JPH0622963A - Ultrasonic diagnostic device - Google Patents
Ultrasonic diagnostic deviceInfo
- Publication number
- JPH0622963A JPH0622963A JP4055150A JP5515092A JPH0622963A JP H0622963 A JPH0622963 A JP H0622963A JP 4055150 A JP4055150 A JP 4055150A JP 5515092 A JP5515092 A JP 5515092A JP H0622963 A JPH0622963 A JP H0622963A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- transmission shaft
- plate thickness
- plate width
- drive transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、屈曲性の細管例えば血
管内に挿入し内部より超音波を送受波し、かつ機械的に
超音波送受波方向を変更し細管内部の状態を反射超音波
により得ることが可能な超音波診断装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to insert a flexible thin tube, for example, into a blood vessel to transmit and receive ultrasonic waves from the inside, and mechanically change the ultrasonic wave transmitting and receiving direction to reflect the inside of the thin tube. The present invention relates to an ultrasonic diagnostic apparatus that can be obtained.
【0002】[0002]
【従来の技術】屈曲部を有した細管内に挿入し細管内部
の状態を超音波にて検査する超音波探傷装置としては人
体の体腔内に適応可能な超音波診断装置として医用分野
で盛んに応用されている。体腔内、具体的には消化器管
に挿入するものとしては内視鏡の鉗子孔から挿入するこ
とを想定した装置が知られ、超音波探触子の外径は鉗子
孔の大きさから制限されφ3以下にする必要があり、ま
た血管に挿入するためには、例えば心臓の冠状動脈を診
断部位とする場合などは超音波探触子の外径をφ2以下
にする必要がある。2. Description of the Related Art An ultrasonic flaw detector which is inserted into a thin tube having a bent portion and inspects the inside of the thin tube by ultrasonic waves is widely used in the medical field as an ultrasonic diagnostic apparatus adaptable to the body cavity of a human body. It is applied. A device that is supposed to be inserted from the forceps hole of an endoscope is known to be inserted into the body cavity, specifically, the digestive tract, and the outer diameter of the ultrasonic probe is limited by the size of the forceps hole. In order to insert it into a blood vessel, for example, when the coronary artery of the heart is used as the diagnosis site, the outer diameter of the ultrasonic probe must be set to φ2 or less.
【0003】このような細管に挿入可能な超音波探触子
としては、例えば血管内に挿入することが可能な特開平
3−289948号公報に記載された超音波振動子回転
型方式の構成、特開平3−231651号公報記載のミ
ラー回転型方式の構成、また米国特許4、899、75
7号公報記載のミラー振動子一体回転型方式の構成が知
られている。以下図6を参照して従来の超音波探触子に
ついて説明する。図6は従来の超音波探触子40の構成
を模式的に示した図で、(a)が振動子回転型方式、
(b)ミラー回転型方式、(c)ミラー振動子一体回転
型方式である。図6において、41は中空細管構造の樹
脂で構成されたカテーテル、42は超音波を送受波する
超音波振動子、43は超音波の伝搬方向を90°変更す
るミラー、44は超音波振動子42とミラー43を保持
し一体に動作させるホルダ、45は駆動伝達軸である。
なお駆動伝達軸45は図6に記載されていない駆動部、
例えばモータに接続され回転される。また超音波振動子
42は、図6に記載されていない信号線により本体部と
電気的に接続され、超音波送受波信号のやりとりを行
う。As an ultrasonic probe which can be inserted into such a thin tube, for example, a structure of an ultrasonic transducer rotation type system described in JP-A-3-289948 which can be inserted into a blood vessel, Configuration of the mirror rotation type method described in JP-A-3-231651, and U.S. Pat. No. 4,899,75
There is known a structure of a mirror oscillator integrated rotation type system described in Japanese Patent Laid-Open No. A conventional ultrasonic probe will be described below with reference to FIG. FIG. 6 is a diagram schematically showing the configuration of a conventional ultrasonic probe 40, in which (a) is a vibrator rotation type system,
(B) Mirror rotation type system, (c) Mirror oscillator integrated rotation type system. In FIG. 6, 41 is a catheter made of resin having a hollow thin tube structure, 42 is an ultrasonic transducer for transmitting and receiving ultrasonic waves, 43 is a mirror for changing the propagation direction of ultrasonic waves by 90 °, and 44 is an ultrasonic transducer. A holder for holding 42 and the mirror 43 and operating them integrally, and 45 are drive transmission shafts.
The drive transmission shaft 45 is a drive unit not shown in FIG.
For example, it is connected to a motor and rotated. The ultrasonic transducer 42 is electrically connected to the main body by a signal line not shown in FIG. 6, and exchanges ultrasonic wave transmission / reception signals.
【0004】このように屈曲を有し駆動力を伝達させる
駆動伝達軸45の構成として従来より用いられているも
のとしては多層スプリング構造がある。以下図7を参照
し、従来の駆動伝達軸45について説明する。図7は従
来の駆動伝達軸45の概略構造図で、2層スプリング構
造の場合を示している。図7(a)において、47は1
層目、48は2層目、49は各層のスプリングを構成す
る素線である。素線49は図7(b)に示すようにその
断面において、板厚50、板幅51より構成され、これ
らの板厚50、板幅51の大きさを変更することで駆動
伝達軸45全体の特性、即ち柔軟性や伝達性を変更する
ことが可能となる。具体的には、これらの値を大きくす
ることで伝達可能なトルクを向上させることが可能であ
るものの、柔軟性を犠牲にしている。A multi-layer spring structure has been conventionally used as the structure of the drive transmission shaft 45 which is bent and transmits the driving force. The conventional drive transmission shaft 45 will be described below with reference to FIG. 7. FIG. 7 is a schematic structural diagram of a conventional drive transmission shaft 45, showing a case of a two-layer spring structure. In FIG. 7A, 47 is 1
The second layer, 48 is a second layer, and 49 is a wire constituting a spring of each layer. As shown in FIG. 7B, the wire 49 is composed of a plate thickness 50 and a plate width 51 in its cross section. By changing the sizes of the plate thickness 50 and the plate width 51, the entire drive transmission shaft 45 can be obtained. It is possible to change the characteristics of, that is, flexibility and transmissibility. Specifically, although it is possible to improve the torque that can be transmitted by increasing these values, the flexibility is sacrificed.
【0005】図8は、このような超音波探触子40を心
臓の冠状動脈に適応した場合の概略図である。図8にお
いて、52は心臓、53は大動脈、54は冠状動脈、5
5は内腔部に超音波探触子40を挿入するのに十分な内
径を有するガイドカテーテルである。FIG. 8 is a schematic diagram when such an ultrasonic probe 40 is applied to a coronary artery of the heart. In FIG. 8, 52 is a heart, 53 is an aorta, 54 is a coronary artery, 5
Reference numeral 5 is a guide catheter having an inner diameter sufficient to insert the ultrasonic probe 40 into the lumen.
【0006】以上のような構成において以下その動作を
説明する。最初に、ガイドカテーテル55を例えば大腿
部より大動脈53に図8に示すように挿入する。ガイド
カテーテル55内に超音波探触子40を挿入させ、ガイ
ドカテーテル55先端部より超音波探触子40を冠状動
脈内に挿入し、目的とする診断部位に押し進め配置させ
る。この状態で、駆動伝達軸45を回転させることで
(a)は超音波振動子42が、(b)ではミラー43
が、(c)はミラー43と超音波振動子42が回転さ
れ、矢印で示した超音波伝搬方向が走査面46上に回転
され、この回転中に超音波の送受波を行い従来からある
信号処理を経ることにより走査面46上の超音波断層像
を得ることが可能となる。The operation of the above arrangement will be described below. First, the guide catheter 55 is inserted into the aorta 53 from the thigh, for example, as shown in FIG. The ultrasonic probe 40 is inserted into the guide catheter 55, the ultrasonic probe 40 is inserted into the coronary artery from the distal end of the guide catheter 55, and the ultrasonic probe 40 is pushed and arranged at the target diagnostic site. In this state, the drive transmission shaft 45 is rotated to move the ultrasonic transducer 42 in (a) and the mirror 43 in (b).
However, in (c), the mirror 43 and the ultrasonic transducer 42 are rotated, the ultrasonic wave propagation direction indicated by the arrow is rotated on the scanning surface 46, and ultrasonic waves are transmitted and received during this rotation, and a conventional signal is transmitted. Through the processing, it becomes possible to obtain an ultrasonic tomographic image on the scanning surface 46.
【0007】[0007]
【発明が解決しようとする課題】しかし上記のような構
成において、歪の無い超音波断層像を得るために超音波
探触子40を屈曲性の血管内に配置させ、本体部で発生
した回転力を先端に安定的に伝達させる必要がある。但
し、適応部位によってこの屈曲部は有る程度想定するこ
とが可能となる。即ち、図8に示すような心臓52の冠
状動脈54を適応部位とした場合には、超音波探触子4
0の本体側である部分は大動脈53内に配置されそれほ
ど屈曲部を有さないものの、先端部は冠状動脈54内に
配置され図8からも明確なように超音波探触子40は大
きく曲げられる。However, in the above-mentioned structure, the ultrasonic probe 40 is placed in a flexible blood vessel in order to obtain a distortion-free ultrasonic tomographic image, and the rotation generated in the main body is caused. It is necessary to stably transmit the force to the tip. However, it is possible to assume that this bent portion is present to some extent depending on the adaptation site. That is, when the coronary artery 54 of the heart 52 as shown in FIG.
Although the part of the body 0 on the main body side is arranged in the aorta 53 and does not have a bent portion so much, the tip part is arranged in the coronary artery 54, and the ultrasonic probe 40 is largely bent as shown in FIG. To be
【0008】駆動伝達軸45は、図7に示すように一様
の素線49を用いて構成されているため、全体的に同じ
特性を持つ。従って、伝達性を重要視した場合では、冠
状動脈54部分の屈曲に対する柔軟性が欠け、また柔軟
性を重要視した場合には、全体的な回転力の伝達性が低
減する。Since the drive transmission shaft 45 is constructed by using uniform strands 49 as shown in FIG. 7, it has the same characteristics as a whole. Therefore, when the transmissibility is emphasized, the flexibility of the coronary artery 54 in flexion is lacking, and when the flexibility is emphasized, the overall rotational force transmissibility is reduced.
【0009】本発明は上記従来の課題を解決するもの
で、血管のような屈曲部を有する細管に挿入し、細管外
に存在する回転力を精度良く先端部に伝達し超音波の伝
搬方向を走査する超音波診断装置を提供するものであ
る。The present invention solves the above-mentioned conventional problems. It is inserted into a thin tube having a bent portion such as a blood vessel, the rotational force existing outside the thin tube is accurately transmitted to the distal end portion, and the propagation direction of ultrasonic waves is changed. An ultrasonic diagnostic apparatus for scanning is provided.
【0010】[0010]
【課題を解決するための手段】この目的を達成するため
に本発明の超音波診断装置は、柔軟性を有する中空細管
構造のカテーテルと、そのカテーテルの先端に接続され
た音響窓と、その音響窓の内部に納められた伝搬媒体
と、その伝搬媒体中に位置する超音波を送受波する超音
波振動子と、その超音波振動子から送波される超音波を
2次元走査する回転走査部と、回転力を発生する駆動部
と、その駆動部で発生した回転力を前記回転走査部に伝
達する多層スプリング形状の駆動伝達軸と、前記超音波
振動子に電気的に接続された送受信部と、その送受信部
に接続された走査変換部と、その走査変換部に接続され
た画像メモリと、その画像メモリに接続されたモニタ
と、前記駆動部や送受信部や走査変換部や画像メモリの
動作を制御する制御部を備え、前記駆動伝達軸の最外層
が、前記回転走査部側においては素線を等間隔に構成
し、前記駆動部側においては素線を複数本並列に並べた
状態で等間隔に構成したものである。In order to achieve this object, an ultrasonic diagnostic apparatus according to the present invention comprises a catheter having a hollow hollow tube structure having flexibility, an acoustic window connected to the tip of the catheter, and its acoustic. A propagation medium housed inside a window, an ultrasonic transducer located in the propagation medium for transmitting and receiving ultrasonic waves, and a rotary scanning unit for two-dimensionally scanning the ultrasonic waves transmitted from the ultrasonic transducer. A drive unit for generating a rotational force, a multi-layer spring drive transmission shaft for transmitting the rotational force generated by the drive unit to the rotary scanning unit, and a transmission / reception unit electrically connected to the ultrasonic transducer. A scan conversion unit connected to the transmission / reception unit, an image memory connected to the scan conversion unit, a monitor connected to the image memory, the drive unit, the transmission / reception unit, the scan conversion unit, and the image memory. Control unit that controls operation The outermost layer of the drive transmission shaft is configured such that the strands of wire are arranged at equal intervals on the side of the rotary scanning unit, and the strands of wire are arranged at equal intervals on the side of the drive unit. Is.
【0011】[0011]
【作用】本発明はこの構成により、駆動部で発生した回
転駆動力は、駆動伝達軸を介しカテーテル先端に位置す
る回転走査部に伝達され、超音波振動子から発生する超
音波送受波方向を2次元走査させる。この2次元走査時
に送受信部により超音波振動子から超音波を送波し、血
管壁等から反射された超音波を超音波振動子で受波し送
受信部ならびに走査変換部で当該2次元走査方式に対応
した超音波断層像をモニタ上に表示することが可能とな
る。心臓の冠状動脈では、特に超音波探触子の先端の数
十cm部分を屈曲させる必要があるが、この部分の駆動
伝達軸はスプリング形状を構成する素線形状の特性より
柔軟性を有しているため、柔軟に屈曲しかつ回転力を伝
達させることが可能となり、歪の少ない超音波断層像を
得ることが可能となり、診断効果を向上させることが可
能となる。According to the present invention, the rotational driving force generated in the driving unit is transmitted to the rotary scanning unit located at the tip of the catheter via the drive transmission shaft, and the ultrasonic wave transmitting / receiving direction generated from the ultrasonic transducer is changed. Two-dimensional scanning is performed. At the time of this two-dimensional scanning, the ultrasonic wave is transmitted from the ultrasonic transducer by the transmitting / receiving section, the ultrasonic wave reflected from the blood vessel wall or the like is received by the ultrasonic transducer, and the transmitting / receiving section and the scan converting section perform the two-dimensional scanning method. It is possible to display an ultrasonic tomographic image corresponding to the above on the monitor. In the coronary arteries of the heart, it is necessary to bend the tens of centimeters of the tip of the ultrasonic probe, and the drive transmission shaft of this portion is more flexible than the characteristics of the wire shape that constitutes the spring shape. Therefore, it is possible to flexibly bend and transmit the rotational force, it is possible to obtain an ultrasonic tomographic image with less distortion, and it is possible to improve the diagnostic effect.
【0012】[0012]
(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。図1は本発明の第1の実施例にお
ける超音波診断装置の概略ブロック図である。図1にお
いて、1はカテーテル、2はカテーテル先端部に接続さ
れた音響窓、3は超音波を送受波する超音波振動子、4
は超音波振動子3から送波される超音波を2次元走査さ
せる回転走査部で、本実施例ではミラーを用いている。
5は回転走査部4に回転力を伝達する柔軟特性を有する
駆動伝達軸、6は音響窓2内部に充満された例えば生理
食塩水などの伝搬媒体で、7はカテーテル1と音響窓2
と超音波振動子3と回転走査部4と駆動伝達軸5と伝搬
媒体6により構成された超音波探触子、8は本体部であ
る。9は駆動伝達軸5に接続されたモータやエンコーダ
からなる駆動部、10は超音波振動子3に接続された超
音波パルス送信回路や受信用アンプ、A/D変換器等か
ら構成された送受信部、11は送受信部10に接続され
た走査変換部、12は走査変換部11に接続された画像
メモリ、13は画像メモリ12に接続されたモニタ、1
4は駆動部9や送受信部10や走査変換部11や画像メ
モリ12に接続された制御部、15は超音波振動子5と
送受信部10に接続された信号線、16は血管である。
駆動部9、送受信部10、走査変換部11、画像メモリ
12、モニタ13、制御部14により本体部8は構成さ
れる。音響窓2は伝搬媒体6と血液との接触を防止する
もので、また特徴として伝搬媒体6中を伝搬してくる超
音波を血液に伝搬させる時の音響的な阻害要因とならな
いため音速と密度を乗算させた音響インピーダンスが血
管16内を流れる血液や血管16組織とほぼ同等であり
減衰の少ない例えばポリエチレンなどの材料で構成され
ている。(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram of an ultrasonic diagnostic apparatus according to the first embodiment of the present invention. In FIG. 1, 1 is a catheter, 2 is an acoustic window connected to the tip of the catheter, 3 is an ultrasonic transducer for transmitting and receiving ultrasonic waves, 4
Is a rotary scanning unit for two-dimensionally scanning the ultrasonic waves transmitted from the ultrasonic transducer 3, and a mirror is used in this embodiment.
Reference numeral 5 is a drive transmission shaft having a flexible characteristic for transmitting a rotational force to the rotary scanning unit 4, reference numeral 6 is a transmission medium such as physiological saline filled in the acoustic window 2, and reference numeral 7 is the catheter 1 and the acoustic window 2.
The ultrasonic transducer 3 includes the ultrasonic transducer 3, the rotary scanning unit 4, the drive transmission shaft 5, and the propagation medium 6, and 8 is a main body. Reference numeral 9 is a drive unit including a motor and an encoder connected to the drive transmission shaft 5, and 10 is a transmission / reception constituted by an ultrasonic pulse transmission circuit, a reception amplifier, an A / D converter, etc. connected to the ultrasonic transducer 3. 11 is a scan conversion unit connected to the transmission / reception unit 10, 12 is an image memory connected to the scan conversion unit 11, 13 is a monitor connected to the image memory 12, 1
Reference numeral 4 is a control unit connected to the drive unit 9, the transmission / reception unit 10, the scan conversion unit 11 and the image memory 12, 15 is a signal line connected to the ultrasonic transducer 5 and the transmission / reception unit 10, and 16 is a blood vessel.
The drive unit 9, the transmission / reception unit 10, the scan conversion unit 11, the image memory 12, the monitor 13, and the control unit 14 constitute the main body unit 8. The acoustic window 2 prevents contact between the propagating medium 6 and blood, and is characteristically not a sound obstruction factor when propagating ultrasonic waves propagating in the propagating medium 6 to blood, so that sound velocity and density The acoustic impedance obtained by multiplying by is substantially the same as that of the blood flowing in the blood vessel 16 or the tissue of the blood vessel 16 and is made of a material such as polyethylene having a small attenuation.
【0013】更に、駆動伝達軸5の詳細構造を図2を用
いて説明する。図2(a)は多層スプリング形状の駆動
伝達軸5の先端側Aと本体側Bにおける構造を拡大し示
したもの、図2(b)は同(a)の本体側Bの部分拡大
図、図2(c)は同(a)の本体側Aの部分拡大図であ
る。これらの図2において、17は駆動伝達軸5を構成
する多層スプリングの最外層、18は最外層17の内側
に構成された内側層で、19は間隔A、20は間隔Bで
あり、先端側Aのようなスプリング形状で構成されてい
る長さLは、冠状動脈挿入時の先端屈曲部を想定した長
さである。図2(b)は最外層17を構成する素線21
の断面を示したもので、22は板厚、23は板幅であ
り、駆動伝達軸5の最外層17は全体において、板厚2
2および板幅23はほぼ同一な形状であり、構成された
最外層17の外径もほぼ同一である。Further, the detailed structure of the drive transmission shaft 5 will be described with reference to FIG. FIG. 2A is an enlarged view showing the structure on the tip side A and the body side B of the multi-layer spring-shaped drive transmission shaft 5, and FIG. 2B is a partially enlarged view of the body side B of FIG. 2A. FIG. 2C is a partially enlarged view of the main body side A of FIG. In FIG. 2, 17 is the outermost layer of the multi-layer spring that constitutes the drive transmission shaft 5, 18 is the inner layer formed inside the outermost layer 17, 19 is the distance A, 20 is the distance B, and the tip side The length L configured in the shape of a spring like A is a length assuming a tip bending portion when the coronary artery is inserted. FIG. 2B shows a wire 21 forming the outermost layer 17.
22 is a plate thickness, 23 is a plate width, and the outermost layer 17 of the drive transmission shaft 5 has a plate thickness of 2 as a whole.
2 and the plate width 23 have substantially the same shape, and the outer diameters of the outermost layers 17 thus configured are also substantially the same.
【0014】以上のような構成において以下その動作を
説明する。最初に、超音波探触子7を血管16内に挿入
し患部に超音波探触子7先端を移動させる。患部に超音
波探触子7先端が位置したら、駆動部9により回転力を
発生させ駆動伝達軸5に回転力を伝達し、超音波探触子
7先端に位置する回転走査部4を回転させる。回転走査
部4を回転させながら超音波振動子3に送信信号を送受
信部10より信号線15を介し出力させ超音波を発生さ
せる。超音波振動子3にて変換された超音波は伝搬媒体
6中を伝搬し回転走査部4にて伝搬方向を血管16壁方
向に変更される。超音波は、音響窓3を通過し血管壁あ
るいは壁内部で音響インピーダンスの差より次々に反射
され、その一部は超音波振動子3で受波され電気信号に
変換され送受信部10に入力される。The operation of the above arrangement will be described below. First, the ultrasonic probe 7 is inserted into the blood vessel 16 and the tip of the ultrasonic probe 7 is moved to the affected area. When the tip of the ultrasonic probe 7 is located on the affected area, a rotational force is generated by the drive unit 9 and the rotational force is transmitted to the drive transmission shaft 5, and the rotary scanning unit 4 located at the tip of the ultrasonic probe 7 is rotated. . While rotating the rotary scanning unit 4, a transmission signal is output from the transmission / reception unit 10 to the ultrasonic transducer 3 via the signal line 15 to generate ultrasonic waves. The ultrasonic wave converted by the ultrasonic transducer 3 propagates in the propagation medium 6 and is changed in propagation direction by the rotary scanning unit 4 to the wall direction of the blood vessel 16. The ultrasonic waves pass through the acoustic window 3 and are reflected one after another due to the difference in acoustic impedance within the blood vessel wall or inside the wall, and a part of the ultrasonic waves is received by the ultrasonic transducer 3 and converted into an electric signal, which is input to the transmitting / receiving unit 10. It
【0015】この受波信号は送受信部10にて増幅等所
定の処理がなされたあと、A/D変換器にてデジタル信
号に変換され、駆動部9から出力される回転走査部4の
方向に対応する位置信号に応じ制御部14が演算する書
き込み位置に応じ、走査変換部11により画像メモリ1
2上の所定の位置に反射信号のデジタル値は記憶され
る。この超音波信号の送受波処理過程を回転走査部4の
回転中に繰り返し行うことにより、画像メモリ12に
は、回転走査部4の回転走査により得られたラジアル方
向の画像が記憶され、モニタ13に超音波断層像として
表示する。The received signal is subjected to a predetermined process such as amplification by the transmitting / receiving section 10, converted into a digital signal by an A / D converter, and output to the rotary scanning section 4 from the driving section 9. According to the writing position calculated by the control unit 14 according to the corresponding position signal, the scan conversion unit 11 causes the image memory 1 to operate.
The digital value of the reflected signal is stored at a predetermined position on 2. By repeating the process of transmitting and receiving the ultrasonic signal while the rotary scanning unit 4 is rotating, the image in the radial direction obtained by the rotary scanning of the rotary scanning unit 4 is stored in the image memory 12, and the monitor 13 is stored. Is displayed as an ultrasonic tomographic image.
【0016】超音波探触子7を図8に示したような心臓
の冠状動脈に挿入した場合、屈曲を有する部位は超音波
探触子7の先端部が主である。このような先端部位のみ
屈曲部分を有する適応部位でも、駆動伝達軸5は図2に
示すような構造であるため柔軟に血管16に追従しかつ
屈曲部においても駆動伝達軸5の回転を安定して回転走
査部4に伝達することが可能となる。When the ultrasonic probe 7 is inserted into the coronary artery of the heart as shown in FIG. 8, the bent portion is mainly the tip of the ultrasonic probe 7. Even in such an adaptive portion having only a bent portion at the distal end portion, since the drive transmission shaft 5 has a structure as shown in FIG. 2, the drive transmission shaft 5 flexibly follows the blood vessel 16 and stabilizes the rotation of the drive transmission shaft 5 even in the bent portion. Can be transmitted to the rotary scanning unit 4.
【0017】即ち、駆動伝達軸5の先端側Aでは、素線
21を間隔A19で構成し、本体側Bでは、素線21を
複数本例えば3本並列にまとめ、間隔B20で構成して
いる。このような形状に構成することで、本体側Bは板
幅23の3倍の板幅の素線でスプリング形状を構成した
特性に近づき、結果として柔軟性は犠牲になるものの伝
達力は向上される。逆に先端側Aは、柔軟性が向上し、
冠状動脈のような屈曲を有する部位に超音波探触子7を
挿入しても柔軟に追従しかつ回転力を回転走査部4に伝
達することが可能となる。That is, on the front end side A of the drive transmission shaft 5, the strands 21 are arranged at intervals A19, and on the main body side B, a plurality of strands 21, for example, three strands 21 are arranged in parallel and arranged at intervals B20. . With such a configuration, the main body side B comes close to the characteristic of forming a spring shape with a wire having a plate width three times as large as the plate width 23. As a result, the flexibility is sacrificed, but the transmission force is improved. It On the contrary, the tip side A has improved flexibility,
Even if the ultrasonic probe 7 is inserted into a region having a bend such as a coronary artery, the ultrasonic probe 7 can be flexibly followed and the rotational force can be transmitted to the rotary scanning unit 4.
【0018】なお、本実施例中に説明した回転走査部4
としてミラー構成について説明したが、従来技術で説明
した、振動子回転型方式あるいはミラー振動子一体回転
型走査方式でも同じような効果が得られる。The rotary scanning unit 4 described in this embodiment is used.
Although the mirror structure has been described as above, the same effect can be obtained by the vibrator rotation type or the mirror vibrator integrated rotation type scanning system described in the related art.
【0019】以上のように本実施例によれば、カテーテ
ル1と音響窓2と超音波振動子3と回転走査部4と多層
スプリング形状の駆動伝達軸5と伝搬媒体6により構成
された超音波探触子7と本体部8を有し、駆動伝達軸5
の最外層17が、先端側Aの適応部位の屈曲部位に応じ
た長さにおいて素線21を等間隔A19で構成し、かつ
本体側Bにおいては素線21を複数本並列に並べた状態
で等間隔B20で構成したもので、超音波探触子7先端
部が丁度屈曲部に位置する心臓の冠状動脈においても、
駆動部9で発生した回転駆動力を精度良く超音波探触子
7先端部に位置する回転走査部4に伝達することができ
る。As described above, according to this embodiment, an ultrasonic wave constituted by the catheter 1, the acoustic window 2, the ultrasonic transducer 3, the rotary scanning unit 4, the multi-layer spring-shaped drive transmission shaft 5, and the propagation medium 6. It has a probe 7 and a main body 8 and has a drive transmission shaft 5
In the outermost layer 17 in which the strands 21 are arranged at equal intervals A19 in a length corresponding to the bending portion of the adaptation region on the tip side A, and a plurality of strands 21 are arranged in parallel on the main body side B. Even in the coronary arteries of the heart where the ultrasonic probe 7 distal end is located exactly at the bent portion, it is configured by the equal intervals B20.
The rotary driving force generated by the driving unit 9 can be accurately transmitted to the rotary scanning unit 4 located at the tip of the ultrasonic probe 7.
【0020】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。図3(a)は第2
の実施例における多層スプリング形状の駆動伝達軸5の
概略断面図である。第2の実施例における超音波診断装
置の概略ブロック図は図1に示した第1の実施例の概略
ブロック図と同等である。(Embodiment 2) A second embodiment of the present invention will be described below with reference to the drawings. Figure 3 (a) is the second
7 is a schematic cross-sectional view of a multi-layer spring-shaped drive transmission shaft 5 according to the embodiment of FIG. The schematic block diagram of the ultrasonic diagnostic apparatus according to the second embodiment is the same as the schematic block diagram of the first embodiment shown in FIG.
【0021】図3(b),(c)は図3(a)における
駆動伝達軸5の先端側Aと本体側Bにおける構造を拡大
し示したもので、17は駆動伝達軸5を構成する多層ス
プリングの最外層、18は最外層17の内側に構成され
た内側層、24は間隔である。21Aは先端側Aにおけ
る素線の断面で、22Aは板厚、23Aは板幅である。
同じように21Bは本体側Bにおける素線の断面で、2
2Bは板厚、23Bは板幅である。板厚22Aと板厚2
2Bとの関係は、板厚22A<板厚22Bであり、板幅
23Aと板幅23Bとの関係は、板幅23A=板幅23
Bである。3 (b) and 3 (c) are enlarged views showing the structures of the tip end side A and the main body side B of the drive transmission shaft 5 in FIG. 3 (a), and 17 constitutes the drive transmission shaft 5. The outermost layer of the multilayer spring, 18 is an inner layer formed inside the outermost layer 17, and 24 is a gap. 21A is a cross section of the wire on the tip side A, 22A is the plate thickness, and 23A is the plate width.
Similarly, 21B is the cross section of the wire on the main body side B, 2
2B is the plate thickness, and 23B is the plate width. Plate thickness 22A and plate thickness 2
The relationship between 2B and the plate width is 22A <the plate thickness 22B, and the relationship between the plate width 23A and the plate width 23B is the plate width 23A = the plate width 23.
B.
【0022】即ち先端側Aでは、板厚22A、板幅23
Aで素線21Aを間隔24で構成し、本体側Bでは先端
側Aでの板厚より厚い板厚22Bかつ同じ幅の板幅23
Bの素線21Bで、先端側Aと同じ間隔24で構成して
いる。このような駆動伝達軸5を構成することにより、
本体側Bは板厚22Bが先端側Aに比して厚いため伝達
力が向上し、逆に先端側Aでは柔軟性を有す。なお、駆
動伝達軸5の最外層17の外径は内側層18の外径が同
一であるため板厚22Aと22Bの差より、本体側Bの
方が大きくなる。That is, on the front end side A, the plate thickness 22A and the plate width 23
In A, the strands 21A are formed at intervals 24, and on the main body side B, a plate thickness 22B that is thicker than the plate thickness on the tip side A and a plate width 23 of the same width
The B wire 21B is formed at the same interval 24 as the tip side A. By configuring the drive transmission shaft 5 as described above,
Since the plate thickness 22B of the main body side B is thicker than that of the tip side A, the transmission force is improved, and conversely, the tip side A has flexibility. The outer diameter of the outermost layer 17 of the drive transmission shaft 5 is larger on the main body side B than on the difference between the plate thicknesses 22A and 22B because the outer diameter of the inner layer 18 is the same.
【0023】以上のように本実施例によれば、カテーテ
ル1と音響窓2と超音波振動子3と回転走査部4と多層
スプリング形状の駆動伝達軸5と伝搬媒体6により構成
された超音波探触子7と本体部8を有し、駆動伝達軸5
の最外層17が、全体において素線間の間隔24で構成
され、先端側Aの適応部位の屈曲部位に応じた長さにお
いて素線21Aの板厚22Aと、本体側Bの素線21B
の板厚22Bの間に、板厚22A<板厚22B関係を有
しかつ、素線21Aの板幅23Aと素線21Bの板幅2
3Bの間に、板幅23A=板幅23Bの関係を持つよう
に構成したもので、超音波探触子7先端部が丁度屈曲部
に位置する心臓の冠状動脈においても、駆動部9で発生
した回転駆動力を精度良く超音波探触子7先端部に位置
する回転走査部4に伝達することができる。As described above, according to this embodiment, the ultrasonic wave constituted by the catheter 1, the acoustic window 2, the ultrasonic transducer 3, the rotary scanning unit 4, the multi-layer spring-shaped drive transmission shaft 5, and the propagation medium 6 is provided. It has a probe 7 and a main body 8 and has a drive transmission shaft 5
The outermost layer 17 is composed of the spaces 24 between the strands as a whole, and has a plate thickness 22A of the strand 21A and a strand 21B of the main body B at a length corresponding to the bending portion of the adapting portion on the tip side A.
The plate thickness 22A has a relationship between the plate thickness 22A and the plate thickness 22B, and the plate width 23A of the strand 21A and the plate width 2 of the strand 21B.
It is configured to have a plate width 23A = plate width 23B between 3B, and is generated by the drive unit 9 even in the coronary artery of the heart where the tip of the ultrasonic probe 7 is located exactly at the bent portion. The rotational driving force can be accurately transmitted to the rotary scanning unit 4 located at the tip of the ultrasonic probe 7.
【0024】(実施例3)以下本発明の第3の実施例に
ついて図面を参照しながら説明する。図4(a)は第3
の実施例における多層スプリング形状の駆動伝達軸5の
概略断面図である。第3の実施例における超音波診断装
置の概略ブロック図は図1に示した第1の実施例の概略
ブロック図と同等である。(Third Embodiment) A third embodiment of the present invention will be described below with reference to the drawings. FIG. 4A shows the third
7 is a schematic cross-sectional view of a multi-layer spring-shaped drive transmission shaft 5 according to the embodiment of FIG. The schematic block diagram of the ultrasonic diagnostic apparatus according to the third embodiment is equivalent to the schematic block diagram of the first embodiment shown in FIG.
【0025】図4(b),(c)は駆動伝達軸5の先端
側Aと本体側Bにおける構造を拡大し示したもので、1
7は駆動伝達軸5を構成する多層スプリングの最外層、
18は最外層17の内側に構成された内側層、24は間
隔である。21Aは先端側Aにおける素線の断面で、2
2Aは板厚、23Aは板幅である。同じように21Bは
本体側Bにおける素線の断面で、22Bは板厚、23B
は板幅である。板厚22Aと板厚22Bとの関係は、板
厚22A=板厚22Bであり、板幅23Aと板幅23B
との関係は、板幅23A<板幅23Bである。FIGS. 4 (b) and 4 (c) are enlarged views of the structures of the drive transmission shaft 5 on the front end side A and the main body side B.
7 is the outermost layer of the multi-layer spring that constitutes the drive transmission shaft 5,
Reference numeral 18 is an inner layer formed inside the outermost layer 17, and 24 is a space. 21A is a cross section of the wire on the tip side A, 2
2A is the plate thickness and 23A is the plate width. Similarly, 21B is the cross section of the wire on the main body side B, 22B is the plate thickness, and 23B is
Is the board width. The relationship between the plate thickness 22A and the plate thickness 22B is the plate thickness 22A = the plate thickness 22B, and the plate width 23A and the plate width 23B.
The relationship is that the plate width 23A <the plate width 23B.
【0026】即ち先端側Aでは、板厚22A、板幅23
Aで素線21Aを間隔24で構成し、本体側Bでは先端
側Aと同じ厚みの板厚22Bかつ先端側Aより大きい板
幅23Bの素線21Bで、先端側Aと同じ間隔24で構
成している。このような駆動伝達軸5を構成することに
より、本体側Bは板幅23Bが大きいため伝達力が向上
し、逆に先端側Aでは柔軟性を有す。That is, on the front end side A, the plate thickness 22A and the plate width 23
A is composed of the strands 21A at intervals 24, and the body side B is made up of strands 21B having a plate thickness 22B having the same thickness as the tip side A and a plate width 23B larger than the tip side A, and at the same spacing 24 as the tip side A. is doing. By configuring the drive transmission shaft 5 as described above, the transmission force is improved on the main body side B because the plate width 23B is large, and conversely, the tip side A has flexibility.
【0027】以上のように本実施例によれば、カテーテ
ル1と音響窓2と超音波振動子3と回転走査部4と多層
スプリング形状の駆動伝達軸5と伝搬媒体6により構成
された超音波探触子7と本体部8を有し、駆動伝達軸5
の最外層17が、全体において素線間の間隔24で構成
され、先端側Aの適応部位の屈曲部位に応じた長さにお
いて素線21Aの板厚22Aと、本体側Bの素線21B
の板厚22Bの間に、板厚22A=板厚22B関係を有
しかつ、素線21Aの板幅23Aと素線21Bの板幅2
3Bの間に、板幅23A<板幅23Bの関係を持つよう
に構成したもので、超音波探触子7先端部が丁度屈曲部
に位置する心臓の冠状動脈においても、駆動部9で発生
した回転駆動力を精度良く超音波探触子7先端部に位置
する回転走査部4に伝達することができる。As described above, according to the present embodiment, the ultrasonic wave constituted by the catheter 1, the acoustic window 2, the ultrasonic transducer 3, the rotary scanning section 4, the multi-layer spring-shaped drive transmission shaft 5 and the propagation medium 6. It has a probe 7 and a main body 8 and has a drive transmission shaft 5
The outermost layer 17 is composed of the spaces 24 between the strands as a whole, and has a plate thickness 22A of the strand 21A and a strand 21B of the main body B at a length corresponding to the bending portion of the adapting portion on the tip side A.
The plate thickness 22A = the plate thickness 22B, and the plate width 23A of the wire 21A and the plate width 2 of the wire 21B.
It is configured to have a relationship of plate width 23A <plate width 23B between 3B, and even in the coronary artery of the heart where the tip of the ultrasonic probe 7 is located just at the bent portion, it is generated by the drive unit 9. The rotational driving force can be accurately transmitted to the rotary scanning unit 4 located at the tip of the ultrasonic probe 7.
【0028】(実施例4)以下本発明の第4の実施例に
ついて図面を参照しながら説明する。図5は第4の実施
例における多層スプリング形状の駆動伝達軸5の概略断
面図である。第4の実施例における超音波診断装置の概
略ブロック図は図1に示した第1の実施例の概略ブロッ
ク図と同等である。(Embodiment 4) A fourth embodiment of the present invention will be described below with reference to the drawings. FIG. 5 is a schematic sectional view of a multi-layer spring-shaped drive transmission shaft 5 according to the fourth embodiment. The schematic block diagram of the ultrasonic diagnostic apparatus according to the fourth embodiment is equivalent to the schematic block diagram of the first embodiment shown in FIG.
【0029】図5において、17は最外層、18は内側
層であり、先端側Aにおいては、最外層17は冠状動脈
挿入時の先端屈曲部を想定した長さ応じて取り除かれ、
結果として内側層18が最も外側の層になる。駆動伝達
軸5を上記構成にすることで、本体側B側は先端側A側
に対し1層多い構成となり、伝達力が向上し、逆に先端
側Aでは柔軟性を有す。In FIG. 5, 17 is the outermost layer, 18 is the inner layer, and at the distal end side A, the outermost layer 17 is removed according to the length assuming the distal bent portion when the coronary artery is inserted,
As a result, the inner layer 18 becomes the outermost layer. By configuring the drive transmission shaft 5 as described above, the main body side B side has one more layer than the tip side A side, the transmission force is improved, and conversely, the tip side A has flexibility.
【0030】以上のように本実施例によれば、カテーテ
ル1と音響窓2と超音波振動子3と回転走査部4と多層
スプリング形状の多層スプリング形状の駆動伝達軸5と
伝搬媒体6により構成された超音波探触子7と本体部8
を有し、駆動伝達軸5の最外層17が、想定する適応部
位の屈曲部分の長さに応じ先端側Aにて取り除いた構成
にすることで、超音波探触子7先端部が丁度屈曲部に位
置する心臓の冠状動脈においても、駆動部9で発生した
回転駆動力を精度良く超音波探触子7先端部に位置する
回転走査部4に伝達することができる。As described above, according to this embodiment, the catheter 1, the acoustic window 2, the ultrasonic transducer 3, the rotary scanning unit 4, the multi-layer spring-shaped drive transmission shaft 5 and the propagation medium 6 are used. Ultrasonic probe 7 and main body 8
And the outermost layer 17 of the drive transmission shaft 5 is removed on the tip side A in accordance with the length of the assumed flexible portion of the adapting portion, so that the tip of the ultrasonic probe 7 is just bent. Even in the coronary arteries of the heart located at the position, the rotational driving force generated by the driving unit 9 can be accurately transmitted to the rotary scanning unit 4 located at the tip of the ultrasonic probe 7.
【0031】以上の説明に対し、第2の実施例及び第3
の実施例における間隔24は先端側Aと本体側Bで同じ
としているが、駆動伝達軸5の特性として先端側Aのほ
うが本体側Bに比して柔軟性を有することを目的に間隔
24を変更してもよい。In response to the above description, the second embodiment and the third embodiment
In the above embodiment, the distance 24 is the same on the tip side A and the body side B, but as the characteristic of the drive transmission shaft 5, the distance 24 is set for the purpose of having flexibility on the tip side A as compared to the body side B. You may change it.
【0032】また、駆動伝達軸5の特性として先端側A
のほうが本体側Bに比して柔軟性を有することを目的に
第2に実施例と第3の実施例を組み合わせた構成、即
ち、板厚22A<板厚22B関係を有しかつ板幅23A
<板幅23Bの関係を持つように構成したも何等問題な
い。As a characteristic of the drive transmission shaft 5, the tip side A
The second embodiment is a combination of the third embodiment and the third embodiment for the purpose of having more flexibility than the main body side B, that is, the board thickness 22A <the board thickness 22B and the board width 23A.
<There is no problem even if it is configured to have the relationship of the plate width 23B.
【0033】更に、駆動伝達軸5の最外層17以外の
層、例えば内側層18においても先端側Aのほうが本体
側Bに比して柔軟性を有することを目的に第1の実施
例、第2の実施例、第3の実施例に記載した構成を備え
ても何等問題ない。Further, in the layers other than the outermost layer 17 of the drive transmission shaft 5, for example, in the inner layer 18, the tip side A is more flexible than the body side B in the first embodiment and the first embodiment. There is no problem even if the configurations described in the second embodiment and the third embodiment are provided.
【0034】[0034]
【発明の効果】以上のように本実施例によれば、血管内
に挿入可能な中空細管構造のカテーテルと、カテーテル
先端部に内包された超音波を送受波する超音波振動子
と、超音波振動子から送波される超音波を2次元走査す
る回転走査部と、回転走査部に本体で発生した回転力を
伝達する多層スプリング形状の駆動伝達軸と、超音波振
動子に接続された本体部を有している。駆動伝達軸はス
プリング形状に構成した時に、先端側は柔軟性を有し本
体側は伝達性を重視した素線形状を用いて構成したもの
で、また本体部は、駆動伝達軸に接続された駆動部と、
超音波振動子に電気的に接続された送受信部と、送受信
部に接続された走査変換部と、走査変換部に接続された
画像メモリ、画像メモリに接続されたモニタ、駆動部や
送受信部や走査変換部や画像メモリの動作を制御する制
御部から構成されたもので、先端屈曲部においても超音
波探触子先端部が屈曲部に追従し、例えば心臓の冠状動
脈においても駆動部で発生した回転駆動力を精度良く超
音波探触子先端部に位置する回転走査部に伝達すること
ができ、歪のない超音波断層像を取得表示することがで
きる優れた超音波診断装置を実現できるものである。As described above, according to the present embodiment, a catheter having a hollow thin tube structure which can be inserted into a blood vessel, an ultrasonic transducer for transmitting and receiving ultrasonic waves contained in the tip of the catheter, and an ultrasonic wave A rotary scanning unit that two-dimensionally scans ultrasonic waves transmitted from the vibrator, a multi-layer spring-shaped drive transmission shaft that transfers the rotational force generated in the main body to the rotary scanning unit, and a main body connected to the ultrasonic vibrator. Have a section. When the drive transmission shaft is formed in a spring shape, the tip side has flexibility and the main body side is made of a wire shape that emphasizes transmissibility, and the main body is connected to the drive transmission shaft. Drive unit,
A transmission / reception unit electrically connected to the ultrasonic transducer, a scan conversion unit connected to the transmission / reception unit, an image memory connected to the scan conversion unit, a monitor connected to the image memory, a drive unit and a transmission / reception unit, It is composed of a control unit that controls the operation of the scan conversion unit and the image memory.The tip of the ultrasonic probe follows the bending portion even at the bending portion of the tip, and for example, even in the coronary artery of the heart, it occurs in the driving unit. It is possible to realize an excellent ultrasonic diagnostic apparatus capable of accurately transmitting the rotational driving force to the rotational scanning unit located at the tip of the ultrasonic probe and capable of acquiring and displaying an ultrasonic tomographic image without distortion. It is a thing.
【図1】本発明の第1の実施例における超音波診断装置
の概略図FIG. 1 is a schematic diagram of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention.
【図2】同第1の実施例における超音波診断装置の要部
である駆動伝達軸の構造図FIG. 2 is a structural diagram of a drive transmission shaft that is a main part of the ultrasonic diagnostic apparatus according to the first embodiment.
【図3】本発明の第2の実施例における超音波診断装置
の要部である駆動伝達軸の構造図FIG. 3 is a structural diagram of a drive transmission shaft that is a main part of an ultrasonic diagnostic apparatus according to a second embodiment of the present invention.
【図4】本発明の第3の実施例における超音波診断装置
の要部である駆動伝達軸の構造図FIG. 4 is a structural diagram of a drive transmission shaft that is a main part of an ultrasonic diagnostic apparatus according to a third embodiment of the present invention.
【図5】本発明の第4の実施例における超音波診断装置
の要部である駆動伝達軸の構造図FIG. 5 is a structural diagram of a drive transmission shaft that is a main part of an ultrasonic diagnostic apparatus according to a fourth embodiment of the present invention.
【図6】従来の細管内走査用超音波探触子の走査方式を
説明するための概略図FIG. 6 is a schematic diagram for explaining a scanning method of a conventional ultrasonic probe for scanning in a thin tube.
【図7】従来の駆動伝達軸の構造図FIG. 7 is a structural diagram of a conventional drive transmission shaft.
【図8】従来の細管内走査用超音波探触子を心臓の冠状
動脈に適応した時の概略図FIG. 8 is a schematic diagram when a conventional ultrasonic probe for intracapillary scanning is applied to a coronary artery of the heart.
1 カテーテル 2 音響窓 3 超音波振動子 4 回転走査部 5 駆動伝達軸 6 伝搬媒体 7 超音波探触子 8 本体部 9 駆動部 10 送受信部 11 走査変換部 12 画像メモリ 13 モニタ 14 制御部 15 信号線 16 血管 17 最外層 18 内側層 19 間隔A 20 間隔B 21 素線 21A 素線 21B 素線 22 板厚 22A 板厚 22B 板厚 23 板幅 23A 板幅 23B 板幅 24 間隔 40 超音波探触子 41 カテーテル 42 超音波振動子 43 ミラー 44 ホルダ 45 駆動伝達軸 46 走査面 47 心臓 48 大動脈 49 冠状動脈 50 ガイドカテーテル 1 Catheter 2 Acoustic Window 3 Ultrasonic Transducer 4 Rotation Scanning Section 5 Drive Transmission Axis 6 Propagation Medium 7 Ultrasonic Probe 8 Main Body 9 Drive Section 10 Transmitter / Receiver Section 11 Scan Converter 12 Image Memory 13 Monitor 14 Control Section 15 Signal Line 16 Blood vessel 17 Outermost layer 18 Inner layer 19 Interval A 20 Interval B 21 Element wire 21A Element wire 21B Element wire 22 Plate thickness 22A Plate thickness 22B Plate thickness 23 Plate width 23A Plate width 23B Plate width 24 Interval 40 Ultrasonic probe 41 Catheter 42 Ultrasonic Transducer 43 Mirror 44 Holder 45 Drive Transmission Axis 46 Scanning Surface 47 Heart 48 Aorta 49 Coronary Artery 50 Guide Catheter
Claims (5)
ルと、そのカテーテルの先端に接続された音響窓と、そ
の音響窓の内部に納められた伝搬媒体と、その伝搬媒体
中に位置する超音波を送受波する超音波振動子と、その
超音波振動子から送波される超音波を2次元走査する回
転走査部と、回転力を発生する駆動部と、その駆動部で
発生した回転力を前記回転走査部に伝達する多層スプリ
ング形状の駆動伝達軸と、前記超音波振動子に電気的に
接続された送受信部と、その送受信部に接続された走査
変換部と、その走査変換部に接続された画像メモリと、
その画像メモリに接続されたモニタと、前記駆動部や送
受信部や走査変換部や画像メモリの動作を制御する制御
部を備え、前記駆動伝達軸の最外層が、前記回転走査部
側においては素線を等間隔に構成し、前記駆動部側にお
いては素線を複数本並列に並べた状態で等間隔に構成し
たことを特徴とする超音波診断装置。1. A catheter having a flexible hollow capillary structure, an acoustic window connected to the tip of the catheter, a propagation medium contained inside the acoustic window, and an ultrasonic wave located in the propagation medium. The ultrasonic transducer that transmits and receives the ultrasonic wave, the rotary scanning unit that two-dimensionally scans the ultrasonic waves transmitted from the ultrasonic transducer, the driving unit that generates the rotational force, and the rotational force that is generated by the driving unit. A multi-layer spring drive transmission shaft that transmits to the rotary scanning unit, a transmission / reception unit electrically connected to the ultrasonic transducer, a scan conversion unit connected to the transmission / reception unit, and a connection to the scan conversion unit. Image memory,
A monitor connected to the image memory and a control unit for controlling the operation of the drive unit, the transmission / reception unit, the scan conversion unit, and the image memory are provided, and the outermost layer of the drive transmission shaft is not provided on the rotary scanning unit side. The ultrasonic diagnostic apparatus is characterized in that the wires are arranged at equal intervals, and a plurality of strands are arranged in parallel on the drive section side at equal intervals.
層は、回転走査部側における素線断面の板厚、板幅と、
駆動部側における素線断面の板厚、板幅との関係におい
て、回転走査側板厚よりも駆動部側板厚の方が厚く、か
つ回転走査側板幅と駆動部側板幅とは等しいことを特徴
とする請求項1記載の超音波診断装置。2. The outermost layer of the multi-layer spring-shaped drive transmission shaft has a plate thickness and a plate width of a wire cross section on the rotary scanning unit side,
Regarding the relationship between the plate thickness and the plate width of the wire cross section on the drive unit side, the drive unit side plate thickness is thicker than the rotary scanning side plate thickness, and the rotary scanning side plate width and the drive unit side plate width are equal. The ultrasonic diagnostic apparatus according to claim 1.
層は、回転走査部側における素線断面の板厚、板幅と、
駆動部側における素線断面の板厚、板幅との関係におい
て、回転走査側板厚と駆動部側板厚とが等しく、かつ回
転走査側板幅よりも駆動部側板幅の方が幅広であること
を特徴とする請求項1記載の超音波診断装置。3. The outermost layer of the multi-layer spring-shaped drive transmission shaft has a plate thickness and a plate width of a wire cross section on the rotary scanning unit side,
Regarding the relationship between the plate thickness and the plate width of the wire cross section on the drive unit side, the rotation scanning side plate thickness is equal to the drive unit side plate thickness, and the drive unit side plate width is wider than the rotation scanning side plate width. The ultrasonic diagnostic apparatus according to claim 1, which is characterized in that.
層は、回転走査部側における層が、駆動部側における層
に対して少ないことを特徴とする請求項1記載の超音波
診断装置。4. The ultrasonic diagnostic apparatus according to claim 1, wherein the outermost layer of the multi-layer spring-shaped drive transmission shaft has a smaller number of layers on the rotary scanning unit side than on the drive unit side.
層は、回転走査部側における素線断面の板厚、板幅と、
駆動部側における素線断面の板厚、板幅との関係におい
て、回転走査側板厚よりも駆動部側板厚の方が厚く、か
つ回転走査側板幅よりも駆動部側板幅の方が幅広である
ことを特徴とする請求項1記載の超音波診断装置。5. The outermost layer of the multi-layer spring-shaped drive transmission shaft includes a plate thickness and a plate width of a wire cross section on the rotary scanning unit side,
In relation to the plate thickness and plate width of the wire cross section on the drive unit side, the drive unit side plate thickness is thicker than the rotary scanning side plate thickness, and the drive unit side plate width is wider than the rotary scanning side plate width. The ultrasonic diagnostic apparatus according to claim 1, wherein:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4055150A JPH0775609B2 (en) | 1992-03-13 | 1992-03-13 | Ultrasonic diagnostic equipment |
US07/941,580 US5377682A (en) | 1991-09-05 | 1992-09-04 | Ultrasonic probe for transmission and reception of ultrasonic wave and ultrasonic diagnostic apparatus including ultrasonic probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4055150A JPH0775609B2 (en) | 1992-03-13 | 1992-03-13 | Ultrasonic diagnostic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0622963A true JPH0622963A (en) | 1994-02-01 |
JPH0775609B2 JPH0775609B2 (en) | 1995-08-16 |
Family
ID=12990732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4055150A Expired - Fee Related JPH0775609B2 (en) | 1991-09-05 | 1992-03-13 | Ultrasonic diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0775609B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005013453A (en) * | 2003-06-26 | 2005-01-20 | Terumo Corp | Ultrasonic catheter |
JP2005528951A (en) * | 2002-06-10 | 2005-09-29 | シメッド ライフ システムズ インコーポレイテッド | Ultrasound imaging catheter assembly |
-
1992
- 1992-03-13 JP JP4055150A patent/JPH0775609B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005528951A (en) * | 2002-06-10 | 2005-09-29 | シメッド ライフ システムズ インコーポレイテッド | Ultrasound imaging catheter assembly |
US8043222B2 (en) | 2002-06-10 | 2011-10-25 | Scimed Life Systems, Inc. | Transducer with multiple resonant frequencies for an imaging catheter |
JP2005013453A (en) * | 2003-06-26 | 2005-01-20 | Terumo Corp | Ultrasonic catheter |
Also Published As
Publication number | Publication date |
---|---|
JPH0775609B2 (en) | 1995-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080269615A1 (en) | Transducer with multiple resonant frequencies for an imaging catheter | |
JPH05502171A (en) | Intraductal ultrasound imaging probe | |
GB2208138A (en) | Ultrasonic transducer array around a flexible tube | |
WO1996016600A9 (en) | Acoustic imaging and doppler catheters and guidewires | |
JP2002514455A (en) | Optoacoustic imaging device | |
EP0794732A4 (en) | Acoustic imaging and doppler catheters and guidewires | |
EP3697315B1 (en) | Digital rotational patient interface module | |
JPH09522A (en) | Ultrasonic probe and ultrasonic diagnostic device | |
JP2653352B2 (en) | Ultrasound diagnostic equipment | |
JPH0622963A (en) | Ultrasonic diagnostic device | |
JP6665315B2 (en) | Tissue and vascular path mapping using synchronous photoacoustic and ultrasonic pullback techniques | |
JPH07108291B2 (en) | Ultrasonic diagnostic equipment | |
JPH07289550A (en) | Ultrasonic diagnostic system | |
JP3514876B2 (en) | Ultrasound catheter | |
JPH05277112A (en) | Ultrasonic diagnostic device | |
JPH08164140A (en) | Ultrasonic diagnostic system | |
JP3047606B2 (en) | Ultrasound diagnostic equipment | |
JPH0352286B2 (en) | ||
JP2532791B2 (en) | Ultrasonic diagnostic equipment | |
GB2099581A (en) | Endoscopic probes, systems and methods | |
JP3379297B2 (en) | Ultrasonic inspection equipment | |
JPH0910216A (en) | Ultrasonic catheter | |
JPH03277353A (en) | Ultrasonic diagnostic device | |
JPH0595950A (en) | Ultrasonic diagnostic apparatus | |
JPH05103782A (en) | Ultrasonic probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070816 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080816 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080816 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090816 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |