JPH0623005Y2 - Photo coupler circuit - Google Patents

Photo coupler circuit

Info

Publication number
JPH0623005Y2
JPH0623005Y2 JP1988022696U JP2269688U JPH0623005Y2 JP H0623005 Y2 JPH0623005 Y2 JP H0623005Y2 JP 1988022696 U JP1988022696 U JP 1988022696U JP 2269688 U JP2269688 U JP 2269688U JP H0623005 Y2 JPH0623005 Y2 JP H0623005Y2
Authority
JP
Japan
Prior art keywords
voltage
circuit
emitting element
light emitting
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988022696U
Other languages
Japanese (ja)
Other versions
JPH01127265U (en
Inventor
憲也 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1988022696U priority Critical patent/JPH0623005Y2/en
Publication of JPH01127265U publication Critical patent/JPH01127265U/ja
Application granted granted Critical
Publication of JPH0623005Y2 publication Critical patent/JPH0623005Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は電子回路への信号の入力回路等に適するフォト
カプラ回路であって、フォトカプラの発光素子側回路内
に発光素子に対する直列抵抗と並列抵抗とが設けられる
ものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a photocoupler circuit suitable for an input circuit of a signal to an electronic circuit and the like. And a parallel resistor.

〔従来の技術〕[Conventional technology]

よく知られているようにフォトカプラはその入力側と出
力側とを相互に絶縁する上で非常に有用であり、とくに
プログラムコントローラのような電子装置で強電回路を
制御する場合には、強電回路から電子回路に信号を取り
込みあるいは電子回路から制御信号を強電回路に発信す
る際のインターフェースとして不可欠なものになってい
る。ところが、電子回路への信号の入力回路に用いられ
るフォトカプラは、強電回路からノイズ電圧が侵入した
ときその発光素子が発光してしまって電子回路に誤った
信号が与えられることがある。このため、発光素子が誤
って発光してもそれがノイズに基づく短時間内である限
り電子回路に信号が与えられることがないよう、フォト
カプラの受光素子側にフィルタないし時定数回路を挿入
することが従来から行なわれている。
As is well known, a photocoupler is very useful for isolating the input side and the output side from each other, especially when controlling a high voltage circuit by an electronic device such as a program controller. It is indispensable as an interface when a signal is fetched from the electronic circuit to the electronic circuit or a control signal is transmitted from the electronic circuit to the high voltage circuit. However, in a photocoupler used for an input circuit of a signal to an electronic circuit, when a noise voltage enters from a high voltage circuit, the light emitting element thereof emits light and an incorrect signal may be given to the electronic circuit. Therefore, a filter or a time constant circuit is inserted on the light receiving element side of the photocoupler so that a signal is not given to the electronic circuit as long as it is within a short time due to noise even if the light emitting element emits light by mistake. Has been done conventionally.

第5図はかかる従来例を示すものである。図において、
1がフォトカプラであって発光ダイオード等の発光素子
2とフォトトランジスタ等の受光素子3からなり、この
フォトカプラ1を含むフォトカプラ回路30は、その左側
の入力端子Tiに強電回路の電源4の電圧V1をスイッチ5
を断続した入力信号Siを受けて、右側の出力端子Toから
それに応じた出力信号Soを電子回路に与える。フォトカ
プラ回路30内にはフォトカプラ1の発光素子側回路と受
光素子側回路とが含まれている。前者は発光素子2に対
する直列抵抗11と並列抵抗12とからなり、入力信号Siが
オンのときその電圧V1を両抵抗11,12により分圧して発
光素子2を発光させるようになっている。受光素子側回
路が電子回路用の電源V2から電位引き上げ抵抗21を介し
て給電され、受光素子3は図示のようにこの引き上げ抵
抗21と直列に接続される。受光素子3と並列に放電抵抗
22とキャパシタ23の直列回路が接続されており、キャパ
シタ23の電圧がしきい値動作をするインバータ24を介し
て出力信号Soとして取り出される。
FIG. 5 shows such a conventional example. In the figure,
Reference numeral 1 denotes a photocoupler, which comprises a light emitting element 2 such as a light emitting diode and a light receiving element 3 such as a phototransistor. A photocoupler circuit 30 including this photocoupler 1 has a power supply 4 of a high voltage circuit at its left input terminal Ti. Switch the voltage V1 to 5
Upon receiving the intermittent input signal Si, the corresponding output signal So is given to the electronic circuit from the right output terminal To. The photo coupler circuit 30 includes a light emitting element side circuit and a light receiving element side circuit of the photo coupler 1. The former is composed of a series resistor 11 and a parallel resistor 12 for the light emitting element 2, and when the input signal Si is on, the voltage V1 is divided by the resistors 11 and 12 to cause the light emitting element 2 to emit light. The light receiving element side circuit is supplied with power from a power source V2 for an electronic circuit via a potential raising resistor 21, and the light receiving element 3 is connected in series with this raising resistor 21 as shown in the drawing. Discharge resistance in parallel with the light receiving element 3
A series circuit of 22 and a capacitor 23 is connected, and the voltage of the capacitor 23 is taken out as an output signal So via an inverter 24 that operates as a threshold.

入力信号Siがオフのときフォトカプラ1の発光素子2は
発光せず、従って受光素子3もオフなので、キャパシタ
23は引き上げ抵抗21と放電抵抗22とを介して電圧V2に充
填され、インバータ24はこの充電電圧を受けて出力信号
Soをオフにしている。入力信号Siがオンになり発光素子
2の発光に基づいて受光素子3がオンすると、キャパシ
タ23が放電抵抗22を介して放電され、その電圧v2がイン
バータ24のもつしきい値以下になったときに出力信号So
がオンになる。
When the input signal Si is off, the light emitting element 2 of the photocoupler 1 does not emit light, and therefore the light receiving element 3 is also off, so that the capacitor
23 is charged to the voltage V2 via the pull-up resistor 21 and the discharge resistor 22, and the inverter 24 receives this charge voltage and outputs an output signal.
So is off. When the input signal Si is turned on and the light receiving element 3 is turned on based on the light emission of the light emitting element 2, the capacitor 23 is discharged through the discharge resistor 22 and its voltage v2 becomes equal to or lower than the threshold value of the inverter 24. Output signal to So
Turns on.

いま、ある時間幅をもつノイズNが入力端子Tiから侵入
して発光素子3が発光したとすると、これにより受光素
子3がオンしてキャパシタ23の電圧v2が低下するが、そ
の値がインバータ24のしきい値以下になるまでの時間を
ノイズNの時間幅よりも長くしておけば、出力信号Soに
ノイズによる誤った信号は発生しない。つまり、この従
来回路ではノイズNが持ち得る最大の時間幅に対して受
光素子側回路内の放電抵抗22とキャパシタ23とで決まる
放電の時定数を多少余裕を見て長目にしておくことによ
り、出力信号Soにノイズに基づく誤信号が発生しないよ
うにするわけである。もちろん、ノイズのもつ時間幅よ
りも長い時間幅をもつ正規の入力信号Siが与えられたと
きには、フォトカプラ回路30は正常に動作する。
Now, assuming that the noise N having a certain time width enters from the input terminal Ti and the light emitting element 3 emits light, the light receiving element 3 is turned on and the voltage v2 of the capacitor 23 decreases, but the value is the inverter 24. If the time until it becomes less than or equal to the threshold value of is set longer than the time width of the noise N, an erroneous signal due to noise does not occur in the output signal So. That is, in this conventional circuit, the discharge time constant determined by the discharge resistor 22 and the capacitor 23 in the light receiving element side circuit is set to be long with some margin with respect to the maximum time width that the noise N can have. , So that an erroneous signal due to noise does not occur in the output signal So. Of course, when the regular input signal Si having a time width longer than the noise time width is given, the photocoupler circuit 30 operates normally.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところが、この従来のフォトカプラ回路では、ノイズが
繰り返して侵入して来たときに誤信号を発する問題があ
る。これを第6図を参照しながら説明する。
However, this conventional photocoupler circuit has a problem that an erroneous signal is emitted when noise repeatedly enters. This will be described with reference to FIG.

第6図(a)は入子端子Tiに侵入するノイズの電圧波形を
示し、図では簡単化のため三角波状のノイズ電圧が連続
的に侵入したものとしてある。同図(b)はこのノイズ電
圧によりフォトカプラ1の発光素子2に掛かる電圧v1を
示す。この電圧v1はノイズ電圧Vnを2個の抵抗11,12で
分圧したもので、元来はノイズ電圧Vnの相似波形である
が、その値が発光素子2の発光しきい値Vt1を上回わる
と、このしきい値にクランプされるので図示のような台
形状になる。同図(c)は発光素子2の発光Lを示し、容
易にわかるように電圧v1の上の平坦部に対応する時間内
にこの光Lがオンされる。同図(b)は受光素子側回路内
のインバータ24への入子電圧つまりキャパシタ23の電圧
v2を示し、光Lのオン時に前述の時定数で立ち下がり、
光Lのオフ時に立ち上がる。しかし、ノイズが繰り返え
して侵入し、これに応じて発光素子2が同図(c)のよう
に繰り返えして発光すると、電圧v2の立ち上がりないし
は回復がこれに追い付かないで、その値が図示のように
発光ごとに漸次低下して遂にはインバータ24のしきい値
Vt2を下回わってしまい、この時点で同図(e)に示すよう
に出力信号Soに誤信号が発生してしまう。
FIG. 6 (a) shows a voltage waveform of noise penetrating into the nesting terminal Ti. In the figure, for simplification, it is assumed that a triangular wave noise voltage continuously invades. FIG. 3B shows the voltage v1 applied to the light emitting element 2 of the photocoupler 1 due to this noise voltage. This voltage v1 is obtained by dividing the noise voltage Vn by the two resistors 11 and 12, and originally has a similar waveform to the noise voltage Vn, but the value exceeds the light emission threshold Vt1 of the light emitting element 2. If so, it is clamped to this threshold value, so that it becomes a trapezoidal shape as shown. FIG. 6C shows the light emission L of the light emitting element 2, and as can be easily understood, the light L is turned on within the time corresponding to the flat portion above the voltage v1. In the figure, (b) shows the nesting voltage to the inverter 24 in the circuit on the light receiving element side, that is, the voltage of the capacitor
v2, and when the light L is on, it falls with the above-mentioned time constant,
It stands up when the light L is off. However, if noise repeatedly invades and the light emitting element 2 emits light repeatedly in response to this, the rise or recovery of the voltage v2 cannot catch up with it. The value gradually decreases with each emission as shown in the figure, and finally the threshold value of the inverter 24.
Since it falls below Vt2, an erroneous signal occurs in the output signal So at this point as shown in FIG.

上述のようにノイズが繰り返えしてないしは連続して侵
入したときの問題は、キャパシタ23の電圧v2の回復速度
つまりその充電の時定数を上げれば解消できるが、この
充電時定数は引き上げ抵抗21と放電抵抗22の抵抗値の和
とキャパシタ23のキャパシタンス値の積で決まるので、
必ず放電時定数より大きくなる。もちろん、回路を工夫
することにより充電時定数を放電時定数よりも小さくす
ることも不可能ではないが、これらの時定数の大小関係
ないし比は、入力信号Si側のスイッチ5のチャタリング
やバウンス(はね返えり)への対策との関連があって、
あまり自由に選択することが許されない。
As described above, the problem when the noise is repeated or continuously intrudes can be solved by increasing the recovery speed of the voltage v2 of the capacitor 23, that is, the time constant of its charging. Since it is determined by the product of the sum of the resistance values of 21 and the discharge resistance 22 and the capacitance value of the capacitor 23,
It is always greater than the discharge time constant. Of course, it is not impossible to make the charging time constant smaller than the discharging time constant by devising the circuit, but the magnitude relationship or ratio of these time constants depends on the chattering and bounce of the switch 5 on the input signal Si side ( It has a connection with measures against (repelling),
I am not allowed to choose too freely.

本考案はかかる問題を解決して、ノイズが繰り返えして
侵入して来ても誤信号の発生のおそれが少なく、かつ正
規の入力信号に対しては正常な応答速度で動作しうるフ
ォトカプラ回路を得ることを目的とする。
The present invention solves such a problem so that there is less risk of generating an erroneous signal even if noise is repeatedly introduced and a photo signal that can operate at a normal response speed to a regular input signal. The purpose is to obtain a coupler circuit.

〔課題を解決するための手段〕[Means for Solving the Problems]

前述の目的を達成するため本考案は、フォトカプラの発
光素子側回路内に発光素子に対する直列抵抗と並列抵抗
とが設けられ、フォトカオプラの受光素子側回路内に受
光素子に直列接続される放電抵抗とノイズ除去用キャパ
シタとが設けられたフォトカプラ回路において、前記発
光素子側回路の発光素子に対する並列抵抗に並列にキャ
パシタを接続し、フォトカプラ回路の発光素子側に外部
から侵入しうるノイズ中の電圧と時間幅の積の最大なも
のに対して並列抵抗に掛かる電圧のノイズの時間幅内の
最大値が発光素子の発光しきい値の1.5倍以下になるよ
うに時定数を選択したことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a series resistor and a parallel resistor for a light emitting element in a light emitting element side circuit of a photocoupler, and a discharge resistor connected in series with the light receiving element in a light receiving element side circuit of a photocapra. In a photocoupler circuit provided with a noise removing capacitor, a capacitor is connected in parallel to a parallel resistor for the light emitting element of the light emitting element side circuit, and noise in the noise which may enter from the outside to the light emitting element side of the photocoupler circuit. The time constant was selected so that the maximum value of the noise of the voltage applied to the parallel resistance within the time width with respect to the maximum product of the voltage and the time width is 1.5 times or less the light emission threshold of the light emitting element. Characterize.

〔作用〕[Action]

本考案は問題の原因であるノイズ電圧の時間幅が正規の
信号と比べて短く、この性質を利用すればノイズを正規
の信号と区別して対策を施しうる点に着目し、かつこの
対策は従来のようにフォトカプラを介していわばデイジ
タル化された信号を扱う受光素子側回路に施すよりは、
むしろアナログ的な信号を扱う発光素子側回路に施す方
が有利なことに着目してなされたもので、上記構成にい
うように発光素子側回路内の並列抵抗に対して並列にキ
ャパシタを接続することにより、ノイズ電圧に基づく発
光素子の発光時間を従来よりも短縮しあるいは発光をな
くして、誤信号が起こらないようにすることに成功した
ものである。
The present invention focuses on the fact that the time width of the noise voltage, which is the cause of the problem, is shorter than that of a regular signal, and if this property is used, noise can be distinguished from a regular signal and countermeasures can be taken. Rather than applying to the light receiving element side circuit that handles the digitalized signal through the photo coupler like
Rather, it was made paying attention to the fact that it is more advantageous to apply it to the light emitting element side circuit that handles analog signals, and as described above, connect a capacitor in parallel to the parallel resistance in the light emitting element side circuit. As a result, the light emission time of the light emitting element based on the noise voltage is shortened as compared with the conventional one or the light emission is eliminated to prevent an erroneous signal from occurring.

以下、第1図と第2図を参照しながら上記構成のもつ作
用を説明する。
The operation of the above configuration will be described below with reference to FIGS. 1 and 2.

第1図にはフォトカプラ回路中のフォトカプラ1の発光
素子2側の回路が示されており、図からわかるように発
光素子2に対して直列抵抗11と並列抵抗12とが設けられ
ているのは従来と同じであるが、本考案に基づき並列抵
抗12に対して並列にキャパシタ13が接続されている。入
力端子Tiからは図示のような三角波状,矩形状のほか種
々の波形のノイズNが侵入しうるが、以下簡単化のため
かつその中で最も条件の悪い矩形状のノイズが侵入して
来たものとする。第2図(a)にはこの波形がノイズ電圧V
nとして拡大して示されており、キャパシタ13は接続さ
れていないものとすると、これを直列抵抗11の抵抗値Rs
と並列抵抗12の抵抗値Rpとで分圧した電圧Vd=Vn・Rp/
(Rs+Rp)が発光素子に掛かり、もちろんこの電圧Vdの値
は発光素子の発光しきい値Vt1より大きいので、発光素
子はノイズがもつ時間幅Tnを通じて発光することにな
る。本考案によりキャパシタンス値Cのキャパシタ13を
並列抵抗12に並列接続すると、発光素子2に掛かる電圧
v1は図示のようにその立ち上がりが遅れ、その時間的な
経過はよく知られているように、 v1=Vd(1−e-t/ τ) で表わされる。ただしτは時定数で、両抵抗11,12の並
列抵抗値をRとすると、τ=C・Rで1/R=1/Rs+Rpにな
る。この電圧v1が発光素子の発光しきい値Vt1にまで立
ち上がったとき発光素子は同図(b)のように発光Lを起
こすが、この発光時間TLはノイズの時間幅Tnよりも常に
短くなる。また、電圧v1は発光素子が発光するとほぼそ
の発光しきい値Vt1に図示のようにクランプされる。
FIG. 1 shows a circuit on the side of the light emitting element 2 of the photocoupler 1 in the photocoupler circuit. As can be seen from the figure, the light emitting element 2 is provided with a series resistor 11 and a parallel resistor 12. 1 is the same as the conventional one, but according to the present invention, the capacitor 13 is connected in parallel to the parallel resistor 12. From the input terminal Ti, noise N having various waveforms such as triangular wave shape and rectangular shape as shown in the figure may enter. However, for the sake of simplification and in the following, the rectangular noise having the worst condition may enter. It is assumed that This waveform shows noise voltage V in Fig. 2 (a).
It is shown enlarged as n, and assuming that the capacitor 13 is not connected, this is represented by the resistance value Rs of the series resistor 11.
Voltage divided by the resistance value Rp of the parallel resistor 12 and Vd = Vn.Rp /
Since (Rs + Rp) is applied to the light emitting element and the value of the voltage Vd is larger than the light emitting threshold value Vt1 of the light emitting element, the light emitting element emits light over the time width Tn of noise. According to the present invention, when the capacitor 13 having the capacitance value C is connected in parallel with the parallel resistor 12, the voltage applied to the light emitting element 2 is increased.
As shown in the figure, the rising of v1 is delayed, and its time course is well known, and is represented by v1 = Vd (1-e- t / τ ). However, τ is a time constant, and when the parallel resistance value of both resistors 11 and 12 is R, 1 / R = 1 / Rs + Rp with τ = C · R. When the voltage v1 rises to the light emission threshold value Vt1 of the light emitting element, the light emitting element causes light emission L as shown in FIG. 7B, but the light emission time TL is always shorter than the noise time width Tn. When the light emitting element emits light, the voltage v1 is almost clamped to the light emission threshold Vt1 as shown in the figure.

発光素子に掛かる電圧の立ち上がりはノイズ電圧Vnが大
きい程早く、かつその時間幅Tn内に達しうる最大値は時
間幅Tnが長い程高くなるから、この最大値はノイズのも
つ電圧値と時間幅との積によってほぼ決まる。ノイズに
起因する発光素子の発光時間TLを短くするには、時定数
τを長くして電圧と時間幅の積が最大のノイズに対して
も、電圧v1の時間幅Tn内にとりうる最大値が発光素子の
発光しきい値Vt1を余り越えないようにすればよい。電
圧v1の最大値がこの例のように時間幅Tnの終期に起きる
とすると、この関係は、 K=(Vd/Vt1)(1−e-rn/ τ) で定義される係数Kで表わされ、時定数τを大きく選ぶ
ことにより係数Kが1を余り越えないようにすればよい
ことになる。しかし、時定数τを余り大きくするとフォ
トカプラ回路のオン動作速度が遅くなってしまうことに
なり、従って係数Kには自ら制約が生じる。この制約下
で、ノイズに起因する発光素子の発光時間を極力短くし
て誤信号の発生を有効に防止するには、経験的であるが
この係数Kが1.5以下になるように時定数τを選択する
のが望ましい。
The higher the noise voltage Vn is, the faster the voltage applied to the light emitting element rises, and the longer the time width Tn is, the higher the maximum value that can be reached within the time width Tn is. Therefore, this maximum value is the voltage value and the time width of the noise. It is almost decided by the product of and. In order to shorten the light emission time TL of the light emitting element due to noise, the maximum value that can be taken within the time width Tn of the voltage v1 is set even if the time constant τ is increased and the product of the voltage and the time width is maximum. The light emission threshold Vt1 of the light emitting element should not be exceeded so much. Assuming that the maximum value of the voltage v1 occurs at the end of the time width Tn as in this example, this relationship is expressed by the coefficient K defined by K = (Vd / Vt1) (1-e- rn / τ ). Therefore, the coefficient K should be set so as not to exceed 1 by selecting a large time constant τ. However, if the time constant τ is made too large, the ON operation speed of the photocoupler circuit will be slowed down, and therefore the coefficient K will be restricted by itself. Under this constraint, it is empirical to shorten the light emission time of the light emitting element due to noise as much as possible and effectively prevent the generation of an erroneous signal, but it is empirical that the time constant τ is set so that the coefficient K becomes 1.5 or less. It is desirable to select.

〔実施例〕〔Example〕

以下、第3図と第4図を参照しながら本考案の実施例を
説明する。第3図は本考案によるフォトカプラ回路30の
実施例回路図であるが、その発光素子側回路は前の第1
図と,受光素子側回路は第5図と同じで対応部分に同符
号が付されているので、その説明は一切省略する。その
入力端子Tiから図示のように三角波状の連続したノイズ
Nが侵入して来た場合について、以下第4図を参照しな
がらその動作を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. FIG. 3 is a circuit diagram of an embodiment of the photocoupler circuit 30 according to the present invention.
Since the figure and the circuit on the light receiving element side are the same as those in FIG. 5 and corresponding parts are designated by the same reference numerals, the description thereof will be omitted at all. The operation will be described below with reference to FIG. 4 in the case where a continuous noise N having a triangular waveform as shown in the figure enters from the input terminal Ti.

第4図(a)にはノイズ電圧Vnが前の第6図と同じ波形で
示されており、これにより発光素子2に掛かる電圧v2の
波形が同図(b)に示されている。図の左端のノイズの山
について説明すると、時刻t0からノイズ電圧Vnが正方向
に立ち上がるとそれに応じて電圧V1も立ち上がるが、そ
の立ち上がりはキャパシタ13によって従来よりも緩やか
で、その最大値は三角波の場合ノイズがもつ時間幅Tnの
終期近くになる。しかし、ノイズ電圧がこの例のように
高いと、電圧v1はこの最大値に至るまでに発光素子2の
発光しきい値Vt1に達し、この時刻t1から同図(c)に示す
ように発光Lが起こる。従って、この時刻t1以降は電圧
v1は発光しきい値Vt1にクランプされる。発光素子2が
発光すると、その順方向抵抗が並列抵抗12に並列接続さ
れることになり、ノイズ電圧は直列抵抗11とこの順方向
抵抗および並列抵抗12の合成抵抗とで分圧されて発光素
子2に掛かるので、この分圧電圧が発光素子の発光しき
い値Vt1を越える間中発光Lが維持されることになる。
ノイズ電圧が発光を維持しうるこの限界値が同図(a)に
維持電圧Vhで示されており、ノイズ電圧Vnがこの維持電
圧Vhにまで下がった時刻t2において発光Lが停止する。
この発光停止時刻t2にキャパシタ13は発光しきい値Vt1
で充電されているが、以降は低抵抗値の並列抵抗12によ
って放電されるので電圧v2は同図(d)のようにかなり急
速に減衰する。
The noise voltage Vn is shown in FIG. 4 (a) with the same waveform as in FIG. 6 above, and the waveform of the voltage v2 applied to the light emitting element 2 is shown in FIG. 4 (b). Explaining the noise peak at the left end of the figure, when the noise voltage Vn rises in the positive direction from time t0, the voltage V1 also rises accordingly, but its rise is gentler than before due to the capacitor 13, and its maximum value is a triangular wave. In the case, it is near the end of the time width Tn of noise. However, if the noise voltage is high as in this example, the voltage v1 reaches the light emission threshold value Vt1 of the light emitting element 2 by the time it reaches this maximum value, and from this time t1 as shown in FIG. Happens. Therefore, after this time t1, the voltage is
v1 is clamped to the light emission threshold Vt1. When the light emitting element 2 emits light, its forward resistance is connected in parallel to the parallel resistance 12, and the noise voltage is divided by the series resistance 11 and the combined resistance of the forward resistance and the parallel resistance 12, and the light emitting element is thus divided. Therefore, the light emission L is maintained while the divided voltage exceeds the light emission threshold value Vt1 of the light emitting element.
This limit value at which the noise voltage can maintain the light emission is shown by the sustain voltage Vh in FIG. 9A, and the light emission L stops at the time t2 when the noise voltage Vn drops to the sustain voltage Vh.
At this light emission stop time t2, the capacitor 13 has the light emission threshold Vt1.
However, the voltage v2 decays fairly rapidly as shown in FIG. 6 (d) because it is discharged by the parallel resistance 12 having a low resistance value.

ノイズの電圧Vnや時間幅Tnが大きい限り、同図(c)に示
すようにノイズの正の山ごとに発光Lが生じるが、同図
(a)の右端の山で示すようにノイズの電圧や時間幅が小
さいと、これに応じて同図(b)に示すように発光素子に
かかる電圧v1は時刻t3から立ち上がるもののその最大値
が発光しきい値Vt1に達せず、従って発光は起こらな
い。また、同じノイズ電圧波形に対応する第6図と比較
すればわかるように、本考案によるフォトカプラ回路で
は発光Lが起きても各発光時間TLが従来よりもずっと短
くなる。同図(d)はこの発光Lに伴う受光素子3側回路
内のインバータ24への入力電圧v2の変化の様子を示し、
各発光時間TLが従来よりも短いので、図示のようにこの
間に電圧v2は一旦は立ち下がるものの次の発光が起こる
までの間に電源電圧v2のごく近くまで回復する。このた
め本考案回路では、ノイズがこの例のように連続して侵
入して来て発光Lが繰り返えして発生しても、従来のよ
うに電圧v2の立ち上がりが漸次累積されてその値がイン
バータ24の動作しきい値Vt2を下回わってしまうような
ことがなくなり、従って同図(e)に示すように出力信号S
oに誤信号が発生することがない。
As long as the noise voltage Vn and the time width Tn are large, the light emission L is generated for each positive peak of the noise as shown in FIG.
When the noise voltage and the time width are small as shown by the peak at the right end of (a), the voltage v1 applied to the light-emitting element accordingly rises from time t3, but its maximum value is The light emission threshold Vt1 has not been reached, so no light emission occurs. Further, as can be seen by comparing with FIG. 6 corresponding to the same noise voltage waveform, in the photocoupler circuit according to the present invention, each light emission time TL becomes much shorter than before even if the light emission L occurs. FIG. 7D shows how the input voltage v2 to the inverter 24 in the light receiving element 3 side circuit changes with the light emission L.
Since each light emission time TL is shorter than before, the voltage v2 once falls during this period as shown in the figure, but recovers to a voltage close to the power supply voltage v2 until the next light emission occurs. For this reason, in the circuit of the present invention, even if noise continuously intrudes and the light emission L is repeatedly generated as in this example, the rising of the voltage v2 is gradually accumulated as in the conventional case, and its value is increased. Does not fall below the operating threshold value Vt2 of the inverter 24. Therefore, the output signal S
No false signal is generated at o.

以上説明した実施例からもわかるように、本考案による
フォトカプラの発光素子側回路において、キャパシタ13
のキャパシタンスにより作られる動作時定数は入力端子
から侵入して来るノイズの時間幅に合わせて選択され
る。一方、その受光素子側回路のキャパシタ23が関係す
る動作時定数は前述のようにフォトカプラ回路30に対し
て要求される動作速度に合わせて選択される。換言すれ
ば、本考案ではフォトカプラ回路の動作速度とは独立し
てノイズ対策を発光素子側回路に施すことができるわけ
で、このため本考案を実施してもフォトカプラ回路の動
作特性は実施的にその影響を受けることがない。
As can be seen from the embodiments described above, in the light emitting element side circuit of the photocoupler according to the present invention, the capacitor 13
The operating time constant created by the capacitance of is selected according to the time width of the noise coming from the input terminal. On the other hand, the operation time constant related to the capacitor 23 of the light receiving element side circuit is selected according to the operation speed required for the photocoupler circuit 30 as described above. In other words, in the present invention, noise countermeasures can be applied to the light emitting element side circuit independently of the operation speed of the photocoupler circuit. Therefore, even if the present invention is implemented, the operation characteristics of the photocoupler circuit are not affected. Is not affected by it.

なお、以上の実施例では入力信号Siが直流の電源4から
作られるものとしたが、電源4が交流方式であっても発
光素子側回路に整流器等を適宜に追加することによっ
て、本考案は例示された実施例に限らず種々の態様で実
施をすることができる。
Although the input signal Si is generated from the DC power supply 4 in the above embodiments, the present invention can be realized by appropriately adding a rectifier or the like to the light emitting element side circuit even if the power supply 4 is an AC power supply. The present invention can be implemented in various ways without being limited to the illustrated embodiment.

〔考案の効果〕[Effect of device]

以上説明したとおり本考案においては、フォトカプラの
発光素子側回路内に発光素子に対する直列抵抗と並列抵
抗とが設けられ、フォトカオプラの受光素子側回路内に
受光素子に直列接続される放電抵抗とノイズ除去用キャ
パシタとが設けられたフォトカプラ回路において、前記
発光素子側回路の発光素子に対する並列抵抗に並列にキ
ャパシタを接続し、フォトカプラ回路の発光素子側に外
部から侵入しうるノイズ中の電圧と時間幅の積の最大な
ものに対して並列抵抗に掛かる電圧のノイズの時間幅内
の最大値が発光素子の発光しきい値の1.5倍以下になる
ように時定数を選択したことによって、ノイズの侵入に
起因する誤信号対策を、受光素子側のノイズ除去用キャ
パシタに加えて受光素子側回路に施すことにより、発光
素子がノイズにより発光する時間を短縮することがで
き、その受光素子側回路に与える悪影響が著しく軽減さ
れてノイズによる誤信号の発生が実質上皆無になり、ま
たこの誤信号対策が発光素子側回路にキャパシタを追加
するだけですむので、受光素子側で設定されるフォトカ
プラ回路の正常な信号に対する動作速度等の特性が本考
案の実施により影響されることがなく、フォトカプラ回
路に要求されるないしは所望の特性を容易に持たせるこ
とができる。さらに、本考案の実施のために従来回路に
追加すべき部品はキャパシタ1個ですみ、僅少な失費で
フォトカプラ回路の動作信頼性を著しく向上することが
できる。
As described above, in the present invention, the series resistance and the parallel resistance with respect to the light emitting element are provided in the light emitting element side circuit of the photocoupler, and the discharge resistance and the noise connected in series with the light receiving element are provided in the light receiving element side circuit of the photocoupler. In a photocoupler circuit provided with a removing capacitor, a capacitor is connected in parallel to a parallel resistor for the light emitting element of the light emitting element side circuit, and a voltage in noise that may enter from the outside to the light emitting element side of the photocoupler circuit. By selecting the time constant so that the maximum value of the noise of the voltage applied to the parallel resistance within the time width with respect to the maximum product of the time width is 1.5 times or less of the light emission threshold of the light emitting element, the noise In addition to the noise removal capacitor on the light-receiving element side and the light-receiving element side circuit, measures against erroneous signals due to intrusion of The time for light emission can be shortened, the adverse effect on the circuit on the light receiving element side is significantly reduced, and the generation of false signals due to noise is virtually eliminated, and this false signal countermeasure adds a capacitor to the circuit on the light emitting element side. Therefore, the characteristics such as the operating speed of the photo coupler circuit set on the light receiving element side with respect to a normal signal are not affected by the implementation of the present invention, and the characteristics required or desired for the photo coupler circuit are not required. Can be easily held. Furthermore, only one capacitor needs to be added to the conventional circuit for implementing the present invention, and the operation reliability of the photocoupler circuit can be significantly improved with a slight loss.

かかる特長をもつ本考案によるフォトカプラ回路は、前
述のように電子回路への信号の入力回路にとくに適し、
ノイズによる電子回路の誤動作を減少させる上で非常に
有効かつ有用である。
The photocoupler circuit according to the present invention having such features is particularly suitable for an input circuit of a signal to an electronic circuit as described above,
It is very effective and useful in reducing malfunctions of electronic circuits due to noise.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図までが本考案に関し、第1図は本考案
によるフォトカプラ回路の要部の回路図、第2図はその
動作を説明する波形図、第3図は本考案の実施例回路
図、第4図はその主な信号の波形図である。第5図以降
は従来技術に関し、第5図は従来のフォトカプラ回路の
回路図、第6図はその主な信号の波形図である。図にお
いて、 1:フォトカプラ、2:発光素子、3:受光素子、4:
入力側電源、5:スイッチ、11:直列抵抗、12:並列抵
抗、13:キャパシタ、21:電位引き上げ抵抗、22:放電
抵抗、23:キャパシタ、24:インバータ、C:キャパシ
タ13のキャパシタンス値、L:発光、N:ノイズ、Si:
入力信号、So:出力信号、Ti:入力端子、Tn:ノイズの
時間幅、To:出力端子、TL:発光時間、t:時間、t0〜
t3:時刻t0、Vd:ノイズ電圧の分圧値、Vh:維持電圧、
Vn:ノイズ電圧、Vt1:発光素子の発光しきい値、Vt2:
インバータの動作しきい値、V1:入力信号用電圧、V2:
フォトカプラの受光素子側回路用電源電圧、v1:発光素
子に掛かる電圧、v2:インバータへの入力電圧、であ
る。
1 to 4 relate to the present invention, FIG. 1 is a circuit diagram of a main part of a photocoupler circuit according to the present invention, FIG. 2 is a waveform diagram for explaining its operation, and FIG. 3 is an implementation of the present invention. An example circuit diagram and FIG. 4 are waveform diagrams of the main signals. FIG. 5 and subsequent figures relate to the conventional technique, FIG. 5 is a circuit diagram of a conventional photocoupler circuit, and FIG. 6 is a waveform diagram of main signals thereof. In the figure, 1: photo coupler, 2: light emitting element, 3: light receiving element, 4:
Input side power supply, 5: switch, 11: series resistance, 12: parallel resistance, 13: capacitor, 21: potential raising resistance, 22: discharge resistance, 23: capacitor, 24: inverter, C: capacitance value of capacitor 13, L : Light emission, N: noise, Si:
Input signal, So: Output signal, Ti: Input terminal, Tn: Noise time width, To: Output terminal, TL: Light emission time, t: Time, t0 ~
t3: time t0, Vd: divided voltage value of noise voltage, Vh: sustain voltage,
Vn: noise voltage, Vt1: light emission threshold of light emitting element, Vt2:
Inverter operating threshold, V1: Input signal voltage, V2:
Power supply voltage for the light receiving element side circuit of the photo coupler, v1: voltage applied to the light emitting element, v2: input voltage to the inverter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】フォトカプラの発光素子側回路内に発光素
子に対する直列抵抗と並列抵抗とが設けられ、フォトカ
オプラの受光素子側回路内に受光素子に直列接続される
放電抵抗とノイズ除去用キャパシタとが設けられたフォ
トカプラ回路において、前記発光素子側回路の発光素子
に対する並列抵抗に並列にキャパシタを接続し、フォト
カプラ回路の発光素子側に外部から侵入しうるノイズ中
の電圧と時間幅の積の最大なものに対して並列抵抗に掛
かる電圧のノイズの時間幅内の最大値が発光素子の発光
しきい値の1.5倍以下になるように時定数を選択したこ
とを特徴とするフォトカプラ回路。
1. A series resistor and a parallel resistor for a light emitting element are provided in a light emitting element side circuit of a photocoupler, and a discharge resistor and a noise removing capacitor are connected in series in the light receiving element side circuit of a photocapra. In the photocoupler circuit provided with, a capacitor is connected in parallel to the parallel resistor for the light emitting element of the light emitting element side circuit, and the product of the voltage in the noise and the time width that can enter from the outside to the light emitting element side of the photocoupler circuit. The photocoupler circuit is characterized in that the time constant is selected so that the maximum value of the voltage noise on the parallel resistance within the time width is less than 1.5 times the light emission threshold of the light emitting element with respect to the maximum .
JP1988022696U 1988-02-23 1988-02-23 Photo coupler circuit Expired - Lifetime JPH0623005Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988022696U JPH0623005Y2 (en) 1988-02-23 1988-02-23 Photo coupler circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988022696U JPH0623005Y2 (en) 1988-02-23 1988-02-23 Photo coupler circuit

Publications (2)

Publication Number Publication Date
JPH01127265U JPH01127265U (en) 1989-08-31
JPH0623005Y2 true JPH0623005Y2 (en) 1994-06-15

Family

ID=31241039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988022696U Expired - Lifetime JPH0623005Y2 (en) 1988-02-23 1988-02-23 Photo coupler circuit

Country Status (1)

Country Link
JP (1) JPH0623005Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231911A (en) * 2005-01-27 2006-09-07 Seiko Epson Corp Pixel circuit, light emitting device, and electronic device
JP6296805B2 (en) * 2014-01-23 2018-03-20 Ai Technology株式会社 Detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017176B2 (en) * 1977-10-13 1985-05-01 三菱電機株式会社 coupling circuit

Also Published As

Publication number Publication date
JPH01127265U (en) 1989-08-31

Similar Documents

Publication Publication Date Title
JP6691180B2 (en) Protection circuit, oscillation compensation circuit and power supply circuit in solid-state pulse modulator
JPS62256523A (en) Current limiter
JPH0623005Y2 (en) Photo coupler circuit
JPH05336745A (en) Switching power source
JPH0470869B2 (en)
US5491405A (en) Level conversion of AC or DC voltage with noise rejection and low power consumption
JP3133964B2 (en) Insulated gate drive circuit
JP3341553B2 (en) Signal transmission circuit for power semiconductor device gate drive circuit
KR100344784B1 (en) Switching Power Supply
JPS6129205B2 (en)
JP2539700Y2 (en) Digital signal transfer circuit
JP3905076B2 (en) Power supply
JP2003052166A (en) Switching power circuit
JP3032935B2 (en) Drive circuit
JPH0110020Y2 (en)
JPH06106020B2 (en) Switching regulator
JPH0250709B2 (en)
JP2589820Y2 (en) Switching power supply
JP6674369B2 (en) Switching power supply
JPS5840414Y2 (en) Initial set pulse generation circuit
JPH05344721A (en) Switching regulator
JPS625726Y2 (en)
JPH044553B2 (en)
JPS5812401A (en) Pseudo sine wave generating circuit
JPH0334689B2 (en)