JPH06229143A - Damping mechanism using friction force - Google Patents

Damping mechanism using friction force

Info

Publication number
JPH06229143A
JPH06229143A JP3249793A JP3249793A JPH06229143A JP H06229143 A JPH06229143 A JP H06229143A JP 3249793 A JP3249793 A JP 3249793A JP 3249793 A JP3249793 A JP 3249793A JP H06229143 A JPH06229143 A JP H06229143A
Authority
JP
Japan
Prior art keywords
hemispherical
friction
force
semispheric
friction plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3249793A
Other languages
Japanese (ja)
Inventor
Kinji Sekida
欣治 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3249793A priority Critical patent/JPH06229143A/en
Publication of JPH06229143A publication Critical patent/JPH06229143A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To cope effectively with an earthquake in every direction by seating an upper part friction board on a lower part friction board in a sliding manner and forming a semispheric projection on one side friction board and forming a larger-sized semispheric hole than the semispheric projection on the other side friction board. CONSTITUTION:An upper part friction board 4 is loaded on a lower part friction board 3 where the vertical weight of an upper structure is transmitted to a lower structure 1. Both the friction boards 3 and 4 are formed in the horizontal direction in a sliding manner so as to provide a specified clearance DELTA1 between a semispheric projection 5 installed in the central part of the both friction boards 3 and 4 and a larger-sized semispheric hole 6. In the case when they are subjected to repeated horizontal force which exceeds friction force by an earthquake, there is produced a slip between the bottom of the upper structure 2 and the top of the lower part structure 1 so that the seismic wave energy may be absorbed from he relation between shearing force and horizontal displacement. As a result, both the upper part structure 2 and the lower part structure 1 are not subjected to the action of a large horizontal force generated during an earthquake.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下部構造物上に上部構
造物を着座させた建造物、例えば人工地盤等の、地震時
の制震機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic control mechanism for an earthquake such as a structure in which an upper structure is seated on a lower structure, such as an artificial ground.

【0002】[0002]

【従来の技術】建物の制震機構は各種のものがあるが、
その一例として積層ゴムを利用したものがある。これ
は、図6に示すように、上下のフランジ20,21間
に、ゴム22と鋼板23を多段式に重ねて接着したもの
を、基礎と上部建物の間に介装させて、上下のフランジ
をそれぞれ固定したものであり、上部建物の鉛直荷重を
積層ゴムの耐圧縮抵抗力で支持しながら地震時の水平力
を減衰させるものである。即ち、地震波により基礎に作
用する水平力が当該制震装置を介して上部建物に伝わる
際、積層ゴムがせん断変形し、図7に示すように水平力
と水平変位が時間とともにヒステリシスを描くように生
じ、この結果、地震エネルギーは吸収され、上部建物に
伝わる加速度は低減する作用を利用したものである。
2. Description of the Related Art There are various types of building vibration control mechanisms,
One example is a laminated rubber. As shown in FIG. 6, a rubber 22 and a steel plate 23 are stacked and bonded in a multi-stage manner between the upper and lower flanges 20 and 21, and are interposed between the foundation and the upper building to form the upper and lower flanges. Each of them is fixed, and the vertical load of the upper building is supported by the compression resistance of laminated rubber while damping the horizontal force during an earthquake. That is, when the horizontal force acting on the foundation due to the seismic wave is transmitted to the upper building through the vibration control device, the laminated rubber undergoes shear deformation, and the horizontal force and the horizontal displacement draw hysteresis with time as shown in FIG. As a result, seismic energy is absorbed, and the acceleration transmitted to the upper building is reduced.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の積層ゴ
ムを用いた制震機構の場合、直接建物の鉛直重量を支持
する必要があるため、人工地盤のように上部構造物が大
規模になって重量が大きくなると、積層ゴムの強度を大
きくしたり、受圧面積を増大するため制震機構の数を増
やさなければならない。また、20年を超えて長期に使
用する場合、劣化によって積層ゴムのせん断強度が低下
し、復原性能がなくなり制震性能が低下する等の課題が
あった。本発明は、前述の欠点を解消し、複雑な機械装
置を使用することなく非常に単純な機構で、かつ大きな
鉛直支持力を有し耐久性にすぐれた制震機構を提供する
ことを目的とするものである。
However, in the case of the conventional vibration control mechanism using laminated rubber, it is necessary to directly support the vertical weight of the building, so that the superstructure becomes large-scale like an artificial ground. As the weight increases, it is necessary to increase the strength of the laminated rubber and increase the number of vibration control mechanisms in order to increase the pressure receiving area. Further, when it is used for a long period of time exceeding 20 years, there is a problem that the shear strength of the laminated rubber is deteriorated due to deterioration, the stability of the rubber is lost, and the vibration control performance is deteriorated. An object of the present invention is to solve the above-mentioned drawbacks and to provide a vibration control mechanism having a very simple mechanism without using a complicated mechanical device and having a large vertical supporting force and excellent durability. To do.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の手段は以下を要旨とする。下部構造物1の頂部に着座
する上部構造物2の支持機構において、下部構造物頂部
に設けた下部摩擦板3上に上部構造物底部に設けた上部
摩擦板4を摺動可能に着座させて上部構造物2の鉛直荷
重を支持させ、両摩擦板は鋼材で製作され中央部には一
方の摩擦板に半球状突起5を形成し、他方の摩擦板に前
記半球状突起5に対向し水平方向に所定の間隙を有する
よう前記半球状突起径より大きい径の半球孔6を形成し
た水平変位規制手段を設けたものである。また半球状突
起5および半球孔6はいずれか一方又は両方の表面に荷
重と歪関係が非直線特性を有する材料を張付けることに
より、更に好ましい制震機構とすることができる。
Means for achieving this object are summarized below. In the support mechanism for the upper structure 2 seated on the top of the lower structure 1, the upper friction plate 4 provided on the bottom of the upper structure is slidably seated on the lower friction plate 3 provided on the top of the lower structure. Supporting the vertical load of the upper structure 2, both friction plates are made of steel material, and one hemispherical protrusion 5 is formed on one friction plate at the central portion, and the other friction plate is opposed to the hemispherical protrusion 5 and horizontally. A horizontal displacement regulating means is provided in which a hemispherical hole 6 having a diameter larger than the hemispherical projection diameter is formed so as to have a predetermined gap in the direction. Further, a more preferable vibration control mechanism can be obtained by applying a material having a non-linear characteristic with respect to load and strain relationship to one or both surfaces of the hemispherical projection 5 and the hemispherical hole 6.

【0005】本発明は上記の構成により、地震波が下部
構造物1から上部構造物2に伝達される際、両摩擦3,
4部に作用する水平力(せん断力)が静止摩擦力に達す
ると、上下の摩擦板間にすべりを生じさせ振動エネルギ
ーを吸収する作用を利用したものである。また、不特定
の地震波入力方向に対して、半球状突起5と半球孔6の
組合せによる水平変位規制手段にしているため、あらゆ
る方向からの地震波入力方向に対応できるようにしてい
る。
According to the present invention, when the seismic wave is transmitted from the lower structure 1 to the upper structure 2, both frictions 3,
When the horizontal force (shearing force) acting on the four parts reaches the static friction force, a slip is generated between the upper and lower friction plates to absorb the vibration energy. Further, since the horizontal displacement regulating means is formed by the combination of the hemispherical projections 5 and the hemispherical holes 6 with respect to an unspecified seismic wave input direction, the seismic wave input direction can be dealt with from any direction.

【0006】図1は、本発明の制震機構を示したもの
で、下部摩擦板3上に上部摩擦板4を載置し、上部構造
物2の鉛直荷重を下部構造物1に伝達するとともに、両
摩擦板3,4は水平方向に相対的に摺動可能としてい
る。この摺動可能量は、両摩擦板の中央部に設けた半球
状突起5とこれより大きな径にした半球孔6により所定
の間隙(△1 )になる変位規制手段で定められる。この
間隙(△1 )は、地震時の振動エネルギーを吸収する必
要な長さ以上、かつ上部構造物が許容される水平変位範
囲内に抑えるとともに、上部構造物2が風荷重等でずれ
た際、悪影響を生じないように、また構造物の温度差等
の伸縮量等を考慮して決定する。
FIG. 1 shows a vibration control mechanism of the present invention, in which an upper friction plate 4 is placed on a lower friction plate 3 to transmit a vertical load of the upper structure 2 to the lower structure 1. The friction plates 3 and 4 are relatively slidable in the horizontal direction. This slidable amount is determined by the displacement regulating means that makes a predetermined gap (Δ 1 ) by the hemispherical projection 5 provided in the central portion of both friction plates and the hemispherical hole 6 having a larger diameter than this. This gap (△ 1 ) is more than the required length to absorb the vibration energy at the time of earthquake, and is kept within the allowable horizontal displacement range of the upper structure, and when the upper structure 2 is displaced by wind load etc. In order to prevent adverse effects, the amount of expansion and contraction such as temperature difference of the structure should be taken into consideration when making the determination.

【0007】図2は、制震作用を上部構造物2と下部構
造物1間に生ずるせん断力Pと水平変位△の関係図によ
り説明したものである。地震波による下部構造物1のせ
ん断力が上部構造物2に伝わり、上部構造物2が一体的
に振動する事によって生じるせん断力が静止摩擦力に相
当するP1 までは、下部構造物1と上部構造物2は変位
量0〜A1 (イ)の範囲で一体的に変位する。そして静
止摩擦力P1 以上のせん断力が作用すると、上部構造物
2が下部摩擦板3に対してすべりが生じ、動摩擦力に相
当するせん断力P2 だけの抵抗を受けて変位量A1 〜A
2 (ロ)間に相当する分だけ変位が生じ半球状突起5が
半球孔6の壁に近づく。このせん断力Pと変位△は、地
震波の振幅により左右方向に生じ、地震波の加速度があ
まり大きくない場合は、0〜A1 〜A2 〜A1 〜0〜B
1 〜B2 ですべりが生じ、下部構造物と上部構造物のせ
ん断力は、静止摩擦力P1 又は動摩擦力P2 の範囲に抑
えられる。これに対し、制震機構がない場合は、図2の
(ハ)に示すように地震波により、せん断力が比例的に
増大する。地震加速度が更に大きくなり、上部構造物2
と下部構造物1間の変位がA2 およびB2 を超え、水平
変位規則手段の半球状突起5と半球孔6が接触すると両
者が鋼材同士であれば、破線(ニ)のように接触面間に
作用するせん断力が増加し、制震作用がなくなる。従っ
て摺動可能量(半球状突起と半球孔の間隙)△1 は、こ
の変位量A2 以上にする必要がある。一方、半球状突起
5の接触面にゴム材のような荷重・歪が非線形的な材料
を設けると、接触面間に作用するセン断力は曲線状
(ホ)に増加し、ヒステリシスを描く。このヒステリシ
スループの面積が大きい程、減衰動量が大きい。この点
からも半球状突起5と半球孔6のいずれか一方または両
方に非線形挙動を示す材料があると単に衝撃力の発生を
抑制するだけでなく、減衰性能も高まり好ましい。
FIG. 2 illustrates the damping action with reference to the relationship between the shearing force P generated between the upper structure 2 and the lower structure 1 and the horizontal displacement Δ. Transmitted to shear forces upper structure 2 of the lower structure 1 by seismic, the upper structure 2 to P 1 the shear force generated by the vibrating integrally corresponds to the static friction force, the lower structure 1 and the upper The structure 2 is integrally displaced within a displacement range of 0 to A 1 (a). Then, when a shearing force equal to or greater than the static frictional force P 1 acts, the upper structure 2 slips with respect to the lower friction plate 3, and the displacement amount A 1 ... due to the resistance of only the shearing force P 2 corresponding to the dynamic frictional force. A
A displacement corresponding to 2 (b) occurs and the hemispherical projection 5 approaches the wall of the hemispherical hole 6. The shearing force P and the displacement Δ are generated in the lateral direction due to the amplitude of the seismic wave, and 0 to A 1 to A 2 to A 1 to 0 to B when the seismic wave acceleration is not so large.
Slip occurs at 1 to B 2 , and the shearing force between the lower structure and the upper structure is suppressed within the range of static frictional force P 1 or dynamic frictional force P 2 . On the other hand, when there is no vibration control mechanism, the shear force increases proportionally due to the seismic wave as shown in FIG. The seismic acceleration becomes larger, and superstructure 2
When the displacement between the lower structure 1 and the lower structure 1 exceeds A 2 and B 2 and the hemispherical projections 5 and the hemispherical holes 6 of the horizontal displacement regulation means come into contact with each other, if they are steel materials, the contact surface as shown by the broken line (d) The shearing force acting between them increases and the damping effect disappears. Therefore, the slidable amount (gap between the hemispherical projection and the hemispherical hole) Δ 1 must be greater than or equal to this displacement A 2 . On the other hand, when a material such as a rubber material whose load / strain is non-linear is provided on the contact surface of the hemispherical protrusion 5, the shearing force acting between the contact surfaces increases in a curved line (e) and draws hysteresis. The larger the area of this hysteresis loop, the larger the damping motion amount. From this point as well, it is preferable that one or both of the hemispherical projections 5 and the hemispherical holes 6 have a material exhibiting a non-linear behavior because not only the generation of impact force is suppressed but also the damping performance is increased.

【0008】[0008]

【実施例】以下、本発明の制震支持機構10を海底に杭
支持されたジャケットからなる下部構造物上に着座する
人工地盤に適用した実施例を図面に基づき説明する。上
部構造物である人工地盤2は、図3に示すように、海底
地盤7に杭1bで固定されたジャケットからなる下部構
造物1の頂部に固定された下部摩擦板3上にデッキ2b
と、トラス構造2aからなる人工地盤(上部構造物)2
の底面に固定された上部摩擦板4の底面を接触して着座
させ、この摩擦板面で人工地盤2の鉛直荷重を支持させ
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the vibration control support mechanism 10 of the present invention is applied to an artificial ground which sits on a lower structure composed of a jacket supported by piles on the sea floor will be described below with reference to the drawings. As shown in FIG. 3, the artificial ground 2, which is an upper structure, has a deck 2b mounted on a lower friction plate 3 fixed to the top of the lower structure 1 consisting of a jacket fixed to the seabed 7 by piles 1b.
And an artificial ground (upper structure) 2 consisting of a truss structure 2a
The bottom surface of the upper friction plate 4 fixed to the bottom surface of the artificial ground 2 is seated in contact with the bottom surface of the upper friction plate 4, and the vertical load of the artificial ground 2 is supported by the friction plate surface.

【0009】図4は着座部の詳細を立体的に図示したも
のである。人工地盤2に作用する通常時の水平荷重は、
ジャケット(下部構造物)1上の下部摩擦板3と人工地
盤底面の上部摩擦板4間の摩擦力によって地盤に伝達さ
れる。地震によって摩擦力を超えるような大きな繰り返
し水平力を受ける場合は、この摩擦板からなる機構の制
震作用によって人工地盤2底部と下部構造物1頂部間に
すべりが生じ、前記作用項で述べたようにセン断力と水
平変位の関係から地震波のエネルギーが吸収される。そ
の結果、上部構造物である人工地盤2および下部構造物
のジャケット1ともに大きな地震時の水平力が作用しな
い。
FIG. 4 is a three-dimensional view showing the details of the seating portion. The normal horizontal load that acts on the artificial ground 2 is
The frictional force between the lower friction plate 3 on the jacket (lower structure) 1 and the upper friction plate 4 on the bottom surface of the artificial ground is transmitted to the ground. When a large horizontal repeated force exceeding the frictional force due to an earthquake is applied, slippage occurs between the bottom of the artificial ground 2 and the top of the lower structure 1 due to the damping action of the mechanism consisting of this friction plate. Thus, the energy of seismic waves is absorbed due to the relationship between the shear force and horizontal displacement. As a result, a large horizontal force at the time of an earthquake does not act on the artificial ground 2 which is the upper structure and the jacket 1 which is the lower structure.

【0010】図4に示す半球孔6と半球状突起5は水平
変位規則手段の1例を示すもので、万一設計以上の地震
を受けた場合および一方向の外力等に対してストッパー
の役割を担うものである。半球状突起5は下部構造物1
に対し人工地盤2がある限度以上すべると水平変位規制
手段として機能する。この水平変位規則手段は地震波の
入力方向は特定できないため平面全方向に対向できるよ
うに半球孔6と半球状突起5にしている。また、半球状
突起5や半球孔6の接触面は摩耗性が高く、衝撃に強い
鋼材、例えばモリブデン鋼、ステンレス鋼等を使用す
る。
The hemispherical hole 6 and the hemispherical projection 5 shown in FIG. 4 are examples of the horizontal displacement regulation means, and they act as stoppers in the event of an earthquake more than the design or in the case of external force in one direction. Is responsible for. The hemispherical protrusion 5 is the lower structure 1
On the other hand, when the artificial ground 2 slips over a certain limit, it functions as a horizontal displacement regulating means. This horizontal displacement regulation means has a hemispherical hole 6 and a hemispherical projection 5 so that the seismic wave input direction cannot be specified, so that the hemispherical hole 6 and the hemispherical projection 5 can face each other in all plane directions. Further, the contact surfaces of the hemispherical projections 5 and the hemispherical holes 6 are made of a steel material having high wear resistance and high impact resistance, such as molybdenum steel or stainless steel.

【0011】図5は、ある人工地盤に本発明を適用し、
エルセントロ(ElCentro)地震波を入力した場合の、人
工地盤の加速度応答結果である。図中の実線は制震機構
を用いなかった場合で、破線は本発明の制震機構を用い
た場合の加速度応答結果で、約半分の加速度しか発生し
ていない。なお、図1に示すように、半球孔内の中心O
軸と半球状突起の中心軸O′が一致してないずれた初期
位置状態で地震波を受ける場合でも、シミュレーション
解析の結果、制震効果は同じように生じることも確認し
ている。
FIG. 5 shows that the present invention is applied to an artificial ground,
It is the acceleration response result of the artificial ground when the El Centro seismic wave is input. The solid line in the figure shows the case where the vibration control mechanism is not used, and the broken line shows the acceleration response result when the vibration control mechanism of the present invention is used, and only about half the acceleration occurs. As shown in FIG. 1, the center O in the hemispherical hole is
It has also been confirmed as a result of simulation analysis that the seismic control effect is the same even when the seismic wave is received in any initial position state in which the axis and the central axis O ′ of the hemispherical protrusion do not coincide.

【0012】[0012]

【発明の効果】本発明によれば、下部構造物および上部
構造物間に固定された摩擦板で鉛直荷重を支持しなが
ら、すべりを生じさせて、振動エネルギーを吸収する極
めて単純な制震機構であり、大きな鉛直支持力と同時に
制震作用が得られるもので、かつ経済的である。また、
摩擦板は鋼材で製作されるため高い耐久性を有し、さら
に水平変位規制手段を半球状突起と半球孔の組合せとし
ているため、あらゆる方向の地震に対応することができ
る。
According to the present invention, the friction plate fixed between the lower structure and the upper structure supports a vertical load while causing a slip and absorbing a vibration energy. Therefore, it is possible to obtain a large vertical supporting force and a seismic control action at the same time, and it is economical. Also,
Since the friction plate is made of steel, it has high durability, and since the horizontal displacement regulating means is a combination of hemispherical projections and hemispherical holes, it can cope with earthquakes in all directions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の制震機構図である。FIG. 1 is a diagram of a vibration control mechanism of the present invention.

【図2】地震時におけるせん断力と変位の関係図であ
る。
FIG. 2 is a diagram showing the relationship between shear force and displacement during an earthquake.

【図3】本発明による制震機構を人工地盤に適用した実
施例の正面図である。
FIG. 3 is a front view of an embodiment in which the vibration control mechanism according to the present invention is applied to artificial ground.

【図4】図3における制震機構部の詳細立体図である。FIG. 4 is a detailed three-dimensional view of the vibration control mechanism unit in FIG.

【図5】ある人工地盤に本発明の制震機構を適用した場
合の地震時応答解析結果の図である。
FIG. 5 is a diagram of a response analysis result during an earthquake when the vibration control mechanism of the present invention is applied to a certain artificial ground.

【図6】従来の制震機構の一例(積層ゴムタイプ)[Fig. 6] Example of conventional vibration control mechanism (laminated rubber type)

【図7】水平力と水平変位との関係を示す図である。FIG. 7 is a diagram showing a relationship between horizontal force and horizontal displacement.

【符号の説明】[Explanation of symbols]

1 下部構造物(ジャケット) 1b 杭 2 上部構造物(人工地盤) 2a トラス構造 2b デッキ 3 下部摩擦板 4 上部摩擦板 5 半球状突起 6 半球孔 10 制震支持機構 1 Lower structure (jacket) 1b Pile 2 Upper structure (artificial ground) 2a Truss structure 2b Deck 3 Lower friction plate 4 Upper friction plate 5 Hemispherical projection 6 Hemisphere hole 10 Seismic support mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下部構造物1の頂部に着座する上部構造
物2の支持機構において、下部構造物頂部に設けた下部
摩擦板3上に、上部構造物底部に設けた上部摩擦板4を
摺動可能に着座させて上部構造物2の鉛直荷重を支持さ
せ、両摩擦板3,4は鋼材で製作され、中央部には一方
の摩擦板に半球状突起5を形成し、他方の摩擦板に前記
半球状突起5に対向し水平方向に所定の間隙を有するよ
う前記半球状突起径より大きい径の半球孔6を形成した
水平変位規制手段を設けたことを特徴とする摩擦力を利
用した制震機構。
1. In a support mechanism for an upper structure 2 seated on the top of a lower structure 1, a lower friction plate 3 provided on the lower part of the lower structure is slidably mounted on an upper friction plate 4 provided on the lower part of the upper structure. It is movably seated to support the vertical load of the upper structure 2, both friction plates 3 and 4 are made of steel material, and one friction plate is formed with a hemispherical projection 5 at the central portion, and the other friction plate is formed. A frictional force is utilized, which is characterized in that a horizontal displacement regulating means is provided which is opposed to the hemispherical projection 5 and has a hemispherical hole 6 having a diameter larger than the diameter of the hemispherical projection so as to have a predetermined gap in the horizontal direction. Vibration control mechanism.
【請求項2】 半球状突起5および半球孔6のいずれか
一方又は両方の表面に、荷重と歪関係が非直線特性を有
する材料を張付けていることを特徴とする請求項1の摩
擦力を利用した制震機構。
2. The frictional force according to claim 1, wherein a material having a non-linear characteristic with respect to load and strain is attached to the surface of one or both of the hemispherical projection 5 and the hemispherical hole 6. The vibration control mechanism used.
JP3249793A 1993-01-29 1993-01-29 Damping mechanism using friction force Withdrawn JPH06229143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3249793A JPH06229143A (en) 1993-01-29 1993-01-29 Damping mechanism using friction force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3249793A JPH06229143A (en) 1993-01-29 1993-01-29 Damping mechanism using friction force

Publications (1)

Publication Number Publication Date
JPH06229143A true JPH06229143A (en) 1994-08-16

Family

ID=12360638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3249793A Withdrawn JPH06229143A (en) 1993-01-29 1993-01-29 Damping mechanism using friction force

Country Status (1)

Country Link
JP (1) JPH06229143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120066986A1 (en) * 2009-02-16 2012-03-22 Murat Dicleli Multi-directional torsional hysteretic damper (mthd)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120066986A1 (en) * 2009-02-16 2012-03-22 Murat Dicleli Multi-directional torsional hysteretic damper (mthd)
US8438795B2 (en) * 2009-02-16 2013-05-14 Murat Dicleli Multi-directional torsional hysteretic damper (MTHD)

Similar Documents

Publication Publication Date Title
US5487534A (en) Laminated rubber vibration control device for structures
US4599834A (en) Seismic isolator
US5339580A (en) Laminated rubber building support and vibration damping device
US5761856A (en) Vibration isolation apparatus
JPH0643856B2 (en) Seismic isolation device for structures
JPS6149028A (en) Earthquake absorber for structure
Sone et al. Experimental verification of a tuned mass damper system with two‐phase support mechanism
JP4706958B2 (en) Seismic isolation structure
JPH02129430A (en) Vibration damping device for structure
JPH1130279A (en) Base isolator
Tyler Rubber bearings in base-isolated structures: A summary paper
JPH06229143A (en) Damping mechanism using friction force
JPH01247666A (en) Damper
JPS62141330A (en) Earthquake-force reducing device
JPS6114338A (en) Vibration attenuator of structure
JP2000002783A (en) Three-dimensional base isolation structure for building
JPH0259261B2 (en)
JP3734911B2 (en) Cable damping device for cable stayed bridge
JP3633352B2 (en) Isolation structure
JP3707307B2 (en) Friction damper
JPS60261845A (en) Earthquake dampening and support apparatus
JPH0720284Y2 (en) Seismic isolation device
JPS6237471A (en) Vibration attenuator of structure
JP2000104420A (en) Base isolation structure
JPH11303918A (en) Device for isolating and controlling impact and base isolation structure of building

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404