JPH06230024A - Ultrasonic inspection method - Google Patents

Ultrasonic inspection method

Info

Publication number
JPH06230024A
JPH06230024A JP3955593A JP3955593A JPH06230024A JP H06230024 A JPH06230024 A JP H06230024A JP 3955593 A JP3955593 A JP 3955593A JP 3955593 A JP3955593 A JP 3955593A JP H06230024 A JPH06230024 A JP H06230024A
Authority
JP
Japan
Prior art keywords
tracer
flow
suspension
specific gravity
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3955593A
Other languages
Japanese (ja)
Inventor
Masahiro Seki
昌浩 関
Tadashi Moriya
正 守屋
Norio Tagawa
憲男 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T ADVANCE TEKUNOROJI KK
NTT Advanced Technology Corp
Original Assignee
N T T ADVANCE TEKUNOROJI KK
NTT Advanced Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T ADVANCE TEKUNOROJI KK, NTT Advanced Technology Corp filed Critical N T T ADVANCE TEKUNOROJI KK
Priority to JP3955593A priority Critical patent/JPH06230024A/en
Publication of JPH06230024A publication Critical patent/JPH06230024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To make it possible to observe the flow of solvent-particulates suspen sion which can not be visually obserbed by using as a tracer a particulate of which the specific gravity is same as the suspension and the particle size is similar to that of the suspended particulate. CONSTITUTION:Magnetite Fe2O43 is spread on a hollow glass bead 2 so as to control the specific gravity. Control of the specific gravity is adjusted by the thickness of the magnetite layer. By adjusting the specific gravity of a tracer same as that of water, the tracer is moved along the flow of water. The sensitivity of detection level of a reflecting signal is lowered, speckle signal reflecting from particulates are reduced, and hence the sensitivity is adjusted so as to detect a strong reflecting signal generated due to resonance from the tracer. In this way, even in the condition of generating speckles, the flow can be inspected by pursuing the tracer. Namely, the flow of solvent-particulates suspension which can not be observed hitherto can be observed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波測定により溶媒
・微粒子サスペンジョンの流れの挙動を明らかにするた
めの検査法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection method for clarifying the flow behavior of a solvent / fine particle suspension by ultrasonic measurement.

【0002】[0002]

【従来の技術】従来より超音波による検査法は、非破壊
で簡便であるという利点があるため各分野において用い
られて来ている。利用分野を例示するならば、(1)固
体中の超音波パルスの反響を利用しての金属固体の非破
壊検査に用いられる金属探傷計測。(2)生体内の細胞
組織の異常部分の反響の変化により体内の腫瘍等を検出
する医療用診断。(3)金属等の反射面からの反射は送
信波との干渉を利用しての高圧タンク、ボイラ等の厚み
を外側から計測する金属厚み計測。(4)ドプラ効果を
利用しての流体の流れを計測する風速、血流計測。等の
多岐にわたっている。
2. Description of the Related Art Conventionally, ultrasonic inspection methods have been used in various fields because they have the advantage of being nondestructive and simple. If the field of use is illustrated, (1) Metal flaw detection measurement used for nondestructive inspection of a metal solid by utilizing the echo of an ultrasonic pulse in the solid. (2) A medical diagnosis in which a tumor or the like in the body is detected by a change in the reverberation of an abnormal portion of cellular tissue in the living body. (3) Metal thickness measurement that measures the thickness of a high-pressure tank, boiler, etc. from the outside by utilizing the interference with the transmitted wave for reflection from a reflecting surface such as metal. (4) Wind velocity and blood flow measurement to measure the flow of fluid using the Doppler effect. Etc.

【0003】本発明の利用分野である溶媒・超微粒子サ
スペンジョンの流れの挙動を明らかにするためには、上
述したドプラ効果を利用したものが従来より検討されて
いるが、いまだ満足すべき結果が得られていなかった。
In order to clarify the flow behavior of the solvent / ultrafine particle suspension, which is the field of application of the present invention, a method utilizing the above-mentioned Doppler effect has been studied so far, but still satisfactory results are obtained. It was not obtained.

【0004】また、超音波計測法とは別に溶媒・微粒子
サスペンジョンの流れの挙動を明らかにする方法とし
て、染料、プラスチック微粒子、ガラスビーズや金属細
片をトレーサとしてサスペンジョン中に注入しその様子
を目視観察することが主に行われてきている。これらの
トレーサはサスペンジョンの比重と同じに調節されてい
ないので、時間の経過とともに流れから遊離して、表面
の流れにのみ追従することになりサスペンジョン内部の
流れに追従しないので、流れの挙動を詳細に計測出来な
いと言う問題が残されていた。
In addition to the ultrasonic measurement method, as a method of clarifying the behavior of the flow of the solvent / fine particle suspension, dye, plastic fine particles, glass beads or metal fragments are injected into the suspension as a tracer and the state is visually observed. Observing has been mainly done. Since these tracers are not adjusted to the same as the specific gravity of the suspension, they separate from the flow over time and only follow the flow on the surface, not the flow inside the suspension. There was a problem that I could not measure.

【0005】最近、水・カーボンサスペンジョン( 黒
色)、水・シリカサスペンジョン( 白色) のように光が
透過せず、目視法で検査出来ないサスペンジョンの流れ
の挙動を明らかにすることが流体工学において要望され
るようになってきている。
Recently, in fluid engineering, it is required to clarify the behavior of suspensions such as water / carbon suspension (black) and water / silica suspension (white) that cannot be inspected by visual inspection because light does not pass therethrough. Is becoming popular.

【0006】また、閉管のなかを流れるサスペンジョン
の挙動を明らかにすることがプラント工業の分野で要望
されて来ている。しかし、従来の検査法では目視観察が
出来ないので、流れの挙動については全く不明のままに
残されていた。
Further, it has been desired in the field of plant industry to clarify the behavior of the suspension flowing in the closed pipe. However, since the conventional inspection method cannot perform visual observation, the behavior of the flow remains unclear.

【0007】[0007]

【発明が解決しようとする課題】従来より目視観察が出
来ない流れを可視化するためには、超音波による観察が
試みられていた。
Conventionally, in order to visualize a flow that cannot be visually observed, ultrasonic observation has been attempted.

【0008】超音波計測においては、サスペンジョンの
流れが速い場合には、サスペンジョン中の微粒子の速度
差を利用したドプラ法が用いられているが、完全なコン
トラストは得られていない。他方、流れが遅い場合に
は、このドプラ法では計測出来ない問題がある。
In ultrasonic measurement, when the flow of suspension is fast, the Doppler method utilizing the difference in speed of fine particles in suspension is used, but complete contrast is not obtained. On the other hand, if the flow is slow, there is a problem that the Doppler method cannot measure.

【0009】流れの遅いサスペンジョンを可視化する方
法として、Bモード法を利用することが考えられるが、
超音波の反射エコーが小さい微粒子( 固有インピーダン
スが小さい) がコロイド状に分散しているサスペンジョ
ンではエコーが計測されず流れの挙動を示す像が観察さ
れない。
As a method for visualizing a slow-flowing suspension, it is possible to use the B-mode method.
In a suspension in which fine particles with small ultrasonic reflection echoes (small specific impedance) are dispersed in a colloidal form, echoes are not measured and images showing flow behavior are not observed.

【0010】一方、固有インピーダンスの高い微粒子が
数%懸濁しているサスペンジョンの場合には、反射エコ
ーによるスペックルが観察される。このスペックルは流
れ全域に観察され、流れの挙動との関係は単純ではな
く, このスペックルの計測だけでは流れの挙動を正確に
把握できないのが現状である。
On the other hand, in the case of suspension in which a few percent of fine particles having high specific impedance are suspended, speckle due to reflected echo is observed. This speckle is observed throughout the flow, and its relationship with the behavior of the flow is not simple. At present, it is not possible to accurately grasp the behavior of the flow only by measuring this speckle.

【0011】本発明は、サスペンジョン中の微粒子がス
ペックルを発生し流れを目視観察できない溶媒・微粒子
サスペンジョンの流れの可視化を図ることを目的として
いる。
An object of the present invention is to visualize the flow of a solvent / fine particle suspension in which the particles in the suspension generate speckles and the flow cannot be visually observed.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の検査法においては、固有インピーダンスが
大きく、さらに超音波の共鳴現象が起こるように材質・
形状を制御し、さらにサスペンジョンと同じ比重で懸濁
している微粒子と同程度の粒径の微粒子をトレーサとし
て用て超音波で検査するようにしたものである。
In order to achieve the above-mentioned object, in the inspection method of the present invention, a material and a material having a large specific impedance and an ultrasonic resonance phenomenon occur.
The shape is controlled, and fine particles having a particle size similar to that of the fine particles suspended with the same specific gravity as the suspension are used as a tracer for ultrasonic inspection.

【0013】[0013]

【実施例】本発明の検査法の実施例を説明する前段階と
して、トレーサの基本特性について説明する。本発明に
用いるトレーサの形状の概略断面図を図1に示す。中空
ガラスビーズ2上に比重をコントロールするためにマグ
タイト(Fe2 4 )3が塗布されている。比重のコン
トロールはマグネタイト層の厚みで調整できる。
EXAMPLES The basic characteristics of a tracer will be described as a pre-stage for explaining an example of the inspection method of the present invention. A schematic sectional view of the shape of the tracer used in the present invention is shown in FIG. Magnetite (Fe 2 O 4 ) 3 is coated on the hollow glass beads 2 in order to control the specific gravity. The control of specific gravity can be adjusted by the thickness of the magnetite layer.

【0014】図2はトレーサの粒径と共鳴周波数の関係
を示す。これより、共鳴周波数は粒径を変えることで制
御できることになる。
FIG. 2 shows the relationship between the particle size of the tracer and the resonance frequency. Therefore, the resonance frequency can be controlled by changing the particle size.

【0015】図3はサスペンジョン中の微粒子の反射ス
ペクトルと共鳴しているトレーサの反射スペクトルの強
度を比較した結果を示す。トレーサは共鳴していること
によりサスペンジョン中の微粒子のスペクトル強度に比
較して20db以上の感度が得られている。
FIG. 3 shows the result of comparing the intensities of the reflection spectrum of the tracer which resonates with the reflection spectrum of the fine particles in the suspension. Since the tracer resonates, a sensitivity of 20 db or more is obtained as compared with the spectral intensity of the fine particles in the suspension.

【0016】サスペンジョン中の微粒子がスペックルを
発生し流れが計測出来ない場合:上記トレーサを用い流
れを可視化した事例について以下説明する。
When the particles in the suspension generate speckles and the flow cannot be measured: An example of visualizing the flow using the tracer will be described below.

【0017】図4は脱気水の中に粒径6μmの反射の強
い微小球が懸濁しているサスペンジョンの超音波計測に
よるBモード像を示している。測定周波数は3.5MH
zである。図中全域にスペックルが観測される。スペッ
クルは無作為に発生消滅し、サスペンジョン全域から反
射エコーが観測されので、スペックルの観測からは流れ
の様子を明らかにすることが出来ない。
FIG. 4 shows a B-mode image obtained by ultrasonic measurement of a suspension in which highly reflective microspheres having a particle size of 6 μm are suspended in degassed water. Measurement frequency is 3.5MH
z. Speckle is observed throughout the figure. Since speckles randomly occur and disappear, and reflection echoes are observed from all areas of the suspension, it is not possible to clarify the state of the flow from the observation of speckles.

【0018】図5は本発明に用いるトレーサを注入して
超音波観測を行ったBモード像である。概略逆三角形の
形状を示す反射エコーが個々のトレーサに対応して観察
されている。これはトレーサーからの反射エコーが共鳴
し、反射エコーが大きく増大していることを示している
ことになる。トレーサは水と同じ比重に調節してあるの
で、水の流れにそってトレーサは移動する。このトレー
サの様子を追跡することにより水の流れが明らかになっ
た。
FIG. 5 is a B-mode image obtained by injecting the tracer used in the present invention and performing ultrasonic observation. Reflected echoes showing the shape of an approximately inverted triangle are observed corresponding to the individual tracers. This means that the reflected echo from the tracer resonates and the reflected echo greatly increases. Since the tracer is adjusted to have the same specific gravity as water, the tracer moves along the flow of water. The flow of water was clarified by tracing the state of this tracer.

【0019】図6は図4に示したサスペンジョンに本発
明に用いるトレーサを注入したBモード像である。超音
波の検出においては反射信号の検出レベルの感度を低下
させ, 微粒子から反射するスペックルの信号を低減させ
トレーサから共鳴により発生する強い反射信号検出でき
るように感度を調整した。スペックルが発生している状
況おいても図5と同様にトレーサを追跡することで流れ
を検査することができる。
FIG. 6 is a B-mode image in which the tracer used in the present invention is injected into the suspension shown in FIG. In the detection of ultrasonic waves, the sensitivity of the detection level of the reflected signal was lowered, the speckle signal reflected from the particles was reduced, and the sensitivity was adjusted so that the strong reflected signal generated by resonance from the tracer could be detected. Even when speckles are generated, the flow can be inspected by tracing the tracer as in the case of FIG.

【0020】本実施例で磁性層付きの中空微粒子を用い
ている理由は、微粒子を外部磁場により制御し、観察部
位に微粒子を集めることと、観察後に回収することが期
待できるからである。
The reason why the hollow fine particles with a magnetic layer are used in this embodiment is that the fine particles can be controlled by an external magnetic field to collect the fine particles at the observation site and to collect them after the observation.

【0021】[0021]

【発明の効果】以上述べたように超音波の共鳴現象と比
重を調整したトレーサを用いる超音波検査法により従来
観測が出来なかった溶媒・微粒子サスペンジョンの流れ
の可視化が可能とすることができた。
As described above, the ultrasonic inspection method using the tracer in which the resonance phenomenon of the ultrasonic wave and the specific gravity are adjusted enables the visualization of the flow of the solvent / particulate suspension which could not be observed conventionally. .

【図面の簡単な説明】[Brief description of drawings]

【図1】トレーサの構造を示す断面図である。FIG. 1 is a sectional view showing a structure of a tracer.

【図2】本発明に用いるトレーサの粒径と共鳴周波数の
関係を示す図である。
FIG. 2 is a diagram showing a relationship between a particle diameter and a resonance frequency of a tracer used in the present invention.

【図3】微粒子とトレーサのパワースペクトルの関係を
示す図である。
FIG. 3 is a diagram showing a relationship between power spectra of fine particles and a tracer.

【図4】水・微粒子サスペンジョンのBモード像を示す
図である。
FIG. 4 is a diagram showing a B-mode image of water / fine particle suspension.

【図5】水・トレーサのBモード像を示す図である。FIG. 5 is a diagram showing a B-mode image of water / tracer.

【図6】トレーサを注入した水・微粒子サスペンジョン
のBモード像を示す図である。
FIG. 6 is a view showing a B-mode image of a water / fine particle suspension in which a tracer is injected.

【符号の説明】[Explanation of symbols]

1 気体 2 ガラス 3 表面層(Fe2 4 1 gas 2 glass 3 surface layer (Fe 2 O 4 )

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶媒・微粒子サスペンジョンの流れの挙
動を超音波により測定する超音波検査法において、測定
周波数に共鳴すると共にサスペンジョンの流れに追従す
るトレーサを用いることを特徴とする超音波検査法。
1. An ultrasonic inspection method for measuring a behavior of a flow of a solvent / fine particle suspension by ultrasonic waves, characterized by using a tracer that resonates with a measurement frequency and follows the flow of the suspension.
【請求項2】 気体が内包された微小中空微粒子の形状
を測定周波数に共鳴するように制御し、該中空微粒子の
表層に比重を制御するための材料を付加したトレーサを
用いることを特徴とする請求項1記載の超音波検査法。
2. A tracer in which a shape of fine hollow particles containing gas is controlled so as to resonate at a measurement frequency and a material for controlling the specific gravity is added to the surface layer of the hollow fine particles is used. The ultrasonic inspection method according to claim 1.
JP3955593A 1993-02-03 1993-02-03 Ultrasonic inspection method Pending JPH06230024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3955593A JPH06230024A (en) 1993-02-03 1993-02-03 Ultrasonic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3955593A JPH06230024A (en) 1993-02-03 1993-02-03 Ultrasonic inspection method

Publications (1)

Publication Number Publication Date
JPH06230024A true JPH06230024A (en) 1994-08-19

Family

ID=12556319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3955593A Pending JPH06230024A (en) 1993-02-03 1993-02-03 Ultrasonic inspection method

Country Status (1)

Country Link
JP (1) JPH06230024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116157A (en) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd Residual water display method for water tank in humidifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116157A (en) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd Residual water display method for water tank in humidifier

Similar Documents

Publication Publication Date Title
WO2020233359A1 (en) Non-linear lamb wave mixing method for measuring distribution of stress in thin metal plate
Cowan et al. Group velocity of acoustic waves in strongly scattering media: Dependence on the volume fraction of scatterers
US4619143A (en) Apparatus and method for the non-destructive inspection of solid bodies
Zaitsev et al. Nonlinear interaction of acoustical waves due to cracks and its possible usage for cracks detection
US6286370B1 (en) Method using ultrasound for detecting materials on metal surfaces
Schaafsma et al. Attenuation in suspensions of irregularly shaped sediment particles: A two-parameter equivalent spherical scatterer model
Hay et al. Resonance scattering in suspensions
CN108802191A (en) A kind of water logging defect detection on ultrasonic basis of rolled steel defect
CA2390712A1 (en) Method for inspecting clad pipe
JPH06230024A (en) Ultrasonic inspection method
CN204389441U (en) A kind of high-voltage pillar porcelain insulator ultrasonic phase array detection reference block
CN203069556U (en) Ultrasonic detection device for highway steel bridge
Chang et al. Extended non-stationary phase-shift migration for ultrasonic imaging of irregular surface component
JPH0140309B2 (en)
Karabetsos et al. Design and development of a new ultrasonic doppler technique for estimation of the aggregation of red blood cells
Darner An anechoic tank for underwater sound measurements under high hydrostatic pressures
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
Edwards et al. Scattering of focused ultrasound by spherical microparticles
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
Pan et al. Detecting small fatigue cracks by acoustic microscopy
Karabetsos et al. A new method for measuring red blood cell aggregation using pattern recognition techniques on backscattered ultrasound Doppler signals
JPS59183364A (en) Ultrasonic microscope apparatus
WO2024045755A1 (en) Thin film and measurement apparatus and method for measuring sound pressure distribution on surface of ultrasonic transducer
US5101382A (en) Acoustic imaging method and apparatus for nondestructive evaluation of materials
JP2005160706A (en) Method of discrimination between solid and/or liquid particle and air bubble