JPH0622932A - Magnetic resonance diagnostic device - Google Patents

Magnetic resonance diagnostic device

Info

Publication number
JPH0622932A
JPH0622932A JP4178303A JP17830392A JPH0622932A JP H0622932 A JPH0622932 A JP H0622932A JP 4178303 A JP4178303 A JP 4178303A JP 17830392 A JP17830392 A JP 17830392A JP H0622932 A JPH0622932 A JP H0622932A
Authority
JP
Japan
Prior art keywords
slice
signal intensity
signal
image
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4178303A
Other languages
Japanese (ja)
Inventor
Nobuyasu Ichinose
伸保 市之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4178303A priority Critical patent/JPH0622932A/en
Publication of JPH0622932A publication Critical patent/JPH0622932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To obtain a magnetic resonance diagnosing device which can surely extract a blood flow image by measuring the signal intensity supplied from a same tissue part of each slice surface, multiplying the actually measured signal supplied from each slice surface by the inverted ratio of the signal intensity, and reconstituting the signal in multiplied state and generating an image. CONSTITUTION:When the blood flow image of a head part 6 is photographed by using a magnetic resonance diagnostic device, the slice thickness R is divided into slices S1, S2, S3,..., in order to correct the signal intensity variation according to the depth in the slice direction, and the signal value supplied from a prescribed region of each slice image is measured. Then, the function of the signal intensity I(z) for the slice depth Z is obtained. Accordingly, when the collected dats is multiplied by the value C/I(z) which is obtained by multiplying the inverted value of the signal intensity function I(z) by a proportional coefficient C, correction can be carried out so that the signal intensity which varies according to the slice depth is made constant. Accordingly, the signal intensity in the related region I is made nearly constant, and the blood flow signals 3 and 4 can be surely extracted on a photographed image 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気共鳴診断装置に係
り、特に、スライス深さによる信号強度変化を補正する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance diagnostic apparatus, and more particularly to a technique for correcting a change in signal intensity due to slice depth.

【0002】[0002]

【従来の技術】近年、体内組織を非侵襲的に診断するも
のとして磁気共鳴診断装置が多く実用に供されている。
このような磁気共鳴診断装置を用いた体内像の撮影法の
一つとして体内の血流画像を撮影するMRアンギオグラ
フィがあり、通常は最大値投影法が用いられる。
2. Description of the Related Art In recent years, a large number of magnetic resonance diagnostic apparatuses have been put to practical use for noninvasively diagnosing internal tissues.
MR angiography for capturing a blood flow image in the body is one of the methods for capturing an in-vivo image using such a magnetic resonance diagnostic apparatus, and the maximum intensity projection method is usually used.

【0003】最大値投影法は、血流信号を強調するパル
スシーケンスにて3次元の原画像を得、これをスライス
方向に投影して投影線上の最大値を取出し、これを再構
成して血流画像を作成するものである。この方法の特徴
は、血流信号が投影線上にある背景部の信号に比べて少
しでも大きければ血流を描出することができることであ
る。
The maximum intensity projection method obtains a three-dimensional original image by a pulse sequence that emphasizes a blood flow signal, projects this in the slice direction to obtain the maximum value on the projection line, and reconstructs this to obtain a blood image. It creates a flow image. The feature of this method is that the blood flow can be visualized if the blood flow signal is a little larger than the signal of the background portion on the projection line.

【0004】しかしながら、関心領域を励起させるため
の選択励起パルスでは関心領域を完全な矩形にスライス
することはできない。即ち、図7に示すように、励起パ
ルスP1をフーリエ変換すると波形P2の如くとなり、
完全な矩形波とはならない。このため、スライス方向の
深さが変わると収集される信号強度も変化してしまう。
However, the selective excitation pulse for exciting the region of interest cannot slice the region of interest into a perfect rectangle. That is, as shown in FIG. 7, when the excitation pulse P1 is Fourier transformed, it becomes like a waveform P2,
It is not a perfect square wave. Therefore, the collected signal strength also changes when the depth in the slice direction changes.

【0005】これを模式的に示すと図8の如くとなる。
同図において方向Sがスライス方向、方向Kが信号強度
を示しており、関心領域1はスライス方向の深さに応じ
て信号強度が変化している。いま、例えばこの関心領域
1内に血流信号3,4が存在する場合、血流信号が強調
されているので他の背景信号よりも大きな信号となる。
その結果、信号強度の強い位置(山の部分)にある血流
信号3はそのまま投影像2上に表われる。しかし、信号
強度の弱い位置(谷の部分)にある血流信号4は他の背
景信号に埋もれてしまい、投影像2上に表われなくなっ
てしまう。
This is schematically shown in FIG.
In the figure, the direction S indicates the slice direction and the direction K indicates the signal intensity, and the signal intensity of the region of interest 1 changes according to the depth in the slice direction. Now, for example, when the blood flow signals 3 and 4 are present in the region of interest 1, the blood flow signals are emphasized and thus become larger than other background signals.
As a result, the blood flow signal 3 at the position (mountain portion) where the signal intensity is strong appears on the projected image 2 as it is. However, the blood flow signal 4 at the position (valley portion) where the signal intensity is weak is buried in other background signals and does not appear on the projected image 2.

【0006】[0006]

【発明が解決しようとする課題】このように、従来の磁
気共鳴診断装置を用いたMRアンギオグラフィにおいて
は、血流信号が谷の部分に存在した場合にはこの血流信
号を描出することができず、正確な血流画像を得ること
ができないという欠点があった。
As described above, in the MR angiography using the conventional magnetic resonance diagnostic apparatus, when the blood flow signal exists in the valley portion, the blood flow signal can be visualized. However, there is a drawback that an accurate blood flow image cannot be obtained.

【0007】この発明はこのような従来の課題を解決す
るためになされたもので、その目的とするところは、確
実に血流画像を描出することのできる磁気共鳴診断装置
を提供することにある。
The present invention has been made to solve such conventional problems, and an object of the present invention is to provide a magnetic resonance diagnostic apparatus capable of reliably drawing a blood flow image. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、複数のスライス面からの磁気共鳴信号を
収集して画像化し、診断に供する磁気共鳴診断装置にお
いて、予め前記各スライス面の同一組織部からの信号強
度を測定する手段と、前記測定された信号強度の逆比を
各スライス面からの実測定信号に乗じる手段と、該信号
強度の逆比が乗じられた信号を再構成して画像化する手
段と、を有することが特徴である。
In order to achieve the above object, the present invention provides a magnetic resonance diagnostic apparatus for collecting and imaging magnetic resonance signals from a plurality of slice planes for use in diagnosis. Means for measuring the signal intensity from the same tissue part, means for multiplying the actual measurement signal from each slice plane by the inverse ratio of the measured signal intensity, and the signal multiplied by the inverse ratio of the signal intensity And a means for forming an image.

【0009】[0009]

【作用】上述の如く構成すれば、スライスの深さと信号
強度との関係を示す関数が予め求められる。そして、実
際に測定された信号に、求められた関数を逆比で乗じる
ことにより、各スライス深さで同一組織からの信号が一
定となるように補正する。これによって、強調された血
流信号が背景信号に埋もれることはなく、確実に血流画
像を描出することができるようになる。
With the above arrangement, a function indicating the relationship between the slice depth and the signal strength can be obtained in advance. Then, the actually measured signal is multiplied by the obtained function by the inverse ratio to correct the signal from the same tissue to be constant at each slice depth. As a result, the emphasized blood flow signal is not buried in the background signal, and the blood flow image can be reliably drawn.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明が適用された磁気共鳴診断装置を用
いて頭部6の血流画像を撮影する際のスライス位置を示
す図である。そして、スライス厚Rの3次元データを収
集し、これを最大値投影して血流画像を得る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing slice positions when a blood flow image of the head 6 is captured using a magnetic resonance diagnostic apparatus to which the present invention is applied. Then, three-dimensional data of the slice thickness R is collected and the maximum value projection is performed to obtain a blood flow image.

【0011】ここで、スライス方向の深さによる信号強
度変化を補正するため、スライス厚RをスライスS1,
S2,S3,…に分割し、各スライス画像の所定の領域
からの信号値を測定する。即ち、図2に示すように各ス
ライス画像の測定領域5からの信号を取得する。このと
き、測定領域5は各スライスで異なる組織とならないよ
うにする必要がある。通常、頭部の場合は脳実質部を測
定領域5とすれば全てのスライスのおいて信号を取得す
る組織を同一とすることができる。
Here, in order to correct the change in signal intensity due to the depth in the slice direction, the slice thickness R is set to the slice S1,
The signal value from a predetermined area of each slice image is measured by dividing into S2, S3, .... That is, as shown in FIG. 2, the signal from the measurement region 5 of each slice image is acquired. At this time, it is necessary to prevent the measurement region 5 from having different tissues in each slice. Normally, in the case of the head, if the brain parenchyma is used as the measurement region 5, the tissue from which signals are acquired can be the same in all slices.

【0012】その後、取得した信号強度を図3に示すよ
うに横軸をスライス深さとしてプロットすれば、スライ
ス深さZに対する信号強度I(z)を関数として得るこ
とができる。従って、この信号強度関数I(z)の逆数
に比例定数Cを乗じた数値C/I(z)を収集データに
乗じればスライス深さによって変化する信号強度が一定
となるように補正することができる。これを図8に対応
した模式図で示すと図4の如くとなり、関心領域1の信
号強度は略一定となる。これによって血流信号3,4は
確実に投影像2上に描出されるようになる。
Then, if the acquired signal intensity is plotted with the horizontal axis as the slice depth as shown in FIG. 3, the signal intensity I (z) with respect to the slice depth Z can be obtained as a function. Therefore, if the collected data is multiplied by the numerical value C / I (z) obtained by multiplying the reciprocal of the signal strength function I (z) by the proportional constant C, the signal strength changing depending on the slice depth should be corrected. You can This is shown in a schematic diagram corresponding to FIG. 8 as shown in FIG. 4, and the signal intensity in the region of interest 1 is substantially constant. As a result, the blood flow signals 3 and 4 are reliably drawn on the projected image 2.

【0013】このようにして、本実施例では、スライス
深さによる信号強度変化を補正し、信号強度を一定とし
ている。従って、関心領域にある血流信号を確実に描出
することができるようになる。
As described above, in this embodiment, the signal strength change due to the slice depth is corrected to keep the signal strength constant. Therefore, it becomes possible to reliably draw the blood flow signal in the region of interest.

【0014】図5は本実施例の変形例を示す図であり、
この例では信号強度を測定するための領域を被検者9の
外部に設けたファントム8としている。すると、断層像
は図6の如くとなりファントム8の断面が測定領域7と
して映し出される。そして、前述した実施例と同様に複
数枚のスライスで測定領域7からの信号強度を測定し、
これを基にスライスの深さによる信号強度の変化を補正
する。これによっても前述の実施例と同様の効果が得ら
れる。なお、ファントムの縦緩和時間T1 、及び横緩和
時間T2 は組織と同一のものとすることが望ましい。
FIG. 5 is a diagram showing a modification of this embodiment,
In this example, the region for measuring the signal strength is the phantom 8 provided outside the subject 9. Then, the tomographic image becomes as shown in FIG. 6, and the cross section of the phantom 8 is projected as the measurement region 7. Then, the signal intensity from the measurement region 7 is measured with a plurality of slices in the same manner as in the above-mentioned embodiment,
Based on this, the change in signal intensity due to the depth of the slice is corrected. With this, the same effect as that of the above-described embodiment can be obtained. The vertical relaxation time T 1 and the lateral relaxation time T 2 of the phantom are preferably the same as those of the tissue.

【0015】更に、他の実施例として、図7に示したよ
うに、励起パルス波形P1をフーリエ変換して得られた
波形P2を、信号強度の関数I(z)として用いても信
号強度の変化を補正することができる。
Further, as another embodiment, as shown in FIG. 7, even if the waveform P2 obtained by Fourier transforming the excitation pulse waveform P1 is used as the function I (z) of the signal intensity, Changes can be corrected.

【0016】なお、本実施例ではMRアンギオグラフィ
について説明したが、本発明はこれに限定されず、一般
の3次元データについて補正処理を行なうことができる
ことは勿論である。
Although MR angiography has been described in this embodiment, the present invention is not limited to this, and it goes without saying that general three-dimensional data can be corrected.

【0017】[0017]

【発明の効果】以上説明したように、本発明では、スラ
イス深さ方向の信号強度の変化を、この信号強度の逆比
を乗じることによって一定となるように補正している。
従って、血流画像の最大値投影を行なった場合は、背景
に埋もれることなく確実に血流画像を描出することがで
きるという効果が得られる。
As described above, in the present invention, the change in the signal strength in the slice depth direction is corrected to be constant by multiplying the inverse ratio of the signal strength.
Therefore, when the maximum value projection of the blood flow image is performed, there is an effect that the blood flow image can be reliably drawn without being buried in the background.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例による頭部の撮影領域を示す図であ
る。
FIG. 1 is a diagram showing an imaging region of a head according to the present embodiment.

【図2】頭部撮影領域の各スライス位置での断層像を示
す図である。
FIG. 2 is a diagram showing a tomographic image at each slice position in a head imaging region.

【図3】信号強度とスライスの深さとの関係を示す特性
図である。
FIG. 3 is a characteristic diagram showing a relationship between signal strength and slice depth.

【図4】本実施例における血流信号強度と背景信号強
度、及びそれを最大値投影したときの様子を示す模式図
である。
FIG. 4 is a schematic diagram showing a blood flow signal intensity and a background signal intensity in the present embodiment, and a state when the maximum value projection thereof is performed.

【図5】信号強度の測定用にファントムを用いたときの
例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example in which a phantom is used for measuring signal strength.

【図6】ファントムによる測定領域が映し出された断層
像である。
FIG. 6 is a tomographic image showing a measurement region of a phantom.

【図7】励起パルス波形とこれをフーリエ変換して得ら
れる矩形波を示す説明図である。
FIG. 7 is an explanatory diagram showing an excitation pulse waveform and a rectangular wave obtained by Fourier transforming the excitation pulse waveform.

【図8】従来における血流信号強度と背景信号強度、及
びその最大値投影したときの様子を示す模式図である。
FIG. 8 is a schematic diagram showing a conventional blood flow signal intensity, background signal intensity, and a state when the maximum value is projected.

【符号の説明】[Explanation of symbols]

2 撮影像 3,4 血流信号 5 測定領域 8 ファントム 2 Photographed image 3, 4 Blood flow signal 5 Measurement area 8 Phantom

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のスライス面からの磁気共鳴信号を
収集して画像化し、診断に供する磁気共鳴診断装置にお
いて、 予め前記各スライス面の同一組織部からの信号強度を測
定する手段と、前記測定された信号強度の逆比を各スラ
イス面からの実測定信号に乗じる手段と、該信号強度の
逆比が乗じられた信号を再構成して画像化する手段と、
を有することを特徴とする磁気共鳴診断装置。
1. A magnetic resonance diagnostic apparatus for collecting and imaging magnetic resonance signals from a plurality of slice planes for diagnosis, and means for measuring in advance the signal intensity from the same tissue portion of each slice plane, Means for multiplying the inverse ratio of the measured signal strength by the actual measurement signal from each slice plane, and means for reconstructing and imaging the signal multiplied by the inverse ratio of the signal strength,
A magnetic resonance diagnostic apparatus comprising:
【請求項2】 前記同一組織部は、撮影部近傍に置かれ
たファントムである請求項1記載の磁気共鳴診断装置。
2. The magnetic resonance diagnostic apparatus according to claim 1, wherein the same tissue part is a phantom placed near an imaging part.
JP4178303A 1992-07-06 1992-07-06 Magnetic resonance diagnostic device Pending JPH0622932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4178303A JPH0622932A (en) 1992-07-06 1992-07-06 Magnetic resonance diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4178303A JPH0622932A (en) 1992-07-06 1992-07-06 Magnetic resonance diagnostic device

Publications (1)

Publication Number Publication Date
JPH0622932A true JPH0622932A (en) 1994-02-01

Family

ID=16046119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4178303A Pending JPH0622932A (en) 1992-07-06 1992-07-06 Magnetic resonance diagnostic device

Country Status (1)

Country Link
JP (1) JPH0622932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200053A (en) * 2000-12-27 2002-07-16 Toshiba Corp Mr flow rate measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200053A (en) * 2000-12-27 2002-07-16 Toshiba Corp Mr flow rate measurement system
JP4589526B2 (en) * 2000-12-27 2010-12-01 株式会社東芝 MR flow velocity measurement system

Similar Documents

Publication Publication Date Title
DE60026474T2 (en) Measurement of breathable motion and velocity using navigator echo signals of magnetic resonance imaging
KR101596549B1 (en) A method for a rapid determination of spatially resolved magnetic resonance relaxation parameters in an area of examination
JP4836313B2 (en) Method for operating an MR tomography apparatus
DE3918625C2 (en) Method and device for cinematographic magnetic resonance (MR) imaging
US11681001B2 (en) Deep learning method for nonstationary image artifact correction
DE102006058316B4 (en) Method for recording image data of a vessel wall and magnetic resonance device for this purpose
JP3850495B2 (en) Method and apparatus for generating images from NMR data
JP2002017711A (en) Method for actuating magnetic resonance device
US20130131490A1 (en) System and Method for Determining The Presence of a Neurodegenerative Disease Using Magnetic Resonance Elastography
JP3672976B2 (en) Magnetic resonance imaging system
JP2007068852A (en) Medical image display method and medical diagnostic imaging apparatus
DE69934450T2 (en) Method for calculating shaft velocities in blood vessels
DE60123375T2 (en) Method for taking MR images with high temporal resolution and without obstruction of the respiration
DE3708518A1 (en) Magnetic resonance imaging arrangement
US7863896B2 (en) Systems and methods for calibrating functional magnetic resonance imaging of living tissue
DE10191807B3 (en) MRI method and apparatus for rapid assessment of stenosis severity
DE19907152B9 (en) Acquire segmented magnetic resonance imaging heart data using an echo-planar imaging pulse train
DE10039344A1 (en) Magnetic resonance imaging for medical applications, involves repeating application of longitudinal magnetization field and NMR signals to and away from area of interest to generate 2D image pulse sequences
JPH04364829A (en) Magnetic resonance image processing method and apparatus therefor
JP2009172296A (en) Magnetic resonance diagnosis apparatus
EP3332705A1 (en) Method for detecting a dental object
JPH0622932A (en) Magnetic resonance diagnostic device
US4746865A (en) Method and system for magnetic resonance imaging
JPH05154131A (en) Magnetic resonance diagnostic device
JPH08103427A (en) Magnetic resonance imaging system