JPS63138530A - Optical disk device - Google Patents

Optical disk device

Info

Publication number
JPS63138530A
JPS63138530A JP61284704A JP28470486A JPS63138530A JP S63138530 A JPS63138530 A JP S63138530A JP 61284704 A JP61284704 A JP 61284704A JP 28470486 A JP28470486 A JP 28470486A JP S63138530 A JPS63138530 A JP S63138530A
Authority
JP
Japan
Prior art keywords
light
erasing
extinction
section
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284704A
Other languages
Japanese (ja)
Inventor
Ryutaro Akutagawa
竜太郎 芥川
Shinichi Aso
阿曽 伸一
Hirozo Takegawa
武川 博三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61284704A priority Critical patent/JPS63138530A/en
Publication of JPS63138530A publication Critical patent/JPS63138530A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely erase recorded optical information without causing performance deterioration of an optical disk by constituting the device of an extinction part applying temperature-rising and annealing to an extinction light and of a heat buffer part buffering an adrupt temperature gradient caused by the extinction part. CONSTITUTION:The extinction part is constituted by arranging a melt light 2 and an anneal light 3 on a recording track 1 and the heat buffer part 4 is constituted by a light with a large half value but a small beam power in a way covering the lights 2 and 3. The extinction light (the light 2 is moved forward and the light 3 is moved backward) is moved on the track 1 while annealing gradually and crystallizing the recording material film by the light 2. In this case, the heat buffer part 4 is moved while buffering the temperature gradient caused by the extinction part at the same time. According to the method above, all the extinction processes are finished and the moment the extinction light is extinguished, especially in the front of light 2, an adrupt temperature gradient is buffered and it is possible to erase optical information while suppressing the production of thermal damage and not deteriorating the performance of the optical disk.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザー光線の照射によって、その光学的性質
を可逆的に変化する感光性記録材料を用いた光ディスク
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical disc device using a photosensitive recording material whose optical properties can be reversibly changed by irradiation with a laser beam.

従来の技術 従来、情報の訂正、書換え可能な光ディスクとして、ア
クリル等の高分子樹脂のディスク基板上に感光性材料を
薄膜の形で形成し、この光ディスクの上にレーザー照射
することにより、加熱し急冷と徐冷により光学的特性即
ち反射率や透過率を変化させて記録消去を行うものが一
般に用いられている。
Conventional technology Conventionally, in order to create an optical disc that allows information to be corrected and rewritten, a photosensitive material is formed in the form of a thin film on a disc substrate made of polymeric resin such as acrylic, and the optical disc is heated by irradiating it with a laser. Generally used are devices in which recording and erasure are performed by changing the optical properties, ie, reflectance and transmittance, by rapid cooling and slow cooling.

上記特性を示す記録材料として、例えば、カルコゲン化
合物、或はテルルにゲルマニウム、アンチモン等を添加
物とした金属化合物が用いられ、これらを使って記録は
反射率の低い一般にアモルファスといわれる状態とし、
消去は加熱徐冷により反射率の高い結晶状態とすること
で、光学情報を実時間で記録、消去することが出来る。
As a recording material exhibiting the above characteristics, for example, a chalcogen compound or a metal compound containing tellurium with germanium, antimony, etc. as an additive is used, and by using these, recording is made into a state generally called amorphous with low reflectance.
For erasing, optical information can be recorded and erased in real time by heating and slowly cooling it to a crystalline state with high reflectance.

光源としては、高い絞り性能を満たし、かつ小型で直接
変調が可能な半導体レーザが一般的である。
As a light source, a semiconductor laser that satisfies high aperture performance, is small, and can be directly modulated is generally used.

アモルファス記録のためには、第4図Aのal(ビーム
径a1r)で示すような、よく絞り込まれた例えば半値
幅(al、)で171rn程度のノ(ワー密度の大きい
円形のレーザ光で記録トラック1を照射し、第4図Bの
温度変化図に示すように、記録材料を溶融し、急冷させ
ることが必要である。これに対し消去時には、結晶化の
ために徐冷する必要があるので、第6図Aのb2(ディ
スク回転方向ビーム径b2x、ディスク半径方向ビーム
径b2ア)の様な比較的光スポット長の長い、例えば半
値幅に対してb2xが20μm程度、b2.iが2μm
程度の長円光を照射し、第6図Bの温度変化図に示すよ
うに徐冷し結晶化させるのが従来一般的であった。
For amorphous recording, a well-focused circular laser beam with a large beam density (al It is necessary to irradiate track 1, melt the recording material, and rapidly cool it as shown in the temperature change diagram in Figure 4B.On the other hand, when erasing, it is necessary to slowly cool it for crystallization. Therefore, when the optical spot length is relatively long, such as b2 (beam diameter b2x in the disk rotational direction, beam diameter b2a in the disk radial direction) in FIG. 2μm
Conventionally, it has been common practice to irradiate a material with elliptical light of a certain degree, and to slowly cool it and crystallize it as shown in the temperature change diagram of FIG. 6B.

このようにして生じた結晶状態は、固体状態での結晶核
の生成により生じたものであり、未記録部の結晶とは、
僅かながら光学定数がずれ記録信号の痕跡を残し、消去
率が悪くなるという不都合が生じてきた。この不都合を
さけるために、第6図Aで示す様な長円光の消去ビーム
C2(ディスク回転方向ビーム径C2!、ディスク半径
方向C2ア)の前に比較的パワー密度の高い円形光(以
降メルト光と称する)C1(ビーム径C1r)を照射し
、記録トラック上の情報未記録部、記録部を一様に溶融
し、後の長円光(以降アニール光と称する)C2により
徐冷して確実に消去する試みがある(特開昭60−23
1928号公報)。
The crystalline state created in this way is caused by the generation of crystal nuclei in the solid state, and the crystals in the unrecorded area are
There has been a problem in that the optical constants are slightly shifted, leaving traces of the recorded signal, and the erasing rate is poor. In order to avoid this inconvenience, in front of the elliptical erasing beam C2 (beam diameter C2 in the disk rotational direction, C2A in the disk radial direction) as shown in FIG. 6A, a circular beam with relatively high power density (hereafter Melt light (referred to as melt light) C1 (beam diameter C1r) is irradiated to uniformly melt the information-unrecorded areas and recorded parts on the recording track, and then slowly cooled by elliptical light C2 (hereinafter referred to as annealing light). There is an attempt to ensure erasure using
1928).

第6図Bは前記消去に用いられた円形のメルト光C1、
長円形のアニール光C2のディスク回転方向に対するレ
ーザー強度分を示したものであり、第6図Cは、記録材
料薄膜の温度変化を示したものである。メルト光として
は、記録トラック幅とほぼ同等の広が9を持った情報記
録部を溶融させるために、レーザーパワーにして15〜
20 mW、これと対応する半値幅として、’1rが2
〜3μm必要であり、小さいパワー例えば10 mW程
度であると確実に記録トラック幅を溶融できず、逆に半
値幅を大きくとり、記録トラックの幅以上を溶融するだ
めには、上記のように大きなレーザー、<ヮーが必要に
なる。同時に、この様な形状のレーザー元を用いた場合
、記録材料膜の最高温度を示す記録トラック中央部の温
度を、溶融温度(Tm)より、かなり高い温度まで上昇
させ、ひいては、光ディスクの熱的損傷を生じてしまう
ことがあった。また、前記熱的損傷は、消去光が消える
時点でのメルト光前方の温度勾配が最も急峻な場所(セ
クターエンド)に特に多く観察された。
FIG. 6B shows the circular melt light C1 used for the erasing,
It shows the laser intensity of the oval annealing light C2 in the disk rotation direction, and FIG. 6C shows the temperature change of the recording material thin film. The melting light has a laser power of 15~15 to melt the information recording area with a width 9 that is almost the same as the recording track width.
20 mW, and the corresponding half-width, '1r is 2
~3 μm is required, and if the power is small, for example, about 10 mW, it will not be possible to reliably melt the recording track width.On the contrary, in order to increase the half width and melt more than the width of the recording track, a large power as described above is required. You will need a laser. At the same time, when a laser source with such a shape is used, the temperature at the center of the recording track, which indicates the highest temperature of the recording material film, is raised to a temperature considerably higher than the melting temperature (Tm), which in turn increases the thermal stability of the optical disc. Damage could occur. Further, the thermal damage was particularly observed at a location (sector end) where the temperature gradient in front of the melt light at the time when the erasing light disappeared was the steepest.

発明が解決しようとする問題点 従来用いられてきた消去方式の場合、従来例の所でも述
べたように、消去光が消える時点でのメルト光前方(セ
クターエンド)で、温度勾配が急峻となるため熱的損傷
が発生し、光ディスクの性能劣化の大きな原因になると
いう欠点を有していた。
Problems to be Solved by the Invention In the conventional erasing method, as mentioned in the conventional example, the temperature gradient becomes steep in front of the melt light (sector end) at the point when the erasing light disappears. Therefore, thermal damage occurs, which is a major cause of performance deterioration of the optical disk.

そこで、本発明は熱的損傷による光ディスクの性能劣化
を生じさせずに、光ディスク上に記録さり、た光学情報
を確実に消去する方法を提供するものである。
Therefore, the present invention provides a method for reliably erasing optical information recorded on an optical disk without causing performance deterioration of the optical disk due to thermal damage.

問題点を解決するだめの手段 本発明は、上記問題点を解決するため、消去光を消去部
と前記消去部よりビークパワーの低い熱緩衝部より構成
したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is such that the erasing light is composed of an erasing section and a thermal buffer section whose beak power is lower than that of the erasing section.

作  用 本発明は上記した構成により、消去部によって溶融徐冷
という従来の消去メカニズムが行われ、熱緩衝部によっ
て消去部周辺に温度勾配の緩やかな領域が形成される。
Effects According to the present invention, with the above-described configuration, the conventional erasing mechanism of melting and slow cooling is carried out by the erasing section, and a region with a gentle temperature gradient is formed around the erasing section by the thermal buffer section.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
。記録媒体としては、前述のように記録前前後により光
学定敬の変化するもの、即ち加熱急冷により反射率の低
いアモルファス状態とし、加熱徐冷により反射率の高い
結晶状態を生む、例えばカルコゲン化合物、或は、テル
ル、ゲルマニウム、アンチモン等を用いた金属化合物を
用いる。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. As the recording medium, as mentioned above, the optical stability changes depending on the state before and after recording, i.e., the amorphous state with low reflectance is produced by heating and cooling rapidly, and the crystalline state with high reflectance is produced by heating and slowly cooling, for example, chalcogen compounds, Alternatively, a metal compound using tellurium, germanium, antimony, etc. is used.

これらの記録媒体の結晶、アモルファスの相変態は、材
料の組成によって微妙に異なるが、本発明の方法とは直
接関係なく本発明を左右するものではない。また、記録
状態をアモルファス、消去状態を結晶と定めているが、
逆も轟然のことながら、可能で有り本発明では、便宜上
、記録状態をアモルファス、消去状態を結晶とする。
The crystalline and amorphous phase transformations of these recording media differ slightly depending on the composition of the material, but are not directly related to the method of the present invention and do not affect the present invention. Also, the recorded state is defined as amorphous and the erased state is defined as crystalline.
The reverse is of course also possible, and in the present invention, for convenience, the recorded state is amorphous and the erased state is crystalline.

最初、熱処理等で反射率の高い結晶状態とした、未記録
の光ディスクに、ビームを絞ったパワー密度の大きい円
形光を照射して情報を記録する。
First, information is recorded on an unrecorded optical disk, which has been made into a highly reflective crystalline state through heat treatment or the like, by irradiating a focused circular beam with high power density.

例えば、11000rpで回転している光ディスクの場
合、パワーにして、10mW前後、半値幅にして1μm
弱の円形光をディスク半径10αのトラックに照射する
と、記録材料膜はよく絞られた光のために急速に加熱さ
れかつ約100nSeCと短い時間で、レーザー光が通
過するために急冷となり、はぼ記録トラック幅(一般に
約7000大枠度)と同時の幅がアモルファス化されて
情報記録部(ビット)が生成される。実施例では、情報
記録部を消去する方法について説明する。
For example, in the case of an optical disc rotating at 11000 rpm, the power is around 10 mW, and the half width is 1 μm.
When weak circular light is irradiated onto a track with a radius of 10α on the disk, the recording material film is rapidly heated due to the well focused light, and in a short time of approximately 100 nSeC, it is rapidly cooled due to the passage of the laser light, and almost no heat is generated. The same width as the recording track width (generally about 7000 degrees) is amorphized to generate an information recording portion (bit). In the embodiment, a method for erasing an information recording section will be explained.

第1図Aは本発明の消去ビームの構成図であシ、記録ト
ランク1上にメルト光2.アニール光3を配置し消去部
を構成し、前記メルト光2、及びアニール光3を覆う様
に半値幅が大きくビームパワーの小さい光によって熱緩
衝部4を構成した。第1図Bは、消去光のディスク回転
方向に対する強度分布であり実線5,6.7はそれぞれ
メルト光2、アニール光3.熱緩衝部4各々の単独の強
度分布を表し、点線8は、メルト光2.アニール光3、
熱緩衝部4を合成したときの強度分布である。
FIG. 1A is a block diagram of the erasing beam of the present invention, in which melt light 2. The annealing light 3 was arranged to constitute an erasing section, and the thermal buffer section 4 was composed of light having a large half width and a small beam power so as to cover the melt light 2 and the annealing light 3. FIG. 1B shows the intensity distribution of the erasing light in the disk rotation direction, and the solid lines 5, 6.7 are melt light 2, annealing light 3, and 7, respectively. The dotted line 8 represents the individual intensity distribution of each of the thermal buffers 4. Anneal light 3,
This is the intensity distribution when the thermal buffer section 4 is combined.

前記消去光は、前記メルト光2を前方、前記アニール光
3を後方として記録トラック上を、前記メルト光2によ
って記録材料膜を加熱昇温しその直後アニール光3によ
って前記記録材料膜を徐冷し結晶化しつつ移動する。こ
のとき熱緩衝部4は、消去部によって生じる温度勾配を
緩やかにしながら同時に移動する。以上の方法によれば
、従来の方法では、消去のプロセスが全て終了し消去光
が消えた瞬間、特にメルト光前方で生じる急峻な温度勾
配を緩やかにでき熱的損傷の発生を押え光ディスクの性
能を劣化させずに光学情報を消去することが可能となる
The erasing light passes over the recording track with the melt light 2 in the front and the annealing light 3 in the rear, heating the recording material film by the melt light 2 to raise the temperature, and immediately thereafter slowly cooling the recording material film by the annealing light 3. It moves while crystallizing. At this time, the thermal buffer section 4 simultaneously moves while softening the temperature gradient caused by the erasing section. According to the above method, when the erasing process is completed and the erasing light disappears, the steep temperature gradient that occurs especially in front of the melt light can be made gentler, suppressing the occurrence of thermal damage and improving the performance of the optical disk. It becomes possible to erase optical information without deteriorating it.

第2図Aは本発明の他の実施例の消去ビーム構成図であ
り、記録トラ5・り9上にメルト光10゜アニール光1
1を配置し消去部を構成し前記メルト光1oの前方に熱
緩衝部12を配置し消去光を構成したものである。第2
図Bは、消去光のディスク回転方向の強度分布であり実
線13.14゜15はそれぞれメルト光10.アニール
光11゜熱緩衝部12各々の単独の強度分布であり、点
線16はメルト光、アニール光、熱緩衝部を合成した強
度分布である。前記消去光は前記メルト光1゜を前方、
前記アニール光11を後方として記録トラック9上を、
前記メルト光10によって記録材料膜を加熱昇温し、そ
の直後アニール光11によって前記記録材を徐冷し結晶
化しつつ移動する。
FIG. 2A is a configuration diagram of an erasing beam according to another embodiment of the present invention, in which melt light 10° annealing light 1 is applied onto recording tracks 5 and 9.
1 is arranged to constitute an erasing section, and a thermal buffer section 12 is arranged in front of the melt light 1o to constitute an erasing light. Second
Figure B shows the intensity distribution of the erasing light in the disk rotation direction, and the solid lines 13.14°15 indicate the melt light 10.15°, respectively. This is the individual intensity distribution of the annealing light 11° and the thermal buffer section 12, and the dotted line 16 is the combined intensity distribution of the melt light, the annealing light, and the thermal buffer section. The erasing light is directed 1° in front of the melt light,
On the recording track 9 with the annealing light 11 at the rear,
The recording material film is heated and heated by the melt light 10, and immediately thereafter, the recording material is slowly cooled by the annealing light 11 and moved while being crystallized.

この時熱緩衝部12は、メルト光10によって生じる温
度勾配を緩やかにしながら同時に移動する。
At this time, the thermal buffer section 12 simultaneously moves while making the temperature gradient caused by the melt light 10 gentle.

以上の方法によれば、従来の方法では、消去のプロセス
が全て終了し消去光が消えた瞬間、特にメルト光前方で
生じる急峻な温度勾配を緩やかにでき熱的損傷の発生を
押え光ディスクの性能を劣化させずに光学情報を消去す
ることが可能となる。
According to the above method, when the erasing process is completed and the erasing light disappears, the steep temperature gradient that occurs especially in front of the melt light can be made gentler, suppressing the occurrence of thermal damage and improving the performance of the optical disk. It becomes possible to erase optical information without deteriorating it.

また、熱緩衝部はメルト光前方に比較的絞られて形成さ
れるので熱緩衝部に要するパワーは小さくても高温部か
ら緩やかな温度勾配にすることが可能であり最高温度等
、消去部へ与える影響が少なくすむ。
In addition, since the thermal buffer section is formed relatively narrowly in front of the melt light, even if the power required for the thermal buffer section is small, it is possible to create a gentle temperature gradient from the high temperature section, and it is possible to create a gentle temperature gradient from the high temperature section to the erase section. The impact will be less.

第3図は、中央に平行部、両端にテーパー部を形成した
偏角プリズム17によって1つの光源より出たレーザー
光を3つに波面分割すると共に光   □路側向を行い
記録トラック上に熱緩衝部2o、メルト光21、アニー
ル光22とディスク回転方向に順にスポットを形成して
いる。以上の構成によって光源を増すことなく、しかも
1ビームで熱緩衝部を設けることが可能となり、前述の
効果に加えて低コスト化、及び小型化といった効果があ
る。
Figure 3 shows a deflection prism 17 with a parallel part in the center and tapered parts at both ends, which splits the wavefront of a laser beam emitted from one light source into three parts, directs the light to the road side, and thermally buffers it onto the recording track. Spots are formed in the direction of rotation of the disk in order of the part 2o, the melt light 21, and the annealing light 22. With the above configuration, it is possible to provide a thermal buffer with one beam without increasing the number of light sources, and in addition to the above-mentioned effects, there are effects such as cost reduction and miniaturization.

発明の効果 本発明の光ディスク装置は、消去光を、昇温徐冷を行う
消去部と、消去部によって生じた急峻な温度勾配を緩め
る熱緩衝部より構成したものであるから、消去光が消え
た瞬間に生じる急峻な温度勾配を和らげ消去時に於ける
光ディスクの熱的損傷を無くし光ディスクの性能劣化を
防ぐことが可能であるなど、実用上、多大な効果を発揮
するものである。
Effects of the Invention The optical disk device of the present invention is composed of an erasing section that heats up and gradually cools the erasing light, and a thermal buffer section that softens the steep temperature gradient caused by the erasing section. This has great practical effects, such as softening the steep temperature gradient that occurs at the moment of erasing, eliminating thermal damage to the optical disk during erasing, and preventing performance deterioration of the optical disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光ディスク装置の動作を説
明するもので、Aは消去光構成図、Bはレーザー強度分
布図、第2図は本発明の異なる実施例の光ディスク装置
の硬作を説明するもので、Aは消去光構成図、Bはレー
ザー強度分布図、第3図は本発明の異なる実施例の光デ
ィスク装置の光学系の概略図、第4図は従来の記録動作
を説明するものでありAはビーム形状図、Bは記録膜の
温度変化図、第5図は従来の消去動作を説明するもので
Aはビーム形状図、Bは記録膜上の温度変化図、第6図
は異なる従来の消去動作を説明するものであ如、Aはビ
ーム形状図、Bはレーザー強度分布図、Cは記録膜上の
温度変化図である。 1 、9・−・=−記録トラック、2,5,10.13
・・・・・・メルト光、3.6,11.14・・・・・
・アニール光、4,7.12.15・・・・・・熱緩衝
部、8.16・・・・・・消去光強度分布。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ん ζBン 距難 第2図 (A) tB> 距 亀 第4図 (A> αtr (B’1 轡藺      − 第5図 (A) Ff関 第6図 囚
FIG. 1 explains the operation of an optical disk device according to an embodiment of the present invention, in which A is a block diagram of an erasing light, B is a laser intensity distribution diagram, and FIG. 2 is a hard disk drive of an optical disk device according to a different embodiment of the present invention. 3 is a schematic diagram of an optical system of an optical disk device according to a different embodiment of the present invention, and FIG. 4 is a diagram illustrating a conventional recording operation. A is a beam shape diagram, B is a temperature change diagram on the recording film, and FIG. 5 is a diagram explaining the conventional erasing operation. 6 illustrates a different conventional erasing operation, in which A is a beam shape diagram, B is a laser intensity distribution diagram, and C is a temperature change diagram on the recording film. 1, 9...=-recording track, 2, 5, 10.13
...Melt light, 3.6, 11.14...
- Annealing light, 4,7.12.15...Thermal buffer section, 8.16...Erasing light intensity distribution. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (A) tB> Distance Figure 4 (A> αtr (B'1 轡藺 - Figure 5 (A) Ff Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)消去部と前記消去部よりビームパワーの低い熱緩
衝部よりなる消去ビームを光ディスク記録面に照射して
消去を行うことを特徴とする光ディスク装置。
(1) An optical disc device characterized in that erasing is performed by irradiating the recording surface of an optical disc with an erasing beam consisting of an erasing section and a thermal buffer section whose beam power is lower than that of the erasing section.
(2)高低2つのビームパワーピークを持つ消去部と前
記消去部の前方に熱緩衝部を配置し、消去ビームを構成
した特許請求の範囲第1項記載の光ディスク装置。
(2) The optical disc device according to claim 1, wherein the erasing beam is configured by an erasing section having two high and low beam power peaks and a thermal buffer section in front of the erasing section.
(3)中央に平行部を、前記平行部の両側にテーパー部
を形成した偏角プリズムによって、一つの光源より出る
レーザービームを、一方の前記テーパー部と平行部によ
り前記消去部、他方の前記テーパー部によって熱緩衝部
とに分割し、前方より前記熱緩衝部、前記消去部の順に
配置して消去ビームを構成した特許請求の範囲第2項記
載の光ディスク装置。
(3) A deflection prism with a parallel part in the center and tapered parts on both sides of the parallel part is used to direct the laser beam emitted from one light source into the erasing part by the tapered part and the parallel part on one side, and into the erasing part by the tapered part and the parallel part on the other side. 3. The optical disc device according to claim 2, wherein the optical disc device is divided into a thermal buffering portion by a tapered portion, and the thermal buffering portion and the erasing portion are arranged in this order from the front to form an erasing beam.
JP61284704A 1986-11-28 1986-11-28 Optical disk device Pending JPS63138530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284704A JPS63138530A (en) 1986-11-28 1986-11-28 Optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284704A JPS63138530A (en) 1986-11-28 1986-11-28 Optical disk device

Publications (1)

Publication Number Publication Date
JPS63138530A true JPS63138530A (en) 1988-06-10

Family

ID=17681893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284704A Pending JPS63138530A (en) 1986-11-28 1986-11-28 Optical disk device

Country Status (1)

Country Link
JP (1) JPS63138530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272684A (en) * 1989-08-01 1993-12-21 Mitsubishi Denki Kabushiki Kaisha Information recording method and information recording apparatus for magneto-optic recording information medium
JPH08147752A (en) * 1994-11-16 1996-06-07 Nec Corp Optical disk device and erasing optical head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272684A (en) * 1989-08-01 1993-12-21 Mitsubishi Denki Kabushiki Kaisha Information recording method and information recording apparatus for magneto-optic recording information medium
JPH08147752A (en) * 1994-11-16 1996-06-07 Nec Corp Optical disk device and erasing optical head

Similar Documents

Publication Publication Date Title
JPH039536B2 (en)
JP2702923B2 (en) Information recording method and information recording device
JPS63253536A (en) Information recording method utilizing reversible phase change
US6278680B1 (en) Initial crystallization method of recording media and device thereof
JPS63138530A (en) Optical disk device
JPH04119883A (en) Optical recording medium and optical recording method using the same
JP2728413B2 (en) Information recording / reproducing method and apparatus
JPH0376027A (en) Method and device for initializing recording medium
JP2941703B2 (en) Information recording method and information recording device
JPH03263626A (en) Optical information recording, reproducing and erasing member
JPS6310337A (en) Optical information recording and erasing device
JPH0452189A (en) Optical record medium and method to manufacture optical record medium
JPS63213124A (en) Optical disk device
JPS6310335A (en) Optical information eraser
JPS6310334A (en) Optical information eraser
JPS6310336A (en) Optical information recording and erasing device
JPS63214938A (en) Optical recording medium
JP3223907B2 (en) Optical information recording method
JPH04209317A (en) Initialization method of information recording medium
JPS6376120A (en) Erasable type optical recording medium
JPH0729175A (en) Recording method of information
JPH01113921A (en) Recording and erasing method for optical type information recording carrier
JP3134869B2 (en) How information is recorded
JP3031274B2 (en) How information is recorded
JP3134873B2 (en) How information is recorded