JPH01247666A - Damper - Google Patents
DamperInfo
- Publication number
- JPH01247666A JPH01247666A JP7518488A JP7518488A JPH01247666A JP H01247666 A JPH01247666 A JP H01247666A JP 7518488 A JP7518488 A JP 7518488A JP 7518488 A JP7518488 A JP 7518488A JP H01247666 A JPH01247666 A JP H01247666A
- Authority
- JP
- Japan
- Prior art keywords
- damper
- superstructure
- viscous
- damping
- small
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920003023 plastic Polymers 0.000 claims abstract description 24
- 239000004033 plastic Substances 0.000 claims abstract description 24
- 238000013016 damping Methods 0.000 claims abstract description 21
- 239000012530 fluid Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 3
- 230000000737 periodic effect Effects 0.000 abstract 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、建築物とその基礎のような上部構造と下部
構造間に介設され、下部構造から上部構造に伝わる地震
エネルギーを減少させる免震装置等に用いる減衰装置に
関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention provides an insulation material that is interposed between a superstructure and a substructure, such as a building and its foundation, to reduce seismic energy transmitted from the substructure to the superstructure. This invention relates to a damping device used in seismic devices, etc.
〈従来の技術〉
建物の耐震構造の一つとしては、第3図に示すように、
複数個の免震装置であるアイソレータ51.51を上部
構造52と下部構造53との間に挟み込み、上部構造5
2を支持するようにしたしのがある。このアイソレータ
51はゴムの大きな鉛直載荷能力とゴムのせん断変形に
よる小さな水平バネ剛性を持っている。したがって、重
量物である上部構造を安定性良く支え、水平方向の動き
を弱いバネで規制したことになる。このように支持する
と、構造物の系全体の水平方向の振動周期を増大させ、
それを地震の最大エネルギー成分の周期よりも大きくす
る。したがって、地震発生時の地震からの人力に対する
建物の応答加速度を減少させることができる。<Conventional technology> As shown in Figure 3, one of the earthquake-resistant structures for buildings is
A plurality of isolators 51, 51, which are seismic isolation devices, are sandwiched between the upper structure 52 and the lower structure 53, and the upper structure 5
There is a story that supports 2. This isolator 51 has a large vertical loading capacity of rubber and a small horizontal spring stiffness due to shear deformation of the rubber. Therefore, the heavy upper structure is supported with good stability, and horizontal movement is restricted by weak springs. Supporting in this way increases the horizontal vibration period of the entire system of structures,
Make it larger than the period of the maximum energy component of the earthquake. Therefore, it is possible to reduce the response acceleration of the building to human force from the earthquake when an earthquake occurs.
しかしながら、上記アイソレータ51のみによって上部
構造52を支持すると、アイソレータ51の水平方向の
バネ力が小さいため次の問題が生じる。However, if the upper structure 52 is supported only by the isolator 51, the following problem occurs because the horizontal spring force of the isolator 51 is small.
第1の問題は、地震動の作用によって一旦上部構造52
が振動し始めると、その振動振幅がアイソレータ5Iを
用いず直接下部構造53に上部構造52を支持させた場
合に比べて大きくなると共に、その揺れが静まるまで時
間がかかることである。すなわち物理的に安全が保障さ
れたとしても、居住者にとって心理的に不安な状態が長
く続くことになり、建築物の免震構造としては不適当で
ある。The first problem is that once the upper structure 52
When the vibration begins to vibrate, the amplitude of the vibration becomes larger than when the upper structure 52 is directly supported by the lower structure 53 without using the isolator 5I, and it takes time for the vibration to subside. In other words, even if physical safety is guaranteed, residents will remain in a psychologically unstable state for a long time, making it inappropriate as a seismic isolation structure for buildings.
第2の問題は、台風Q風荷重等の横方向荷重が建物に加
イつった場合、その方向に上部構造52が位置ずれする
おそれがあり、上部構造52の安定性が保障されないこ
とである。The second problem is that when a lateral load such as a typhoon Q wind load is applied to the building, the superstructure 52 may shift in that direction, and the stability of the superstructure 52 is not guaranteed. .
これらの問題点を解決するために、最近、建築物の上部
構造と下部構造との間に流体の粘性抵抗を利用した粘性
ダンパーからなる減衰装置を介在させ、その粘性抵抗で
もって振動エネルギーを吸収するようにしたものが提案
されている(たとえば実公昭59−41218号公報)
。In order to solve these problems, recently a damping device consisting of a viscous damper that utilizes the viscous resistance of fluid has been interposed between the upper and lower structures of buildings, and the viscous resistance absorbs vibration energy. It has been proposed to do so (for example, Utility Model Publication No. 59-41218).
.
〈発明が解決しようとする課題〉
ところで、上記従来の粘性ダンパーの設計において、そ
の可能な最大変位が、建築物に作用する地震のうち最大
の地震の振幅(変位的250mm)以上になるように設
計する。<Problems to be Solved by the Invention> By the way, in the design of the above-mentioned conventional viscous damper, the maximum possible displacement is greater than or equal to the amplitude of the largest earthquake (250 mm in terms of displacement) among the earthquakes acting on the building. design.
一方、粘性剪断力Fは、 F−η−・S F−粘性剪断力 S−抵抗板剪断面積 V−相対速度 d=2面間の距離 η=粘性係数 と表わせ(第2図参照)、相対速度Vに比例する。On the other hand, the viscous shear force F is F-η-・S F-viscous shear force S-resistance plate shear area V - relative velocity d=distance between two surfaces η = viscosity coefficient (see Figure 2), and is proportional to the relative velocity V.
ところが、地震によって建築物が揺れるとき、その建物
によって固有振動数は一定であるから、振幅の大きい地
震の振動速度は、振幅の小さい地震のときのそれよりも
大きくなる。それ故、大きい地震に対応して粘性ダンパ
ーを設計すると、粘性係数の小さい粘性流体を用いるこ
とになるが、そのような粘性ダンパーでは最も多く発生
する振幅の小さい地震が発生したときには、相対速度が
小さいので、大きな粘性剪断力が得られず、すなわち、
振動エネルギを吸収することができず、建物は長時間揺
れることになる。居住者にとって心理的に不安になる。However, when a building shakes due to an earthquake, the natural frequency is constant depending on the building, so the vibration velocity of a large-amplitude earthquake is greater than that of a small-amplitude earthquake. Therefore, when designing a viscous damper in response to large earthquakes, a viscous fluid with a small viscosity coefficient is used, but when such a viscous damper experiences a small-amplitude earthquake, which occurs most often, the relative velocity increases. Because it is small, a large viscous shear force cannot be obtained, i.e.
Unable to absorb the vibration energy, the building will sway for a long time. Psychologically disturbing for residents.
そこで、この発明の目的は、小さい振幅の振動時にも、
大きな振幅の振動時にも振動エネルギを効果的に吸収し
て減衰機能を発揮できる減衰装置を提供することにある
。Therefore, the purpose of this invention is to
It is an object of the present invention to provide a damping device that can effectively absorb vibration energy and exhibit a damping function even when vibrations have a large amplitude.
〈課題を解決するための手段〉
上記目的を達成するため、この発明の減衰装置は、一端
が上部構造に、他端が下部構造に取り付けられ、大きい
振幅の振動時に減衰能を育する粘性ダンパーと、一端が
上部構造に、他端が下部構造に取り付けられ、弾塑性材
料からなり、小さい振幅の揺動時に塑性変形により減衰
能を有する弾塑性ダンパーとを備えたことを特徴として
いる。<Means for Solving the Problems> In order to achieve the above object, the damping device of the present invention has one end attached to the upper structure and the other end attached to the lower structure, and a viscous damper that increases damping ability during large amplitude vibrations. and an elasto-plastic damper having one end attached to the upper structure and the other end attached to the lower structure, made of an elasto-plastic material, and having a damping ability by plastic deformation during small amplitude rocking.
〈作用〉
小さい地震により、上部構造が小さく振動したときには
、粘性ダンパーは相対速度が小さくて、粘性剪断力が小
さいからエネルギーを殆ど吸収し得ないが、弾塑性ダン
パーは塑性領域で変形するため、小さな振動エネルギー
はこの弾塑性ダンパーのヒステリンス効果により吸収さ
れる。したがって、振幅の小さい地震が発生しても、上
部構造の振動は極めて短時間に減衰し、居住者が地震の
発生後、その振動を感じなくなるまでの時間が極めて短
縮される。<Effect> When the superstructure vibrates slightly due to a small earthquake, a viscous damper has a small relative velocity and a small viscous shear force, so it cannot absorb much energy, but an elasto-plastic damper deforms in its plastic region, so Small vibration energies are absorbed by the hysteresis effect of this elastoplastic damper. Therefore, even if a small-amplitude earthquake occurs, the vibrations of the superstructure will attenuate in an extremely short time, and the time it takes for residents to no longer feel the vibrations after an earthquake occurs is extremely shortened.
一方、大きい地震により、上部構造が大きく振動したと
きには、粘性ダンパーにおける相対速度か大きくて粘性
抵抗が大きくなり、この粘性抵抗により、振動エネルギ
ーが吸収され、上部構造の振動は速やかに減衰される。On the other hand, when the superstructure vibrates significantly due to a large earthquake, the relative velocity of the viscous damper increases and the viscous resistance increases. Vibrational energy is absorbed by this viscous resistance, and the vibration of the superstructure is quickly damped.
なお、このとき、弾塑性ダンパーは塑性破壊するが、こ
のような大きな振動を起こす地震は極めて少ないから実
用上問題はない。Note that at this time, the elastoplastic damper undergoes plastic destruction, but this poses no practical problem since earthquakes that cause such large vibrations are extremely rare.
〈実施例〉 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.
第1図において、lは上部構造Uと下部構aDとの間に
略水平に介設された粘性ダンパー、21は上部構造Uと
下部構造りとの間に介設された弾塑性ダンパーである。In FIG. 1, l is a viscous damper interposed approximately horizontally between the upper structure U and the lower structure aD, and 21 is an elastoplastic damper interposed between the upper structure U and the lower structure. .
上記粘性ダンパーlはシリンダー2内にビストン3を摺
動自在に嵌合し、このピストン3にオリフィス5を設け
ている。上記ピストン3から左右に突出するピストンロ
ッド6の一端はブラケット7に直交する2つのビンによ
って結合している。The viscous damper 1 has a piston 3 slidably fitted into the cylinder 2, and the piston 3 is provided with an orifice 5. One end of the piston rod 6 protruding left and right from the piston 3 is connected to a bracket 7 by two pins perpendicular to each other.
このブラケット7は、上部構造Uに埋設された取り付は
板8を挿通するアンカーボルト9にナツト10によって
固定している。一方、シリンダー2の左端部に固定した
クレビスIIはブラケット12にピン結合している。こ
のブラケット12は下部構造りに埋設された取り付は板
I3を挿通ずるアンカーボルト14にナツトI5によっ
て固定している。上記シリンダー2内には粘性流体14
を充填している。したがって、シリンダー2内のピスト
ン3の移動により粘性流体がオリフィス5を通ってピス
トン3の一方の側の室より他方の側の室に流動し、その
粘性抵抗によって下部構造りに対する上部構造Uの水平
振動に対して制動力を与えるようになっている。この粘
性抵抗の大きさはシリンダー2に対するピストン3の相
対速度の大きさによって決まるから、この制動力は振幅
の大きい地震に対して程大きな制動力を与えることにな
る。This bracket 7 is embedded in the upper structure U and is fixed to an anchor bolt 9 passing through a plate 8 with a nut 10. On the other hand, a clevis II fixed to the left end of the cylinder 2 is connected to the bracket 12 with a pin. This bracket 12 is fixed to an anchor bolt 14 embedded in the lower structure and passed through a plate I3 by a nut I5. Inside the cylinder 2 is a viscous fluid 14.
is filled with. Therefore, the movement of the piston 3 within the cylinder 2 causes the viscous fluid to flow through the orifice 5 from the chamber on one side of the piston 3 to the chamber on the other side, and the viscous resistance causes the horizontalization of the upper structure U relative to the lower structure. It is designed to provide braking force against vibrations. Since the magnitude of this viscous resistance is determined by the magnitude of the relative speed of the piston 3 with respect to the cylinder 2, this braking force will provide a moderately large braking force against an earthquake with a large amplitude.
一方、上記弾塑性ダンパー21は鉛製の円柱状棒体22
を備える。この棒体22の上端部は上部構造Uに固定し
た保持筒23に上部に隙間をあけるようにして挿入して
いる。上記保持筒23は円筒部23aとフランジ部23
bからなり、このフランジ部23bを、上部構造Uに埋
設され取り付は板24を挿通するアンカーボルト25に
ナツト26によって取り付けている。円筒部23aの先
端は末広がりになっており、棒体22を挿入し易くして
いる。上記棒体22の下部は保持筒27に挿入している
。この保持筒27は前述の保持筒23と全く同一構造を
しており、下部構造りに埋設され取り付は板29を挿通
するアンカーボルト30にナツト26によって固定して
いる。上記鉛製の棒体22は塑性領域が大きくまた径が
太いから大きな外力に耐えるようになっている。On the other hand, the elastic-plastic damper 21 has a cylindrical rod body 22 made of lead.
Equipped with. The upper end of this rod 22 is inserted into a holding cylinder 23 fixed to the upper structure U with a gap left in the upper part. The holding cylinder 23 has a cylindrical portion 23a and a flange portion 23.
This flange portion 23b is attached by a nut 26 to an anchor bolt 25 that is embedded in the upper structure U and passes through a plate 24. The tip of the cylindrical portion 23a widens toward the end, making it easier to insert the rod 22. The lower part of the rod 22 is inserted into a holding cylinder 27. This holding cylinder 27 has exactly the same structure as the above-mentioned holding cylinder 23, is embedded in the lower structure, and is fixed to an anchor bolt 30 passing through a plate 29 with a nut 26. The lead rod 22 has a large plastic region and a thick diameter, so that it can withstand large external forces.
なお、図示しないが鋼板などの調性板と天然ゴムやネオ
プレンゴムなどの薄い弾性板とを交互に垂直方向に重ね
合わせてなるアイソレータを下部構造りと上部構造Uと
の間に介設している。Although not shown, an isolator made by vertically stacking tonal plates such as steel plates and thin elastic plates such as natural rubber or neoprene rubber is interposed between the lower structure and the upper structure U. There is.
上記構成の減衰装置によれば、小さな振幅の地震に対し
ては、粘性ダンパーlのピストン3のシリンダー2に対
する相対速度が小さいため殆ど粘性抵抗は発生しないが
、2弾塑性ダンパー21の鉛製棒体22が塑性変形し、
その塑性変形によるヒステリシス効果によって振動エネ
ルギが吸収される。したがって、振幅の小さい地震が発
生したときには弾塑性ダンパー21の棒体22の塑性変
形によるヒステリシス効果によって、速やかに上部構造
Uの振動の減衰が行なわれ、上部構造の揺れは速やかに
停止する。したがって、居住者に心理的不安感を与える
ことはない。また、上記鉛製の棒体22は断面積が大き
く、かつ長さが短いため、小さな揺れに対して大きな制
動力を与える。According to the damping device configured as described above, when an earthquake with a small amplitude occurs, almost no viscous resistance occurs because the relative speed of the piston 3 of the viscous damper l to the cylinder 2 is small, but the lead rod of the elastic-plastic damper 2 The body 22 is plastically deformed,
Vibration energy is absorbed by the hysteresis effect caused by the plastic deformation. Therefore, when a small-amplitude earthquake occurs, the hysteresis effect caused by the plastic deformation of the rod 22 of the elastic-plastic damper 21 quickly damps the vibrations of the upper structure U, and the shaking of the upper structure quickly stops. Therefore, the residents will not feel psychologically uneasy. Further, since the lead rod 22 has a large cross-sectional area and a short length, it provides a large braking force against small vibrations.
一方、大きな振幅を有する地震に対しては、粘性ダンパ
ー1のピストン3の移動速度が速くなるため、粘性ダン
パー!における粘性抵抗が大きくなって、上部構造Uの
振動に対して大きな制動力を与え、速やかに上部構造U
の振動の減衰が行なわれ、上部構造Uは速やかに停止す
る。なお、この大きな振幅の振動の場合は弾塑性ダンパ
ー21の鉛製棒体22は変形能が小さいため破壊する。On the other hand, for earthquakes with large amplitudes, the moving speed of the piston 3 of the viscous damper 1 increases, so the viscous damper! The viscous resistance of
The vibrations are damped, and the superstructure U immediately stops. Note that in the case of this large amplitude vibration, the lead rod 22 of the elastoplastic damper 21 is destroyed because its deformability is small.
しかし、このような大きな振幅の地震が発生ずる頻度は
極めて少ないから、大きな地震が発生した場合にのみに
弾塑性ダンパー21が破壊するようにしても実際上問題
はない。However, since such large-amplitude earthquakes occur very infrequently, there is no practical problem in making the elastic-plastic damper 21 break only when a large earthquake occurs.
上記実施例では弾塑性ダンパーとして鉛製の円柱状棒体
の塑性変形によって振動エネルギを吸収するようにした
が、弾塑性ダンパーは、鋼鉄をリング状に形成し、この
リングをプロペラの端縁形状をなすように、すなわち花
弁状に配置して、このリング状の鋼鉄製の棒の塑性変形
により全ての方向に均等に制動力を与えるようにしたも
のであってもよい。In the above embodiment, vibration energy is absorbed by plastic deformation of a cylindrical lead rod as an elasto-plastic damper. However, in the elasto-plastic damper, steel is formed into a ring shape, and this ring is shaped like the edge of a propeller. In other words, the ring-shaped steel rod may be arranged in a petal-like manner so that the braking force is applied equally in all directions by plastic deformation of the ring-shaped steel rod.
〈発明の効果〉
以上より明らかなように、この発明の減衰装置は、大き
な振幅の振動時に減衰能を有する粘性ダンパーと、弾塑
性材料からなり小さな振幅の振動時により塑性変形によ
り減衰能を存する弾塑性ダンパーとを備えているので、
小さい振幅の振動時にも、大きな振幅の振動時にも振動
エネルギを効果的に吸収して減衰機能を発揮でき、した
がって大きい地震に対しても小さい地震に対しても、速
やかに−L部構造を静止させろことができる。<Effects of the Invention> As is clear from the above, the damping device of the present invention is made of a viscous damper that has a damping ability during large amplitude vibrations and an elastoplastic material, and has a damping ability due to plastic deformation during small amplitude vibrations. Equipped with an elastoplastic damper,
It can effectively absorb vibration energy and exhibit a damping function both in the case of small amplitude vibrations and large amplitude vibrations, and therefore, the -L section structure can be quickly brought to a standstill in both large and small earthquakes. You can do it.
第1図はこの発明の一実施例の減衰装置の断面図、第2
図は粘性抵抗を説明する図、第3図は従来の免震装置の
断面図である。
1・・粘性ダンパー、 2・・・ンリンダー、3・・
ピストン、 5・・オリフィス、21・・・弾
塑性ダンパー、U・・・上部構造、D・・・下部構造。FIG. 1 is a sectional view of a damping device according to an embodiment of the present invention, and FIG.
The figure is a diagram explaining viscous resistance, and FIG. 3 is a sectional view of a conventional seismic isolation device. 1. Viscous damper, 2. Rinder, 3.
Piston, 5... Orifice, 21... Elastoplastic damper, U... Upper structure, D... Lower structure.
Claims (1)
れ、大きい振幅の振動時に減衰能を有する粘性ダンパー
と、 一端が上部構造に、他端が下部構造に取り付けられ、弾
塑性材料からなり、小さい振幅の揺動時に塑性変形によ
り減衰能を有する弾塑性ダンパーとを備える減衰装置。(1) A viscous damper, which is attached at one end to the upper structure and the other end to the lower structure, and has a damping capacity during large amplitude vibrations; and an elasto-plastic damper that has a damping ability through plastic deformation during small amplitude swings.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7518488A JPH01247666A (en) | 1988-03-28 | 1988-03-28 | Damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7518488A JPH01247666A (en) | 1988-03-28 | 1988-03-28 | Damper |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01247666A true JPH01247666A (en) | 1989-10-03 |
JPH0477112B2 JPH0477112B2 (en) | 1992-12-07 |
Family
ID=13568862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7518488A Granted JPH01247666A (en) | 1988-03-28 | 1988-03-28 | Damper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01247666A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5276270A (en) * | 1991-11-13 | 1994-01-04 | Kabushiki Kaisha Kawai Gakki Seisakusho | Solenoid drive system for an automatic performing apparatus |
US5321199A (en) * | 1991-06-26 | 1994-06-14 | Kabushiki Kaisha Kawai Gakki Seisakusho | Method and device for preventing imbalance of sound emissions in an automatic performing piano |
US5324883A (en) * | 1991-06-26 | 1994-06-28 | Kabushiki Kaisha Kawai Gakki Seisakusho | Method and device for preventing imbalance of sound emissions in an automatic performing piano |
US5420934A (en) * | 1992-03-26 | 1995-05-30 | Kabushiki Kaisha Kawai Gakki Seisakusho | Electronic sound processing system |
US5600521A (en) * | 1991-12-13 | 1997-02-04 | Kabushiki Kaisha Kawai Gakki Seisakusho | Automatic performing apparatus with power supply controller |
JP2009121523A (en) * | 2007-11-12 | 2009-06-04 | Ohbayashi Corp | Base isolation device |
WO2010128597A1 (en) * | 2009-05-07 | 2010-11-11 | 株式会社ニコン | Vibration control apparatus, vibration control method, exposure apparatus, and device production method |
CN104279204A (en) * | 2014-09-25 | 2015-01-14 | 太原科技大学 | Hollow hydraulic cylinder internally provided with viscous damper |
JP2016537528A (en) * | 2013-10-11 | 2016-12-01 | ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント | Viscous wall-connected damper for use in outrigger building construction |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2779319B2 (en) * | 1994-08-26 | 1998-07-23 | 住友建設株式会社 | Vibration and shock noise prevention device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6245836A (en) * | 1985-08-26 | 1987-02-27 | Hideyuki Tada | Earthquake isolator |
JPS62121279A (en) * | 1985-11-20 | 1987-06-02 | 清水建設株式会社 | Earthquake damping structure |
-
1988
- 1988-03-28 JP JP7518488A patent/JPH01247666A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6245836A (en) * | 1985-08-26 | 1987-02-27 | Hideyuki Tada | Earthquake isolator |
JPS62121279A (en) * | 1985-11-20 | 1987-06-02 | 清水建設株式会社 | Earthquake damping structure |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321199A (en) * | 1991-06-26 | 1994-06-14 | Kabushiki Kaisha Kawai Gakki Seisakusho | Method and device for preventing imbalance of sound emissions in an automatic performing piano |
US5324883A (en) * | 1991-06-26 | 1994-06-28 | Kabushiki Kaisha Kawai Gakki Seisakusho | Method and device for preventing imbalance of sound emissions in an automatic performing piano |
US5276270A (en) * | 1991-11-13 | 1994-01-04 | Kabushiki Kaisha Kawai Gakki Seisakusho | Solenoid drive system for an automatic performing apparatus |
US5600521A (en) * | 1991-12-13 | 1997-02-04 | Kabushiki Kaisha Kawai Gakki Seisakusho | Automatic performing apparatus with power supply controller |
US5420934A (en) * | 1992-03-26 | 1995-05-30 | Kabushiki Kaisha Kawai Gakki Seisakusho | Electronic sound processing system |
JP2009121523A (en) * | 2007-11-12 | 2009-06-04 | Ohbayashi Corp | Base isolation device |
WO2010128597A1 (en) * | 2009-05-07 | 2010-11-11 | 株式会社ニコン | Vibration control apparatus, vibration control method, exposure apparatus, and device production method |
JP2016537528A (en) * | 2013-10-11 | 2016-12-01 | ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロント | Viscous wall-connected damper for use in outrigger building construction |
CN104279204A (en) * | 2014-09-25 | 2015-01-14 | 太原科技大学 | Hollow hydraulic cylinder internally provided with viscous damper |
Also Published As
Publication number | Publication date |
---|---|
JPH0477112B2 (en) | 1992-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20080075847A (en) | Fork configuration dampers and method of using same | |
JPH01247666A (en) | Damper | |
JPH1136657A (en) | Base isolation device | |
JP3843174B2 (en) | Seismic isolation structure | |
JPH10169249A (en) | Base isolating structure | |
JP2750362B2 (en) | Damping viscoelastic wall | |
JP2988882B2 (en) | Structure damping device | |
JPS63114772A (en) | Axial tension damper | |
JPH0259262B2 (en) | ||
JPS62220734A (en) | Vibrational energy absorbing device | |
JP3081686B2 (en) | Seismic isolation device for structures | |
JPH01247633A (en) | Damping mechanism for vibrationproof device | |
JPH0542202Y2 (en) | ||
JPH02147739A (en) | Swaying damper device for structure | |
JPH10252253A (en) | Floor vibration control system | |
JPH01278639A (en) | Damping mechanism and building having same | |
JPS622036A (en) | Device for absorbing vibration energy | |
JPH1072951A (en) | Base isolation device | |
JPH10299283A (en) | Reinforcing structure of structural body and vibration damping device for brace | |
JPH0337448A (en) | Damping device | |
JPS63125780A (en) | Earthquakeproof device for structure | |
JPH0720284Y2 (en) | Seismic isolation device | |
JPS63114783A (en) | Earthquake damping apparatus for structure | |
JPH01315566A (en) | Damping device for structure | |
JPH046835B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |