber
JPH1154981A (en) Electromagnetic wave absorber
Habib et al. An efficient FSS absorber for WLAN security
Döken et al. A simple frequency selective absorber surface design
Yahya et al. Compact single-layer UWB frequency selective surface
JP2706772B2 (en) Magnesium-zinc ferrite material for radio wave absorber
CN107608580A (en) Improve Salisbury screens and UHF radar frequency spectrum shift method
JPH0613779A (en) Radio wave absorbent
JP4343413B2 (en) Radio wave absorber
JP3192467B2 (en) Radio wave reflector, anechoic chamber
JPS61292998A (en) Radio wave absorbing material