JPH06229801A - Measuring method for flow rate of powder - Google Patents
Measuring method for flow rate of powderInfo
- Publication number
- JPH06229801A JPH06229801A JP4185993A JP4185993A JPH06229801A JP H06229801 A JPH06229801 A JP H06229801A JP 4185993 A JP4185993 A JP 4185993A JP 4185993 A JP4185993 A JP 4185993A JP H06229801 A JPH06229801 A JP H06229801A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- flow rate
- vertical pipe
- storage tank
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、流路を流れる粉体の流
量測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the flow rate of powder flowing in a flow path.
【0002】[0002]
【従来の技術】粉体を輸送する場合や、単独の装置にお
いて粉体が循環したり流出、流入する操作を行なう場合
に、粉体の流量を測定することは操作の効率化を図る上
で有用なことである。かかる操作に供される粉体として
は、高分子樹脂、無機材料、食品、医療品、有機結晶体
などが挙げられる。例えば、高分子樹脂は粉体の形態で
パイプ輸送したり、流動乾燥などの処理がなされる。ま
た、固体触媒を用いる化学反応を流動層で行なう場合に
は、粉体状の触媒を供給したり、循環型流動層で操作す
る。また、石炭の流動層型ボイラーでは粉体状の石炭を
用いる。上記のような粉体の流通操作を行なう場合にお
いて、粉体が貯槽を起点として流入又は流出する際に
は、貯槽内の粉体の体積又は重量を測定することにより
容易に粉体の流量を測定することができる。しかし、貯
槽にそれ以外の粉体の供給や取り出しがあるなどでこの
ような方法が適用できない場合には、流路における粉体
の流量を直接測定できる方法が必要となる。このような
場合、従来はインパクト粉体流量計又はスリット式粉体
流量計を使用して粉体の流量を測定していた。2. Description of the Related Art Measuring the flow rate of powder in order to improve the efficiency of the operation when transporting the powder or when performing the operation of circulating the powder or flowing out or flowing in a single device. It is useful. Examples of the powder used for such an operation include polymer resins, inorganic materials, foods, medical products, and organic crystals. For example, the polymer resin is piped in the form of powder or subjected to treatment such as fluidized drying. When a chemical reaction using a solid catalyst is carried out in a fluidized bed, a powdery catalyst is supplied or a circulating type fluidized bed is used. Further, powder coal is used in a coal fluidized bed boiler. In the case of performing the powder distribution operation as described above, when the powder flows in or out from the storage tank, the flow rate of the powder can be easily measured by measuring the volume or weight of the powder in the storage tank. Can be measured. However, when such a method cannot be applied due to other supply and removal of powder in the storage tank, a method capable of directly measuring the flow rate of powder in the flow channel is required. In such a case, hitherto, an impact powder flow meter or a slit type powder flow meter has been used to measure the powder flow rate.
【0003】インパクト粉体流量計は、流路を流れる粉
体が衝撃検出板に衝突する力をストレンゲージ等で計測
して粉体の流量に換算するものである。また、スリット
式粉体流量計は、流路を流れる粉体をスリット付き容器
の上部へ導入して蓄積した粉体を容器側面のスリットか
ら流出させ、容器内に保持されている粉体の重量等を計
測することにより粉体の流量を測定するものである。The impact powder flow meter measures the force with which the powder flowing through the flow path collides with the impact detection plate by a strain gauge or the like and converts it into a powder flow rate. In addition, the slit type powder flow meter introduces the powder flowing in the flow path to the upper part of the container with slits, causes the accumulated powder to flow out from the slit on the side surface of the container, and weighs the weight of the powder held in the container. And the like to measure the flow rate of the powder.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記従来の流
量測定方法においては、粉体の流路に衝撃検出板やスリ
ット付き容器等の機械的障害物を設けるとともにストレ
ンゲージや重量計測用の電子式検出端子を設ける必要が
あり、そのため粉体の粒子が機械的に破壊されるという
問題があった。また、取り扱う粉体によっては高温であ
ったり腐食性があるので、流量計に適切な素材を選択す
る必要があり、さらに、電子式部品は爆発の着火元とな
らないように充分な配慮を必要とするなどの問題があっ
た。本発明は、従来の流量測定方法を改良して、上述の
ような問題点を取り除くことを目的とする。However, in the above-described conventional flow rate measuring method, mechanical obstacles such as a shock detecting plate and a container with slits are provided in the flow path of the powder, and the strain gauge and the electronic instrument for measuring the weight are provided. Since it is necessary to provide a formula detection terminal, there is a problem that powder particles are mechanically destroyed. In addition, depending on the powder to be handled, it may be hot or corrosive, so it is necessary to select an appropriate material for the flowmeter, and in addition, it is necessary to take sufficient consideration so that electronic parts do not ignite an explosion. There was a problem such as doing. It is an object of the present invention to improve the conventional flow rate measuring method to eliminate the above-mentioned problems.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
の本発明の構成を図面に基づいて以下に説明する。請求
項1記載の第1の発明の流量測定方法は、図1に示すよ
うに、粉体11の流路1Aに貯槽部2と垂直管部3とを
設けるとともに、該垂直管部3の下端を連通部4を介し
て前記貯槽部2の側面に連通させ、前記流路1A内の粉
体11を前記垂直管部3の上端から落下させながら該垂
直管部3の下部及び前記連通部4に流動気体12、13
を導入することにより落下した粉体11を流動化して前
記連通部4から前記貯槽部2内に流入させ、然る後に前
記連通部4への流動気体13の導入を停止して該連通部
4内の粉体11を静止させると同時に、前記垂直管部3
の上下部に形成された粉体流動層14と粉体層15との
間の圧力差Δpの単位時間当り変化量を測定することに
より前記流路1A内の粉体11の流量を測定する構成と
しており、本発明の基本をなすものということができ
る。The structure of the present invention for achieving the above object will be described below with reference to the drawings. As shown in FIG. 1, the flow rate measuring method according to the first aspect of the present invention provides a storage tank portion 2 and a vertical pipe portion 3 in a flow path 1A of powder 11 and a lower end of the vertical pipe portion 3. Through the communication part 4 to the side surface of the storage tank part 2, and the powder 11 in the flow path 1A is dropped from the upper end of the vertical tube part 3 and the lower part of the vertical tube part 3 and the communication part 4 Flowing gas 12, 13
Is introduced to fluidize the powder 11 to flow into the storage tank portion 2 from the communicating portion 4, and thereafter, the introduction of the flowing gas 13 to the communicating portion 4 is stopped to stop the communicating portion 4. At the same time as the powder 11 in the inside is stopped,
A configuration for measuring the flow rate of the powder 11 in the flow passage 1A by measuring the amount of change in the pressure difference Δp between the powder fluidized bed 14 and the powder bed 15 formed in the upper and lower parts of the flow path 1A. Therefore, it can be said that it forms the basis of the present invention.
【0006】また、請求項2記載の第2の発明の流量測
定方法は、図2に示すように、粉体11を気流輸送する
流路1Bに貯槽部2と垂直管部3とを設け、該垂直管部
3の上端にサイクロン5を接続するとともに下端を連通
部4を介して前記貯槽部2の側面に連通させ、前記流路
1B内の粉体11を前記サイクロン5内に導入して気体
から分離した後、該粉体11を前記垂直管部3に落下さ
せながら該垂直管部3の下部及び前記連通部4に流動気
体12、13を導入することにより落下した粉体11を
流動化して前記連通部4から前記貯槽部2内に流入さ
せ、然る後に上記第1の発明の流量測定方法により前記
流路1B内の粉体11の流量を測定する構成としてい
る。Further, in the flow rate measuring method according to the second aspect of the present invention, as shown in FIG. 2, a storage tank portion 2 and a vertical pipe portion 3 are provided in a flow passage 1B for carrying powder 11 by air flow. The cyclone 5 is connected to the upper end of the vertical pipe portion 3 and the lower end is communicated with the side surface of the storage tank portion 2 via the communication portion 4, and the powder 11 in the flow channel 1B is introduced into the cyclone 5. After separating from the gas, the falling powder 11 is made to flow by introducing the flowing gases 12 and 13 into the lower part of the vertical tube part 3 and the communication part 4 while dropping the powder 11 into the vertical tube part 3. The flow rate of the powder 11 in the flow channel 1B is measured by the flow rate measuring method according to the first aspect of the present invention.
【0007】さらに、請求項3記載の第3の発明の流量
測定方法は、図3に示すように、貯槽部2、上昇管部
6、上端にサイクロン5を接続した垂直管部3及び該垂
直管部3の下端を前記貯槽部2の側面に連通させる連通
部4を順次ループ状に接続してなる粉体11の循環型流
路1Cにおいて、前記貯槽部2内の粉体11を該貯槽部
2の下部から前記上昇管部6の下部に供給して気流輸送
により該上昇管部6を上昇させ、上昇した粉体11を前
記サイクロン5内に導入して気体から分離した後、該粉
体11を前記垂直管部3に落下させながら該垂直管部3
の下部及び前記連通部4に流動気体12、13を導入す
ることにより落下した粉体11を流動化して前記連通部
4から前記貯槽部2内に戻し、然る後に上記第1の発明
の流量測定方法により該流路1C内の粉体11の循環流
量を測定する構成としている。なお、上記構成の発明の
何れにおいても、連通部4を図1に示すようなL字管、
図2に示すようなU字管又は図3に示すような粉体流動
容器とすることができる。Further, as shown in FIG. 3, the flow rate measuring method according to the third aspect of the present invention comprises a storage tank portion 2, an ascending pipe portion 6, a vertical pipe portion 3 having a cyclone 5 connected to the upper end thereof, and the vertical pipe portion. In the circulation type flow path 1C of the powder 11 in which the lower end of the pipe portion 3 is connected to the side surface of the storage tank portion 2 in the form of a loop, the communication portion 4 is sequentially connected in a loop shape. The powder 11 is supplied from the lower part of the part 2 to the lower part of the rising pipe part 6 to raise the rising pipe part 6 by air flow, and the rising powder 11 is introduced into the cyclone 5 and separated from the gas. While dropping the body 11 onto the vertical pipe portion 3, the vertical pipe portion 3
The fluidized gas 12, 13 is introduced into the lower part of the communication part 4 and the communication part 4 to fluidize the dropped powder 11 and return it from the communication part 4 to the inside of the storage tank part 2, and then the flow rate of the first invention. The circulating flow rate of the powder 11 in the flow channel 1C is measured by the measuring method. Note that in any of the above-described inventions, the communication section 4 is an L-shaped tube as shown in FIG.
It can be a U-shaped tube as shown in FIG. 2 or a powder flow container as shown in FIG.
【0008】[0008]
【作用】上記構成の各発明において、垂直管部3に落下
した粉体11は流動気体12、13により流動化され
て、連通部4から貯槽部2内に流入する。然る後に連通
部4への流動気体13の導入を停止すると、図1に示す
ように、連通部4の粉体11は静止し、垂直管部3に導
入された粉体11はすべて蓄積されて、垂直管部3の上
下部に粉体流動層14及び粉体層15を形成する。この
粉体流動層14においては、その高さΔHが上部からの
粉体11の供給により増大し、その圧力損失Δpは次式
で表される。 Δp=ΔH・(1−ε)ρpg ・・・・ (1) ここに、Δp=圧力損失、即ち粉体流動層14と粉体層
15との間の圧力差(Pa) ΔH=粉体流動層14の高さ(m) ε=空隙率 ρp=粉体粒子の比重(kg/m3) g=重力加速度(m/s2 )In each of the above-described inventions, the powder 11 that has fallen into the vertical pipe portion 3 is fluidized by the flowing gases 12 and 13 and flows from the communication portion 4 into the storage tank portion 2. After that, when the introduction of the flowing gas 13 into the communicating portion 4 is stopped, as shown in FIG. 1, the powder 11 in the communicating portion 4 is stationary, and all the powder 11 introduced into the vertical pipe portion 3 is accumulated. Then, the powder fluidized bed 14 and the powder bed 15 are formed on the upper and lower portions of the vertical tube portion 3. In the powder fluidized bed 14, the height ΔH increases due to the supply of the powder 11 from above, and the pressure loss Δp is expressed by the following equation. Δp = ΔH · (1−ε) ρpg ··· (1) where Δp = pressure loss, that is, the pressure difference (Pa) between the powder fluidized bed 14 and the powder bed 15 ΔH = powder fluidized Height of layer 14 (m) ε = porosity ρp = specific gravity of powder particles (kg / m 3 ) g = gravitational acceleration (m / s 2 )
【0009】また、粉体流動層14における粉体量Qは
次式で表される。 Q=A・ΔH・(1−ε)ρp ・・・・ (2) ここに、Q=粉体流動層14の粉体量(kg) A=粉体流動層14の断面積、即ち垂直管部3の流路面
積(m2) (1)式及び(2)式から Q=A・Δp/g ・・・・ (3) 流路1内の粉体11の流量Fは粉体流動層14の粉体量
Qの増加速度として与えられるので、(3)式より F=dQ/dt =A・d(Δp/g)/dt ・・・・ (4) ここに、F=流路1内の粉体11の流量(kg/s) t=時間(s) したがって、垂直管部3における粉体流動層14と粉体
層15との間の圧力差Δp/gの単位時間当り変化量d
(Δp/g)/dtを測定すると、(4)式から粉体1
1の流量Fを求めることができる。The powder quantity Q in the powder fluidized bed 14 is expressed by the following equation. Q = A · ΔH · (1-ε) ρp ··· (2) where Q = powder amount of powder fluidized bed 14 (kg) A = cross-sectional area of powdered fluidized bed 14, that is, vertical pipe Channel area of part 3 (m 2 ) From equations (1) and (2) Q = A · Δp / g (3) Flow rate F of powder 11 in channel 1 is powder fluidized bed Since it is given as an increasing rate of the powder amount Q of 14, F = dQ / dt = A · d (Δp / g) / dt (4) where F = flow path 1 Flow rate (kg / s) of the powder 11 in the container t = time (s) Therefore, the amount of change in the pressure difference Δp / g between the powder fluidized bed 14 and the powder bed 15 in the vertical tube portion 3 per unit time d
When (Δp / g) / dt is measured, powder 1 is obtained from the equation (4).
The flow rate F of 1 can be obtained.
【0010】圧力差Δp測定するには、垂直管部3の粉
体流動層部分と粉体層部分とに開口部を設け、両開口部
の間に圧力導管を介して水柱式マノメーター等の差圧計
を接続してもよいが、図1〜図3に示すように、前記開
口部の位置に圧力端子7を設け、両圧力端子7の間に半
導体等の電子式検出器を差圧計8として接続すれば、圧
力差Δpを電気信号として計測することができるので便
利である。In order to measure the pressure difference Δp, an opening is provided in the powder fluidized bed portion and the powder bed portion of the vertical pipe portion 3, and a pressure difference between a water column type manometer and the like is provided through a pressure conduit between the openings. Although a pressure gauge may be connected, as shown in FIGS. 1 to 3, a pressure terminal 7 is provided at the position of the opening, and an electronic detector such as a semiconductor is provided as a differential pressure gauge 8 between the pressure terminals 7. If connected, the pressure difference Δp can be measured as an electric signal, which is convenient.
【0011】本発明の方法を適用できる粉体11は、垂
直管部3で粉体流動層14を形成するに適したものでな
ければならない。したがって、粉体粒子の大きさは1〜
1000μmの範囲が好ましく、より良い流動性を得る
ために20〜500μmの範囲が更に好ましい。また、
粒子比重は100〜8000kg/m3の範囲が好ましく、
より良い流動性を得るために300〜2000kg/m3の
範囲が更に好ましい。垂直管部3の大きさやそれに伴う
流動気体12の導入量は、粉体11の流量Fの範囲に応
じて選定する。即ち、垂直管部3の内容積は、圧力差Δ
pの適切な測定時間が10秒〜10分程度と考えられる
で、その間の流量Fを保持しうるものとする。また、圧
力差Δpの測定精度を良くするためには、測定時間にお
ける粉体流動層14の高さΔHの増大が5cm以上である
ことが好ましく、より好ましくは20〜200cmの範囲
にする。したがって、垂直管部3の高さは前記ΔHより
も高くしておく必要がある。また、垂直管部3の内径
は、5mmよりも大きいことが好ましいが、より好ましく
は1〜50cmの範囲にする。さらに、流動気体12の導
入量は、例えば次式で求められる最小流動化速度Umf
を基準にして垂直管部3の空塔速度を選定する。The powder 11 to which the method of the present invention can be applied must be suitable for forming the powder fluidized bed 14 in the vertical tube portion 3. Therefore, the size of the powder particles is 1 to
The range of 1000 μm is preferable, and the range of 20 to 500 μm is more preferable for obtaining better fluidity. Also,
The particle specific gravity is preferably in the range of 100 to 8000 kg / m 3 ,
The range of 300 to 2000 kg / m 3 is more preferable for obtaining better fluidity. The size of the vertical pipe portion 3 and the accompanying amount of the flowing gas 12 introduced therein are selected according to the range of the flow rate F of the powder 11. That is, the internal volume of the vertical pipe portion 3 is equal to the pressure difference Δ.
Since an appropriate measurement time of p is considered to be about 10 seconds to 10 minutes, the flow rate F during that period can be maintained. Further, in order to improve the measurement accuracy of the pressure difference Δp, the increase in the height ΔH of the powder fluidized bed 14 during the measurement time is preferably 5 cm or more, and more preferably in the range of 20 to 200 cm. Therefore, the height of the vertical pipe portion 3 needs to be set higher than the ΔH. Further, the inner diameter of the vertical tube portion 3 is preferably larger than 5 mm, more preferably in the range of 1 to 50 cm. Further, the introduction amount of the flowing gas 12 is, for example, the minimum fluidization speed Umf obtained by the following equation.
The superficial velocity of the vertical pipe section 3 is selected with reference to.
【0012】 Umf=CmfGdp2 (ρs−ρg)/μ ・・・・ (5) Rep=dpUmfρg/μ ・・・・ (6) 但し、Rep<1のとき、Cmf=6.05×10-4R
ep-0.0625 20<Rep<600のとき、Cmf=2.20×10
-3Rep-0.555 ここに、Umf=最小流動化速度(m/s) Rep=レイノルズ数 dp=粉体11の粒子径(m) ρs=粉体11の粒子密度(kg/m3) ρg=流動気体12の密度(kg/m3) μ=流動気体12の粘度(kg/m・s) 流動気体12の導入量は、この最小流動化速度Umf以
上にするが、大き過ぎると粉体11を吹き飛ばしてしま
うので、Umfの5〜20倍の範囲にするのがよい。通
常は空塔速度として1〜50cm/s程度の範囲になるこ
とが多いが、粉体粒子の特性によって(5)式から適切
な流速を求める。なお、連通部4にL字管を用いる場合
にはその水平部分に流動気体13を導入し(図1参
照)、U字管を用いる場合にはその上昇部分の下部に流
動気体13を導入し(図2参照)、粉体流動容器を用い
る場合には該容器の下部に流動気体13を導入する(図
3参照)。これにより、連通部4の粉体11は流動化さ
れて貯槽部2内に流入する。流量測定の際には、流動気
体13の導入を停止して連通部4の粉体11を静止さ
せ、垂直管部3の粉体蓄積の増加を測定する。Umf = CmfGdp 2 (ρs−ρg) / μ (5) Rep = dpUmfρg / μ (6) However, when Rep <1, Cmf = 6.05 × 10 −4 R
When ep −0.0625 20 <Rep <600, Cmf = 2.20 × 10
-3 Rep -0.555 where Umf = minimum fluidization rate (m / s) Rep = Reynolds number dp = particle diameter of powder 11 (m) ρs = particle density of powder 11 (kg / m 3 ) ρg = Density of flowing gas 12 (kg / m 3 ) μ = viscosity of flowing gas 12 (kg / m · s) The introduction amount of the flowing gas 12 is not less than this minimum fluidization speed Umf, but if it is too large, the powder 11 Since it will be blown away, it is preferable to set it in a range of 5 to 20 times Umf. Normally, the superficial velocity is often in the range of about 1 to 50 cm / s, but an appropriate flow velocity is obtained from the equation (5) depending on the characteristics of the powder particles. When an L-shaped pipe is used for the communication part 4, the flowing gas 13 is introduced into the horizontal part (see FIG. 1), and when a U-shaped pipe is used, the flowing gas 13 is introduced into the lower part of the rising part. (See FIG. 2) In the case of using a powder flow container, the flowing gas 13 is introduced into the lower part of the container (see FIG. 3). As a result, the powder 11 in the communication section 4 is fluidized and flows into the storage tank section 2. When measuring the flow rate, the introduction of the flowing gas 13 is stopped and the powder 11 in the communicating portion 4 is stopped, and the increase in powder accumulation in the vertical tube portion 3 is measured.
【0013】[0013]
【実施例】以下、本発明の一実施例として、第3の発明
に係る循環流動試験装置での流量測定方法を図3に基づ
き詳細に説明する。この循環流動試験装置においては、
図3に示すように、貯槽部2、上昇管部6、上端にサイ
クロン5を接続した垂直管部3及び垂直管部3の下端を
貯槽部2の側面に連通させる粉体流動容器からなる連通
部4を順次ループ状に接続することにより粉体11の循
環型流路1Cを形成し、垂直管部3の上下部に設けた圧
力端子7の間に差圧計8を接続している。貯槽部2には
内径10cm×高さ2mの管を、垂直管部3には内径3cm
×高さ2mの管を、上昇管部6には内径3cm×高さ3m
の管をそれぞれ使用している。粉体11には、粒子比重
が1100kg/m3で平均粒子径が55μmのアルミナを
12kg使用した。また、垂直管部3及び連通部4の下部
には流動気体12、13としてそれぞれ窒素ガスを0.
5リットル/分導入し、貯槽部2の底部には流動気体1
6として空気を10リットル/分導入し、上昇管部2の
底部には流動気体17として窒素ガスを25リットル/
分導入した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, a flow rate measuring method in a circulating flow test apparatus according to the third invention will be described below in detail with reference to FIG. In this circulating flow tester,
As shown in FIG. 3, a communication is made up of a storage tank part 2, a rising pipe part 6, a vertical pipe part 3 having a cyclone 5 connected to the upper end thereof, and a powder flow container for connecting the lower end of the vertical pipe part 3 to the side surface of the storage tank part 2. The circulation type flow path 1C for the powder 11 is formed by sequentially connecting the portions 4 in a loop shape, and the differential pressure gauge 8 is connected between the pressure terminals 7 provided at the upper and lower portions of the vertical pipe portion 3. A pipe with an inner diameter of 10 cm and a height of 2 m is installed in the storage tank 2, and an inner diameter of 3 cm is installed in the vertical pipe 3.
× A tube with a height of 2 m, the rising pipe section 6 has an inner diameter of 3 cm and a height of 3 m
Each of the tubes is used. As the powder 11, 12 kg of alumina having a particle specific gravity of 1100 kg / m 3 and an average particle diameter of 55 μm was used. In addition, nitrogen gas was added to the lower portions of the vertical pipe portion 3 and the communication portion 4 as flowing gases 12 and 13, respectively.
Introduce 5 liters / minute, and flow gas 1 at the bottom of storage tank 2
Introducing 10 liters / min of air as No. 6 and 25 liters of nitrogen gas as the flowing gas 17 at the bottom of the rising pipe 2.
Minutes introduced.
【0014】上記装置において、貯槽部2内の粉体11
は、流動気体16により流動化されて上昇管部6の下部
に供給され、そこで流動気体17により気流輸送されて
上昇管部6を上昇する。上昇した粉体11は、サイクロ
ン5内に導入されて気体から分離された後、下方の垂直
管部3に落下する。他方、サイクロン5で分離された気
体は上方に排出される。垂直管部3に落下した粉体11
は、流動気体12、13により流動化されて連通部4か
ら貯槽部2内に戻る。このようにして、粉体11は流路
1C内を循環している。In the above device, the powder 11 in the storage tank 2
Is fluidized by the flowing gas 16 and supplied to the lower portion of the rising pipe section 6, where it is transported by air flow by the flowing gas 17 to rise in the rising pipe section 6. The powder 11 that has risen is introduced into the cyclone 5 and separated from the gas, and then falls into the vertical pipe portion 3 below. On the other hand, the gas separated by the cyclone 5 is discharged upward. Powder 11 dropped on the vertical pipe section 3
Is fluidized by the flowing gases 12 and 13 and returns from the communication portion 4 into the storage tank portion 2. In this way, the powder 11 circulates in the flow path 1C.
【0015】この粉体11の循環流量を測定するため
に、連通部4への流動気体13の導入を停止して連通部
4の粉体11を静止させ、垂直管部3の上下部に形成さ
れた粉体流動層14と粉体層15との間の圧力差Δpを
差圧計8により測定し(図1参照)、この測定を複数回
繰り返した。図4は、この測定結果を示す線図で、横軸
に測定時間t(s)を、縦軸に圧力差Δp/g(kg/
m2)を取っている。この圧力差Δp/gの単位時間当り
変化量d(Δp/g)/dtを線図の勾配から読み取る
と、 d(Δp/g)/dt=1.73kg/m2・s となる。また、垂直管部3は、内径が3cmであるので、
その流路面積Aは7.065×10-4m2である。したが
って、このときの粉体11の循環流量Fは、(4)式か
ら F=A・d(Δp/g)/dt =7.065×10-4×1.73kg/s =0.00122kg/s となる。In order to measure the circulating flow rate of the powder 11, the introduction of the flowing gas 13 into the communication part 4 is stopped to make the powder 11 in the communication part 4 stand still and to be formed on the upper and lower parts of the vertical pipe part 3. The pressure difference Δp between the powder fluidized bed 14 and the powder bed 15 was measured by the differential pressure gauge 8 (see FIG. 1), and this measurement was repeated a plurality of times. FIG. 4 is a diagram showing the measurement results, in which the horizontal axis represents the measurement time t (s) and the vertical axis represents the pressure difference Δp / g (kg /
m 2 ) is taking. When the change amount d (Δp / g) / dt of this pressure difference Δp / g per unit time is read from the gradient of the diagram, it becomes d (Δp / g) /dt=1.73 kg / m 2 · s. Moreover, since the inner diameter of the vertical pipe portion 3 is 3 cm,
The flow path area A is 7.065 × 10 −4 m 2 . Therefore, the circulation flow rate F of the powder 11 at this time is F = A · d (Δp / g) /dt=7.065×10 −4 × 1.73 kg / s = 0.00122 kg / s.
【0016】[0016]
【発明の効果】以上説明したように、本発明の第1の発
明は、粉体の流路に設けた垂直管部の上端から流路内の
粉体を落下させながら垂直管部の下部に流動気体を導入
することにより垂直管部の上下部に粉体流動層及び粉体
層を形成し、これら両層間の圧力差の単位時間当り変化
量を測定することにより流路内の粒体の流量を測定する
構成としたので、従来のインパクト粉体流量計やスリッ
ト式粉体流量計による測定方法のように粉体の流路に衝
撃検出板、スリット付き容器等の機械的障害物やストレ
ンゲージ、電子式検出端子等を設ける必要がない。その
ため、装置の構造が簡単で、粉体の粒子が機械的に破壊
されるおそれや爆発の危険性がなく、また粉体が高温で
あったり腐食性を有している場合でも、管類以外の部品
に特殊な素材を用いる必要がない。As described above, according to the first aspect of the present invention, the powder in the flow path is dropped from the upper end of the vertical pipe section provided in the powder flow path to the lower part of the vertical pipe section. By introducing a flowing gas, a powder fluidized bed and a powder bed are formed in the upper and lower parts of the vertical tube portion, and the change amount of the pressure difference between these two layers per unit time is measured to measure the particle in the flow path. Since it is configured to measure the flow rate, mechanical obstacles such as impact detection plate, slit container, etc. in the flow path of powder and strain such as the conventional impact powder flow meter and slit type powder flow meter There is no need to provide gauges, electronic detection terminals, etc. Therefore, the structure of the device is simple, there is no risk of mechanical destruction of powder particles or explosion, and even when the powder is hot or corrosive There is no need to use special materials for the parts.
【0017】また、第2の発明は、上記垂直管部の上端
にサイクロンを接続する構成としたので、粉体が流路内
を気流輸送されている場合でも、流路内の粉体をサイク
ロン内に導入して気体から分離した後垂直管部に落下さ
せることにより、第1の発明と同じ方法で粉体の流量を
測定することができる。Further, according to the second aspect of the invention, since the cyclone is connected to the upper end of the vertical pipe portion, even if the powder is air-transported in the flow path, the powder in the flow path is cycloned. The flow rate of the powder can be measured by the same method as in the first aspect of the invention by introducing the gas into the chamber and separating it from the gas, and then dropping the gas into the vertical tube.
【0018】さらに、第3の発明は、循環型流路内を気
流輸送されている粉体の循環流量を測定可能としたの
で、粉体を上昇管部と下降管部との間で循環させながら
気体と接触させることにより触媒反応、固気反応、燃
焼、乾燥等の物質移動操作を行なう循環型流動層におけ
る粉体の循環流量測定に利用することができ、前記各操
作の目的達成に極めて有用である。Further, according to the third aspect of the invention, since the circulation flow rate of the powder which is pneumatically transported in the circulation type flow path can be measured, the powder is circulated between the ascending pipe portion and the descending pipe portion. While being in contact with gas, it can be used to measure the circulating flow rate of powder in a circulating fluidized bed that performs mass transfer operations such as catalytic reaction, solid-gas reaction, combustion, and drying, and is extremely useful for achieving the purpose of each operation. It is useful.
【図面の簡単な説明】[Brief description of drawings]
【図1】第1の発明に使用する装置の全体構成図であ
る。FIG. 1 is an overall configuration diagram of an apparatus used in a first invention.
【図2】第2の発明に使用する装置の全体構成図であ
る。FIG. 2 is an overall configuration diagram of an apparatus used in a second invention.
【図3】第3の発明及びその一実施例に使用する装置の
全体構成図である。FIG. 3 is an overall configuration diagram of an apparatus used in the third invention and one embodiment thereof.
【図4】第3の発明の一実施例で得た差圧計の測定結果
を示す線図である。FIG. 4 is a diagram showing the measurement results of a differential pressure gauge obtained in an example of the third invention.
1A、1B、1C 流路 2 貯槽部 3 垂直管部 4 連通部 5 サイクロン 6 上昇管部 11 粉体 12 流動気体 13 流動気体 14 粉体流動層 15 粉体層 Δp 圧力差 1A, 1B, 1C Flow path 2 Storage part 3 Vertical pipe part 4 Communication part 5 Cyclone 6 Rise pipe part 11 Powder 12 Fluid gas 13 Fluid gas 14 Powder fluidized bed 15 Powdered bed Δp Pressure difference
Claims (6)
(2)と垂直管部(3)とを設けるとともに、該垂直管
部(3)の下端を連通部(4)を介して前記貯槽部
(2)の側面に連通させ、前記流路(1A)内の粉体
(11)を前記垂直管部(3)の上端から落下させなが
ら該垂直管部(3)の下部及び前記連通部(4)に流動
気体(12、13)を導入することにより落下した粉体
(11)を流動化して前記連通部(4)から前記貯槽部
(2)内に流入させ、然る後に前記連通部(4)への流
動気体(13)の導入を停止して該連通部(4)内の粉
体(11)を静止させると同時に、前記垂直管部(3)
の上下部に形成された粉体流動層(14)と粉体層(1
5)との間の圧力差(Δp)の単位時間当り変化量を測
定することにより前記流路(1A)内の粉体(11)の
流量を測定することを特徴とする粉体の流量測定方法。1. A storage tank part (2) and a vertical pipe part (3) are provided in a flow path (1A) of powder (11), and a lower end of the vertical pipe part (3) is provided with a communication part (4). Through the side surface of the storage tank part (2) via the lower part of the vertical pipe part (3) while dropping the powder (11) in the flow path (1A) from the upper end of the vertical pipe part (3). And, by introducing the flowing gas (12, 13) into the communication part (4), the powder (11) that has fallen is fluidized and flowed into the storage tank part (2) from the communication part (4). After that, the introduction of the flowing gas (13) into the communication section (4) is stopped to make the powder (11) in the communication section (4) stand still, and at the same time, the vertical pipe section (3).
Powder fluidized bed (14) and powder bed (1)
5) Measuring the flow rate of the powder (11) in the flow path (1A) by measuring the amount of change in the pressure difference (Δp) with respect to 5) per unit time. Method.
B)に貯槽部(2)と垂直管部(3)とを設け、該垂直
管部(3)の上端にサイクロン(5)を接続するととも
に下端を連通部(4)を介して前記貯槽部(2)の側面
に連通させ、前記流路(1B)内の粉体(11)を前記
サイクロン(5)内に導入して気体から分離した後、該
粉体(11)を前記垂直管部(3)に落下させながら該
垂直管部(3)の下部及び前記連通部(4)に流動気体
(12、13)を導入することにより落下した粉体(1
1)を流動化して前記連通部(4)から前記貯槽部
(2)内に流入させ、然る後に請求項1記載の流量測定
方法により前記流路(1B)内の粉体(11)の流量を
測定することを特徴とする粉体の流量測定方法。2. A flow channel (1) for pneumatically transporting the powder (11).
B) is provided with a storage tank portion (2) and a vertical pipe portion (3), a cyclone (5) is connected to an upper end of the vertical pipe portion (3), and a lower end thereof is connected to the storage portion via the communication portion (4). The powder (11) in the flow path (1B) is introduced into the cyclone (5) and separated from the gas by communicating with the side surface of (2), and then the powder (11) is added to the vertical pipe portion. The powder (1) dropped by introducing the flowing gas (12, 13) into the lower part of the vertical pipe part (3) and the communication part (4) while being dropped to (3).
1) is fluidized to flow from the communication part (4) into the storage tank part (2), and then the powder (11) in the flow channel (1B) is measured by the flow rate measuring method according to claim 1. A method for measuring the flow rate of powder, characterized by measuring the flow rate.
サイクロン(5)を接続した垂直管部(3)及び該垂直
管部(3)の下端を前記貯槽部(2)の側面に連通させ
る連通部(4)を順次ループ状に接続してなる粉体(1
1)の循環型流路(1C)において、前記貯槽部(2)
内の粉体(11)を該貯槽部(2)の下部から前記上昇
管部(6)の下部に供給して気流輸送により該上昇管部
(6)を上昇させ、上昇した粉体(11)を前記サイク
ロン(5)内に導入して気体から分離した後、該粉体
(11)を前記垂直管部(3)に落下させながら該垂直
管部(3)の下部及び前記連通部(4)に流動気体(1
2、13)を導入することにより落下した粉体(11)
を流動化して前記連通部(4)から前記貯槽部(2)内
に戻し、然る後に請求項1記載の流量測定方法により該
流路(1C)内の粉体(11)の循環流量を測定するこ
とを特徴とする粉体の流量測定方法。3. A storage tank part (2), an ascending pipe part (6), a vertical pipe part (3) having a cyclone (5) connected to the upper end, and a lower end of the vertical pipe part (3) at the storage tank part (2). Of the powder (1
In the circulation channel (1C) of 1), the storage tank section (2)
The powder (11) therein is supplied from the lower part of the storage tank part (2) to the lower part of the rising pipe part (6) to raise the rising pipe part (6) by air flow, and the powder (11 ) Is introduced into the cyclone (5) to separate it from the gas, and then the powder (11) is dropped into the vertical pipe part (3) while the lower part of the vertical pipe part (3) and the communication part ( Flowing gas (1
Powder (11) dropped by introducing 2, 13)
Is fluidized to return from the communication part (4) to the inside of the storage tank part (2), and then the circulation flow rate of the powder (11) in the flow path (1C) is measured by the flow rate measuring method according to claim 1. A method for measuring the flow rate of powder, which comprises measuring.
2又は3記載の粉体の流量測定方法。4. The communication part (4) is an L-shaped tube,
2. The powder flow rate measuring method according to 2 or 3.
2又は3記載の粉体の流量測定方法。5. The communication part (4) is a U-shaped tube,
2. The powder flow rate measuring method according to 2 or 3.
項1、2又は3記載の粉体の流量測定方法。6. The powder flow rate measuring method according to claim 1, 2 or 3, wherein the communicating portion (4) is a powder flow container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4185993A JPH06229801A (en) | 1993-02-05 | 1993-02-05 | Measuring method for flow rate of powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4185993A JPH06229801A (en) | 1993-02-05 | 1993-02-05 | Measuring method for flow rate of powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06229801A true JPH06229801A (en) | 1994-08-19 |
Family
ID=12619981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4185993A Withdrawn JPH06229801A (en) | 1993-02-05 | 1993-02-05 | Measuring method for flow rate of powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06229801A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007101487A (en) * | 2005-10-07 | 2007-04-19 | Ishikawajima Harima Heavy Ind Co Ltd | Device for measuring particle flow rate |
-
1993
- 1993-02-05 JP JP4185993A patent/JPH06229801A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007101487A (en) * | 2005-10-07 | 2007-04-19 | Ishikawajima Harima Heavy Ind Co Ltd | Device for measuring particle flow rate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hariu et al. | Pressure drop in vertical tubes in transport of solids by gases | |
Chandran et al. | Bed‐surface contact dynamics for horizontal tubes in fluidized beds | |
Matsumoto et al. | Solid particle velocity in vertical gaseous suspension flows | |
WO2008020762A1 (en) | Method for real time measurement of mass flow rate of bulk solids | |
Farbar | Flow Characteristics of Solids-Gas Mixtures in a Horizontal and Vertical Circular Conduit | |
JPH06229801A (en) | Measuring method for flow rate of powder | |
Heertjes et al. | The measurement of local mass flow rates and particle velocities in fluid—solids flow | |
Meissner et al. | Removal of mists and dusts from air by beds of fluidized solids | |
De Jong | Aerated solids flow through a vertical standpipe below a pneumatically discharged bunker | |
Botterill et al. | Fluid-bed behaviour at elevated temperatures | |
Abellon et al. | A single radiotracer particle method for the determination of solids circulation rate in interconnected fluidized beds | |
Littman et al. | Effect of particle diameter, particle density and loading ratio on the effective drag coefficient in steady turbulent gas-solids transport | |
Kim et al. | Continuous measurement of solids flow in a circulating fluidized bed | |
Capes | Dense phase vertical pneumatic conveying | |
RU2375694C1 (en) | Jet method for densit measuring | |
Harris et al. | The slot flow meter: a new device for continuous solids flow measurement | |
Paulose et al. | Hydrodynamic study of swirling fluidized bed and the role of distributor | |
RU2207518C2 (en) | Method of measurement of mass flow rate of powder-like medium | |
Takeshita et al. | Effect of aeration rate on flow rate of granular materials from a hopper attaching a standpipe | |
Wu et al. | Fluidization characteristics of two-and three-dimensional fluidized beds | |
Molerus et al. | Heat transfer mechanisms in gas fluidized beds. Part 3: Heat transfer in circulating fluidized beds | |
Cabrejos | Experimental investigation on the fully developed pipe flow of dilute gas-solids suspensions | |
Jama | Dense phase conveying of coarse particles in pneumatic transport systems | |
JPH03269340A (en) | Method and instrument for measuring adhesion of granular body | |
SHINOHARA et al. | A new device for pneumatic transport of particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000509 |