JPH06230233A - Production of single crystal optical fiber and its apparatus - Google Patents

Production of single crystal optical fiber and its apparatus

Info

Publication number
JPH06230233A
JPH06230233A JP5018900A JP1890093A JPH06230233A JP H06230233 A JPH06230233 A JP H06230233A JP 5018900 A JP5018900 A JP 5018900A JP 1890093 A JP1890093 A JP 1890093A JP H06230233 A JPH06230233 A JP H06230233A
Authority
JP
Japan
Prior art keywords
optical fiber
single crystal
crystal optical
base material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5018900A
Other languages
Japanese (ja)
Inventor
Masami Miyagi
雅美 宮城
Yasuyuki Sugiyama
泰之 杉山
Iwao Hatakeyama
巌 畠山
Itaru Yokohama
至 横浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5018900A priority Critical patent/JPH06230233A/en
Publication of JPH06230233A publication Critical patent/JPH06230233A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide the process and apparatus for production of the single crystal optical fiber having decreased crystal defects and excellent light transmission characteristics. CONSTITUTION:The part near the solid-liquid boundary of a heated and molten part 11 and the single crystal optical fiber 9 is heated to the temp. below the m.p. of the single crystal optical fiber 9 by a part of a laser beam 7 to be used for heating and melting or another laser beam, thereby, the temp. distribution of the solid-liquid boundary is uniformalized and the rapid cooling of the grown single crystal optical fiber 9 is released in the process for production of the single crystal optical fiber 9 by heating and melting a base material with the laser beam 7, bringing a seed crystal into contact with the base material and moving the seed crystal together with the base material in the same direction. As a result, the good-quality single crystal optical fiber 9 having the decreased crystal defects and the excellent light transmission characteristic is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光信号処理あるいは記憶
素子等に使用される単結晶光ファイバの製造方法および
その装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a single crystal optical fiber used for optical signal processing or storage elements.

【0002】[0002]

【従来の技術】図2は、従来の単結晶光ファイバの製造
方法を示す説明図である。図において、単結晶光ファイ
バの原料となる母材2の上部を、加熱用レーザ光1によ
り加熱し、溶融部5を形成する。次に、溶融部5に種結
晶4を付着させた後、種結晶4を上方向に移動させると
共に、母材2も同方向に移動させることにより、単結晶
光ファイバ3が作製される。ここで、母材の移動速度を
1、種結晶の移動速度をV2、母材の直径をD1とする
と、作製される単結晶光ファイバの直径D2は、次の
(数1)式によって表わされる。 D2=D1×√(V1/V2) ……(数1) したがって、種結晶の移動速度V2および母材の移動速
度V1を調整することにより、所望の直径の単結晶光フ
ァイバを作製することができる。また、単結晶光ファイ
バ3の結晶方位は種結晶4の結晶方位と一致し、組成は
母材2の組成とほぼ同じになる。この従来の単結晶光フ
ァイバの製造方法において、溶融部5の周囲の温度は室
温程度である。これに対し、溶融部5の温度は母材の融
点以上となっており、例えば、この方法で作製されるS
BN(Sr0.6Ba0.4Nb26)結晶の場合には155
0℃以上になる。したがって、作製される単結晶光ファ
イバ3は溶融部5から固化する過程で急激に冷却され、
結晶内に歪が生じるという問題があった。また、溶融部
5から単結晶光ファイバ3が形成される固液界面近傍で
は、中心部ほど温度が高く、単結晶光ファイバ3の径方
向に温度勾配が生じているので、作製される光ファイバ
の径方向で冷却速度が異なり、それによっても結晶内に
歪が生じるという問題があった。この方法で作製される
単結晶光ファイバ3の直径は0.1〜1mm程度である
が、上記の問題点は、直径の大きい単結晶光ファイバを
作製する場合ほど大きくなり、従来の直径が0.5mm
以上の場合には良質の単結晶光ファイバが得られなかっ
た。すなわち、冷却過程で生じた光ファイバ単結晶内の
歪は、転位等の結晶欠陥となって現われ光の透過特性を
著しく悪化させていた。なお、従来技術として、例えば
米国特許第4,421,721号公報が挙げられる。
2. Description of the Related Art FIG. 2 is an explanatory view showing a conventional method for manufacturing a single crystal optical fiber. In the figure, an upper portion of a base material 2 which is a raw material of a single crystal optical fiber is heated by a heating laser beam 1 to form a fusion zone 5. Next, after adhering the seed crystal 4 to the melting part 5, the seed crystal 4 is moved upward and the base material 2 is also moved in the same direction, whereby the single crystal optical fiber 3 is manufactured. Here, assuming that the moving speed of the base material is V 1 , the moving speed of the seed crystal is V 2 , and the diameter of the base material is D 1 , the diameter D 2 of the single crystal optical fiber to be produced is It is represented by a formula. D 2 = D 1 × √ (V 1 / V 2 ) ... (Equation 1) Therefore, by adjusting the moving speed V 2 of the seed crystal and the moving speed V 1 of the base material, single crystal light having a desired diameter can be obtained. Fibers can be made. Further, the crystal orientation of the single crystal optical fiber 3 matches the crystal orientation of the seed crystal 4, and the composition becomes almost the same as the composition of the base material 2. In this conventional method for producing a single crystal optical fiber, the temperature around the fusion zone 5 is about room temperature. On the other hand, the temperature of the fusion zone 5 is equal to or higher than the melting point of the base material, and for example, S produced by this method is used.
155 in the case of BN (Sr 0.6 Ba 0.4 Nb 2 O 6 ) crystal
It will be over 0 ℃. Therefore, the produced single crystal optical fiber 3 is rapidly cooled in the process of solidifying from the fusion zone 5,
There is a problem that strain occurs in the crystal. Further, in the vicinity of the solid-liquid interface where the single crystal optical fiber 3 is formed from the fusion zone 5, the temperature is higher toward the center and a temperature gradient is generated in the radial direction of the single crystal optical fiber 3, so that the optical fiber to be produced is produced. There was a problem in that the cooling rate was different in the radial direction, and strain also occurred in the crystal due to this. The diameter of the single crystal optical fiber 3 manufactured by this method is about 0.1 to 1 mm, but the above problem becomes larger when a single crystal optical fiber having a larger diameter is manufactured, and the conventional diameter is 0 mm. .5 mm
In the above cases, a good quality single crystal optical fiber could not be obtained. That is, the strain in the optical fiber single crystal generated during the cooling process appears as a crystal defect such as a dislocation and significantly deteriorates the light transmission characteristics. As a conventional technique, for example, US Pat. No. 4,421,721 can be cited.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上述
した従来技術の問題点を解消するものであって、結晶欠
陥が少なく、光透過特性に優れた単結晶光ファイバの製
造方法およびその装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a single crystal optical fiber having few crystal defects and excellent light transmission characteristics, and a method thereof. To provide a device.

【0004】[0004]

【課題を解決するための手段】上記本発明の目的を達成
するために、単結晶光ファイバの母材の一端をレーザ光
により加熱溶融し、この加熱溶融部に種結晶を接触させ
て、上記母材を種結晶の方向に移動させると共に、種結
晶を母材と同一方向に移動させて単結晶光ファイバを製
造する方法において、上記レーザ光の一部、もしくは上
記レーザ光とは別のレーザ光を、上記加熱溶融部を形成
するものとは別の加熱源として用い、加熱溶融部と単結
晶光ファイバとの固液界面近傍を、成長した単結晶光フ
ァイバが溶融しない融点以下の温度に加熱することによ
って、上記固液界面近傍の温度分布の均一化をはかると
共に、成長した結晶の急激な冷却を緩和する工程を含む
ものである。従来の単結晶光ファイバの製造方法では、
加熱用レーザ光を母材の溶融のみに用いており、他の加
熱源は使用していないのに対し、本発明の単結晶光ファ
イバの製造方法では、加熱用レーザ光の一部もしくは別
のレーザ光を、母材の溶融のための加熱源とは別の加熱
源として使用し、固液界面の温度分布の均一化と単結晶
光ファイバの急激な冷却による歪の発生の抑制をはかる
ものである。
In order to achieve the above object of the present invention, one end of a base material of a single crystal optical fiber is heated and melted by laser light, and a seed crystal is brought into contact with the heated and melted portion, In the method of manufacturing a single crystal optical fiber by moving the base material in the direction of the seed crystal and moving the seed crystal in the same direction as the base material, a part of the laser light or a laser different from the laser light is used. The light is used as a heating source different from that for forming the heating / melting section, and the vicinity of the solid-liquid interface between the heating / melting section and the single crystal optical fiber is set to a temperature below the melting point at which the grown single crystal optical fiber does not melt. By heating, the temperature distribution in the vicinity of the solid-liquid interface is made uniform, and the step of reducing the rapid cooling of the grown crystal is included. In the conventional method for manufacturing a single crystal optical fiber,
The heating laser light is used only for melting the base material, and no other heating source is used. On the other hand, in the method for manufacturing a single crystal optical fiber of the present invention, a part of the heating laser light or another laser light is used. Laser light is used as a heating source different from the heating source for melting the base material to make the temperature distribution at the solid-liquid interface uniform and suppress the generation of strain due to rapid cooling of the single crystal optical fiber. Is.

【0005】[0005]

【実施例】図1は、本発明の単結晶光ファイバの製造装
置の結晶成長室近傍の構成の一例を示す模式図である。
図において、結晶成長室6内に導入された加熱用レーザ
光7は、ドーナツ状で45度の角度を持ったミラー12
により上方に反射され、同心円状に配置されたミラー1
3および14に入射する。ここで、加熱用レーザ光7は
1つのレーザ光源からの光であってもよいし、2以上の
レーザ光源からの光を同軸状に配置したものであっても
よい。例えば、ミラー13及びミラー14のそれぞれに
入射するレーザ光が別々のレーザ光源からの光であって
もよい。ミラー13は放物面を有し、ミラー13によっ
て反射したレーザ光は、母材8の上部を加熱溶融させ
る。この溶融部11に種結晶10を付着させた後、種結
晶10を速度V2で移動させ、母材8を速度V1で移動さ
せることにより、単結晶光ファイバ9が作製される。単
結晶光ファイバ9の直径D2は、上述した(数1)式に
より定まる。一方、ミラー14で反射されたレーザ光は
溶融部11と単結晶光ファイバ9との固液界面付近を照
射する。このミラー14によって反射されるレーザ光
は、ミラー13によって反射されるレーザ光に比べて弱
く、また、ミラー14は楕円面を有するため、ミラー1
3によって反射されるレーザ光ほど集光されない。した
がって、固液界面付近が溶融しない程度の温度に加熱す
ることができ、その温度分布が均一に保たれる。このた
め、作製される光ファイバの急激な冷却が抑制され、単
結晶光ファイバ9の径方向の冷却速度の均一化をはかる
ことが可能となる。次に、具体的実施例を説明する。C
eを0.02wt(重量)%ドープしたSBN(Sr0.6
Ba0.4Nb26)結晶を母材として、上述した本発明
の単結晶光ファイバの製造装置を用い、単結晶光ファイ
バを作製した。加熱用レーザ光1としては、CO2レー
ザを使用し、光源は1つとした。光ファイバの引き上げ
軸はa軸、引き上げ速度は0.5mm/minとし、直
径は0.5mm、長さは 5cmとした。得られたSBN
単結晶光ファイバについて、マイクロX線トポグラフに
よる結晶欠陥測定を行ったが結晶の欠陥は検出できなか
った。SBN結晶は、光照射により屈折率が変化するフ
ォトリフラクティブ特性を有し、これを用いてホログラ
ム記録媒体として使用することができる。ここで、作製
したSBN単結晶光ファイバについて、ホログラム記録
媒体としての評価を行った。作製した光ファイバを長さ
5mmに切断し、両端面を研磨した後、Arレーザ(波
長514.5nm)を用いたホログラム記録再生系に装
着し、記録再生特性の評価を行った。その結果、ホログ
ラムの回折効率は10%以上が得られ、また、記録画像
の再生分解能は100 lp/mm(line pair/mm)
であった。一方、従来の単結晶光ファイバの製造装置に
より作製したSBN単結晶光ファイバでは、回折効率に
ついては10%程度の値が得られているが、再生分解能
は10 lp/mm程度であり、本実施例で作製した単
結晶光ファイバでは再生分解能が大幅に改善されている
ことが分かった。これは、取りも直さず、作製した単結
晶光ファイバに結晶欠陥が少なく、均一性に優れている
ことを示している。また、上述の実施例ではSBN単結
晶光ファイバについて述べたが本発明の単結晶光ファイ
バの製造装置を用いることにより、例えばニオブ酸カリ
ウム、ニオブ酸リチウム、KTN(KTa1-xNb
x3)、YAG、Al23等の酸化物光学結晶や、Nb
あるいはCu系等の酸化物超伝導材料の単結晶ファイバ
等の高品質化にも本発明の単結晶光ファイバの製造方法
および装置が用いられることは容易に推定できる。
1 is a schematic view showing an example of the structure in the vicinity of a crystal growth chamber of an apparatus for producing a single crystal optical fiber according to the present invention.
In the figure, the heating laser beam 7 introduced into the crystal growth chamber 6 is a donut-shaped mirror 12 having an angle of 45 degrees.
Mirror 1 which is reflected in the upward direction and is arranged concentrically
Incident on 3 and 14. Here, the heating laser light 7 may be light from one laser light source, or light from two or more laser light sources may be coaxially arranged. For example, the laser light incident on each of the mirror 13 and the mirror 14 may be light from different laser light sources. The mirror 13 has a parabolic surface, and the laser light reflected by the mirror 13 heats and melts the upper portion of the base material 8. After adhering the seed crystal 10 to the fusion zone 11, the seed crystal 10 is moved at a speed V 2 and the base material 8 is moved at a speed V 1 , whereby the single crystal optical fiber 9 is manufactured. The diameter D 2 of the single crystal optical fiber 9 is determined by the equation (1) described above. On the other hand, the laser light reflected by the mirror 14 irradiates the vicinity of the solid-liquid interface between the fusion zone 11 and the single crystal optical fiber 9. The laser light reflected by the mirror 14 is weaker than the laser light reflected by the mirror 13, and the mirror 14 has an elliptical surface.
It is not as focused as the laser light reflected by 3. Therefore, it is possible to heat to a temperature at which the vicinity of the solid-liquid interface does not melt, and the temperature distribution is kept uniform. Therefore, rapid cooling of the manufactured optical fiber is suppressed, and the cooling rate in the radial direction of the single crystal optical fiber 9 can be made uniform. Next, specific examples will be described. C
SBN (Sr 0.6 ) doped with 0.02 wt%
Using a Ba 0.4 Nb 2 O 6 ) crystal as a base material, a single crystal optical fiber was produced using the above-described apparatus for producing a single crystal optical fiber of the present invention. A CO 2 laser was used as the heating laser beam 1, and the number of light sources was one. The pulling shaft of the optical fiber was a-axis, the pulling speed was 0.5 mm / min, the diameter was 0.5 mm, and the length was 5 cm. The obtained SBN
The crystal defects of the single crystal optical fiber were measured by micro X-ray topography, but no crystal defects could be detected. The SBN crystal has a photorefractive property in which the refractive index changes by light irradiation, and can be used as a hologram recording medium by using this. Here, the produced SBN single crystal optical fiber was evaluated as a hologram recording medium. The produced optical fiber was cut into a length of 5 mm, both end faces were polished, and then the optical fiber was mounted on a hologram recording / reproducing system using an Ar laser (wavelength 514.5 nm) to evaluate the recording / reproducing characteristics. As a result, the diffraction efficiency of the hologram is 10% or more, and the reproduction resolution of the recorded image is 100 lp / mm (line pair / mm).
Met. On the other hand, the SBN single crystal optical fiber produced by the conventional apparatus for producing a single crystal optical fiber has a diffraction efficiency of about 10%, but the reproduction resolution is about 10 lp / mm. It was found that the reproduction resolution of the single crystal optical fiber manufactured in the example was significantly improved. This indicates that the single crystal optical fiber thus produced had few crystal defects and was excellent in uniformity without being repaired. Further, although the SBN single crystal optical fiber has been described in the above-mentioned embodiment, by using the single crystal optical fiber manufacturing apparatus of the present invention, for example, potassium niobate, lithium niobate, KTN (KTa 1-x Nb) can be obtained.
x O 3 ), YAG, Al 2 O 3 and other oxide optical crystals, and Nb
Alternatively, it can be easily inferred that the method and apparatus for producing a single crystal optical fiber of the present invention is also used to improve the quality of a single crystal fiber made of a Cu-based oxide superconducting material.

【0006】[0006]

【発明の効果】以上説明したように、本発明の単結晶光
ファイバの製造方法および装置によれば、結晶欠陥が少
なく、光透過特性に優れた良質の単結晶光ファイバが得
られる。
As described above, according to the method and apparatus for manufacturing a single crystal optical fiber of the present invention, a good quality single crystal optical fiber having few crystal defects and excellent light transmission characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示した単結晶光ファイバの
製造装置の結晶成長室近傍の構成を示す模式図。
FIG. 1 is a schematic view showing a configuration in the vicinity of a crystal growth chamber of a manufacturing apparatus for a single crystal optical fiber illustrated in an embodiment of the present invention.

【図2】従来の単結晶光ファイバの製造方法を示す模式
図。
FIG. 2 is a schematic view showing a conventional method for manufacturing a single crystal optical fiber.

【符号の説明】[Explanation of symbols]

1…加熱用レーザ光 2…母材 3…単結晶光ファイバ 4…種結晶 5…溶融部 6…結晶成長室 7…加熱用レーザ光 8…母材 9…単結晶光ファイバ 10…種結晶 11…溶融部 12、13、14…ミラー D1…母材の直径 D2…針状単結晶の直径 V1…母材の移動速度 V2…種結晶の移動速度DESCRIPTION OF SYMBOLS 1 ... Laser light for heating 2 ... Base material 3 ... Single crystal optical fiber 4 ... Seed crystal 5 ... Melting part 6 ... Crystal growth chamber 7 ... Laser light for heating 8 ... Base material 9 ... Single crystal optical fiber 10 ... Seed crystal 11 … Melting part 12, 13, 14 ・ ・ ・ Mirror D 1・ ・ ・ Diameter of base material D 2・ ・ ・ Diameter of needle-like single crystal V 1・ ・ ・ Movement speed of base material V 2・ ・ ・ Movement speed of seed crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横浜 至 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yokohama To Chiyoda-ku, Tokyo 1-6, Uchisaiwaicho Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単結晶光ファイバの母材の一端をレーザ光
により加熱溶融し、該加熱溶融部に種結晶を接触させ、
上記母材を種結晶の方向に移動させると共に、上記種結
晶を母材と同一方向に移動させることにより単結晶光フ
ァイバを製造する方法において、上記加熱溶融に用いる
レーザ光の一部、もしくは上記加熱溶融に用いるレーザ
光とは別のレーザ光を用いて上記加熱溶融部と単結晶光
ファイバとの固液界面近傍を、成長した単結晶光ファイ
バの融点以下の温度に加熱して、上記固液界面での温度
分布の均一化と、成長した単結晶光ファイバの急速冷却
を緩和する工程を含むことを特徴とする単結晶光ファイ
バの製造方法。
1. A single crystal optical fiber, wherein one end of a base material is heated and melted by laser light, and a seed crystal is brought into contact with the heated and melted portion,
Along with moving the base material in the direction of the seed crystal, in the method for producing a single crystal optical fiber by moving the seed crystal in the same direction as the base material, a part of the laser light used for the heating and melting, or By using a laser beam different from the laser beam used for heating and melting, the vicinity of the solid-liquid interface between the heating and melting portion and the single crystal optical fiber is heated to a temperature equal to or lower than the melting point of the grown single crystal optical fiber, A method for producing a single crystal optical fiber, which comprises a step of uniformizing a temperature distribution at a liquid interface and a step of relaxing rapid cooling of the grown single crystal optical fiber.
【請求項2】単結晶光ファイバの母材の一端にレーザ光
を集光して母材を加熱溶融する手段と、上記加熱溶融部
に種結晶を接触させ、上記母材を種結晶の方向に移動さ
せると共に、上記種結晶を母材と同一方向に移動させて
単結晶光ファイバを成長させる手段を少なくとも備えた
単結晶光ファイバ製造装置の結晶成長室において、上記
加熱溶融部と単結晶光ファイバの固液界面近傍に、上記
レーザ光の一部を分岐し、該レーザ光の集光度合いを調
整して照射する手段、もしくは別のレーザ光源からのレ
ーザ光の集光度合いを調整して照射する手段を配設し、
上記固液界面近傍を、単結晶光ファイバの融点以下の温
度にほぼ均等に加熱制御する手段を設けたことを特徴と
する単結晶光ファイバの製造装置。
2. A means for condensing a laser beam on one end of a base material of a single crystal optical fiber to heat and melt the base material, and a seed crystal is brought into contact with the heating / melting portion to direct the base material to the direction of the seed crystal. In the crystal growth chamber of the single crystal optical fiber manufacturing apparatus equipped with at least a means for growing the single crystal optical fiber by moving the seed crystal in the same direction as the base material, the heating and melting part and the single crystal light. In the vicinity of the solid-liquid interface of the fiber, a part of the laser beam is branched and a means for irradiating by adjusting the focusing degree of the laser beam, or the focusing degree of the laser beam from another laser light source is adjusted. Arrange means for irradiating,
An apparatus for producing a single crystal optical fiber, characterized in that means for controlling heating of the vicinity of the solid-liquid interface near the melting point of the single crystal optical fiber substantially evenly is provided.
JP5018900A 1993-02-05 1993-02-05 Production of single crystal optical fiber and its apparatus Pending JPH06230233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018900A JPH06230233A (en) 1993-02-05 1993-02-05 Production of single crystal optical fiber and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018900A JPH06230233A (en) 1993-02-05 1993-02-05 Production of single crystal optical fiber and its apparatus

Publications (1)

Publication Number Publication Date
JPH06230233A true JPH06230233A (en) 1994-08-19

Family

ID=11984468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018900A Pending JPH06230233A (en) 1993-02-05 1993-02-05 Production of single crystal optical fiber and its apparatus

Country Status (1)

Country Link
JP (1) JPH06230233A (en)

Similar Documents

Publication Publication Date Title
KR20170135872A (en) Methods and apparatuses for producing thin crystalline fibers using LHPG (Laser Heating Pedestal Growth)
JPH06230233A (en) Production of single crystal optical fiber and its apparatus
JPH0570936A (en) Thin hgcdte film and production thereof
Wilde et al. Growth of Sr0. 61Ba0. 39Nb2O6 fibers: New results regarding orientation
JPH05341139A (en) Device for manufacturing single crystal optical fiber
JPH07104134A (en) Apparatus for producing single crystal optical fiber
JPH03122090A (en) Preventing rearrangement from occurrence
JPS6037505A (en) Preparation of light guide made of organic crystal
Sugiyama et al. Growth of a-axis strontium barium niobate single crystal fibers
JP3649283B2 (en) Manufacturing method of optical material for ultraviolet laser beam
JPH07107568B2 (en) Method of manufacturing image fiber
JPH0815534A (en) Crystalline fiber and its production
JPH0534523A (en) Method and apparatus for producing single crystal optical fiber
JPH04136164A (en) Sputtering target for forming protective film for optical recording medium and its production
JPS63138530A (en) Optical disk device
JPH03284828A (en) Crystallizing method for semiconductor thin-film
JP3747505B2 (en) Process for producing beta-barium borate single crystal
JPH063535A (en) Photorefractive single crystal fiber
JP3010881B2 (en) Single crystal growth method
JPH0235815Y2 (en)
JPS59126503A (en) Optical fiber for beam formation
JPH10101486A (en) Optical material for ultraviolet laser beam
JPH06191996A (en) Method for producing lithium niobate single crystal and optical element
JPH0692672A (en) Drawing furnace containing double crucible
JPS62217204A (en) Crystalline optical fiber and its production