JPH06229000A - Large-depth underground drainage facility and operating method thereof - Google Patents

Large-depth underground drainage facility and operating method thereof

Info

Publication number
JPH06229000A
JPH06229000A JP5018783A JP1878393A JPH06229000A JP H06229000 A JPH06229000 A JP H06229000A JP 5018783 A JP5018783 A JP 5018783A JP 1878393 A JP1878393 A JP 1878393A JP H06229000 A JPH06229000 A JP H06229000A
Authority
JP
Japan
Prior art keywords
pump
underground
channel
drainage
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5018783A
Other languages
Japanese (ja)
Other versions
JP2789290B2 (en
Inventor
Kunio Takada
国雄 高田
Kenji Otani
健二 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5018783A priority Critical patent/JP2789290B2/en
Priority to DE4403154A priority patent/DE4403154C2/en
Priority to US08/192,289 priority patent/US5487621A/en
Publication of JPH06229000A publication Critical patent/JPH06229000A/en
Priority to US08/552,840 priority patent/US5634740A/en
Application granted granted Critical
Publication of JP2789290B2 publication Critical patent/JP2789290B2/en
Priority to US09/272,094 priority patent/US6102618A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/22Adaptations of pumping plants for lifting sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sewage (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce the cost of construction of large-depth underground drainage facilities, and to operate the large-depth underground drainage facilities stably. CONSTITUTION:An underground water channel 1 is buried in an underground deep place, and rain water, etc., flow into the water channel l from a floodway 3, a pipe conduit 3, a river 5, etc., through a shaft 2. A pump well 6 for a pump machine station communicates with the downstream end of the underground water channel 1, and an influent flowing into the pump well 6 is drained to a discharge water tank 8 as the destination of discharge by a pump 7. The pump 7 is installed at the central section of the underground water channel 1, and dischargeable minimum water levels L.W.L are used as the central sections of the underground water channel 1. The water level of the underground water channel 1 is held at the minimum water levels L.W.L in open channel operation in open-channel and closed-channel coexistent operation, and the underground water channel 1 is employed as an open channel. On the other hand, the underground water channel 1 is filled with water in closed channel operation, the water level is elevated up to the shaft 2, and the underground water channel 1 is used as a closed channel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小河川を含む水路に流
入する雨水等の流入水を地下に設けられた流入水路に集
め、この集めた流入水をポンプ機場に導いて放流先の河
川等に放流する大深度地下排水施設に係り、特に建設費
低減が可能な大深度地下排水施設及びその運用方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention collects inflow water such as rainwater flowing into a waterway including a small river in an inflow waterway provided underground, and guides the collected inflow water to a pumping station to release the river. The present invention relates to a deep underground drainage facility that is released to a public site, and particularly to a deep underground drainage facility that can reduce construction costs and its operation method.

【0002】[0002]

【従来の技術】従来、地表や地表近くの放水路から排水
を流下させる各立坑から、その排水を集めてポンプ機場
に導く大深度地下に配設された地下水路に空間を保持し
ながら運用する開水路運用と、地下水路を満管にして運
用する閉水路運用の両方の運用方法がある。
2. Description of the Related Art Conventionally, from each shaft that discharges drainage from the surface or a discharge channel near the surface, it is operated while maintaining space in a deep underground underground channel that collects the drainage and leads it to a pump station. There are both open channel operation and closed channel operation in which the underground channel is fully operated.

【0003】図30は従来の開水路運用の構成を説明す
る説明図である。
FIG. 30 is an explanatory view for explaining the configuration of conventional open channel operation.

【0004】開水路運用は地下水路1への急激な流入に
より立坑2から地上へ溢流するリスクを最小にする為、
地下水路1の径を例えば12.5mと大容量化をはかり
かつ出来るだけ水位を低く保持する。
The open channel operation minimizes the risk of overflow from the shaft 2 to the ground due to a sudden inflow into the ground channel 1.
The diameter of the underground waterway 1 is increased to, for example, 12.5 m, and the water level is kept as low as possible.

【0005】また、本図に示すように地下水路1の終端
に設置するポンプ7の羽根車設置レベルは、地下水路1
が常に空になるように運転するため地下水路1の排水運
転の最低水位以下とする必要があり、通常最低水位L.
W.Lは地下水路1の底近傍レベルに設定する。そし
て、ポンプ7は角形ポンプ場に配置され、ポンプ7の起
動・停止は予め規定されたポンプ井6の水位にて行なっ
ている。
Further, as shown in the figure, the installation level of the impeller of the pump 7 installed at the end of the groundwater channel 1 is
Since it is operated so that it is always empty, it is necessary to make it below the minimum water level of the drainage operation of the underground waterway 1, and normally the minimum water level L.
W. L is set to a level near the bottom of the underground waterway 1. The pump 7 is arranged in a rectangular pumping station, and the pump 7 is started and stopped at a predetermined water level in the pump well 6.

【0006】一方、閉水路運用は少なくとも地下水路1
を満水状態にし、更に図30の立坑2まで水位が上昇し
た状態でポンプを運転し、ポンプの排水能力を越えた流
入量がある時にそのような状態になる。
On the other hand, at least one underground canal is used for closed channel operation.
Is filled with water, and the pump is operated with the water level rising to the vertical shaft 2 in FIG. 30, and such a state occurs when the inflow exceeds the drainage capacity of the pump.

【0007】更に、ポンプ機場への流入量は降雨情報に
より降雨量を算出し、この降雨量と降った雨が河川に流
れる割合を表す係数である流出係数から立坑への流入量
を算出し、それぞれの立坑への流入量を集計して求めて
いる。
Further, the amount of inflow to the pumping station is calculated from the rainfall information, and the amount of inflow to the vertical shaft is calculated from this amount of rainfall and the outflow coefficient, which is a coefficient representing the ratio of the amount of rainfall that flows into the river. The amount of inflow into each shaft is calculated and calculated.

【0008】[0008]

【発明が解決しようとする課題】従来の開水路運用を行
うポンプ機場のポンプはその設定位置を地下水路の底近
傍レベルとしているため、図30における吐出水槽8の
水位と最低水位L.W.L間の揚程Haが大きく、その
ためポンプ7の全揚程が大きくなりポンプ7及び駆動機
を含むポンプ機場設備費が高くなる。また、地下水路1
の水位を低く保持するので貯留効果が小さく、すぐ水位
が低下してポンプを停止し、短時間で水位が回復するの
で再起動しハンチングを起こすことが多い。
Since the pumps in the conventional pumping station operating the open water channel are set at the level near the bottom of the ground water channel, the water level of the discharge water tank 8 and the minimum water level L. W. The head Ha between L is large, and therefore the total head of the pump 7 is large, and the equipment cost of the pump station including the pump 7 and the driving machine is high. In addition, groundwater channel 1
Since the water level is kept low, the storage effect is small, the water level immediately drops and the pump stops, and the water level recovers in a short time, so restarting often causes hunting.

【0009】そして、数Kmの長さになる地下水路1の
径が大きいので大深度地下排水施設の建設費の殆どを占
める地下水路掘削工事費が高くなる。そしてポンプ7の
設置位置が地下大深度なのでポンプ機場の掘削工事費も
高くなる。
Further, since the diameter of the underground water channel 1 which is several kilometers long is large, the underground water channel excavation work cost, which accounts for most of the construction cost of the deep underground drainage facility, becomes high. And since the installation position of the pump 7 is deep underground, the excavation work cost of the pump station also becomes high.

【0010】一方、閉水路運用では開水路運用に比較し
て地下水路の水位が高いのでポンプ7の全揚程が小さく
なりポンプ7及び駆動機を含むポンプ機場設備費が少な
くなるが立坑から地上へ溢流するリスクが大きい。
On the other hand, in closed channel operation, since the water level in the underground water channel is higher than in open channel operation, the total head of the pump 7 becomes smaller and the pumping station equipment cost including the pump 7 and the drive unit decreases, but from the vertical shaft to the ground. There is a large risk of overflow.

【0011】次に、従来の流出係数は流入量の予測演算
時に、降雨間隔が短いと雨が地中に浸透することなく排
水施設へ流入し、流入量が多くなることに配慮が無く、
降雨パターン間隔が変化することに対しての立坑への流
入量の推定精度が低くなり適切なポンプ機場の運転が行
われず立坑から溢流する恐れがある。
Next, in the conventional runoff coefficient, when predicting the inflow rate, if the rainfall interval is short, rain will flow into the drainage facility without penetrating into the ground, and there is no consideration that the inflow rate will increase.
There is a risk that the accuracy of estimation of the inflow rate to the vertical shaft due to changes in the rainfall pattern interval will be low, and appropriate pumping station operation will not be performed, resulting in overflow from the vertical shaft.

【0012】本発明の目的は、大深度地下排水施設の建
設コストの低減と、大深度地下排水施設の安定運用を図
ることにある。
An object of the present invention is to reduce the construction cost of a deep underground drainage facility and to achieve stable operation of the deep underground drainage facility.

【0013】[0013]

【課題を解決するための手段】上記目的は、大深度地下
に配設された緩い傾斜の大容量の地下水路と、該地下水
路に地表や地表近くの放水路から排水を流下させる立坑
と、前記地下水路の下流端に設けたポンプ井と、該ポン
プ井に流入する水をポンプにより河川若しくは海に揚水
するポンプ機場とから構成した大深度地下排水施設にお
いて、前記ポンプ機場のポンプを前記地下水路のほぼ中
心部水位に設置したことにより達成される。
[Means for Solving the Problems] The above-mentioned object is to provide a large-capacity underground waterway with a gentle slope, which is installed underground at a large depth, and a vertical shaft for allowing drainage to flow down from the surface or a discharge channel near the surface to the groundwater channel. In a deep underground drainage facility composed of a pump well provided at the downstream end of the underground waterway and a pump station for pumping water flowing into the pump well into a river or the sea, the pump of the pump station is replaced with the groundwater. This is achieved by installing the water level in the center of the road.

【0014】上記目的は、大深度地下に配設された緩い
傾斜の大容量の地下水路と、該地下水路に地表や地表近
くの放水路から排水を流下させる立坑と、前記地下水路
の下流端に設けたポンプ井と、該ポンプ井に流入する水
をポンプにより河川若しくは海に揚水するポンプ機場と
から構成した大深度地下排水施設において、前記ポンプ
機場のポンプを前記地下水路のほぼ中心部水位に設置
し、定格流量で閉水路水位からの揚水が可能な全揚程
と、最少流量で開水路水位からの揚水が可能な全揚程と
なるポンプ特性を具備したことにより達成される。
[0014] The above-mentioned object is to provide a large-capacity underground waterway arranged at a deep underground with a gentle slope, a shaft for draining drainage from the surface or a discharge channel near the surface to the underground waterway, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well installed in the pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, It is achieved by having the pump characteristics such that it is installed at the pumping station and it can pump up from the closed channel water level at the rated flow rate and can pump up from the open channel water level at the minimum flow rate.

【0015】上記目的は、大深度地下に配設された緩い
傾斜の大容量の地下水路と、該地下水路に地表や地表近
くの放水路から排水を流下させる立坑と、前記地下水路
の下流端に設けたポンプ井と、該ポンプ井に流入する水
をポンプにより河川若しくは海に揚水するポンプ機場と
から構成した大深度地下排水施設において、前記ポンプ
機場のポンプを前記地下水路のほぼ中心部水位に設置
し、定格流量で閉水路水位からの揚水が可能な全揚程
と、所定流量で開水路水位からの揚水が可能な全揚程
と、前記閉水路時と前記開水路時との間の吐出流量でポ
ンプ効率が最高となるポンプ特性を具備したことにより
達成される。
The above-mentioned object is to provide a large-capacity underground canal with a gentle slope, which is installed deep underground, a vertical shaft for draining drainage from the surface or a discharge channel near the surface to the underground channel, and a downstream end of the underground channel. In a deep underground drainage facility consisting of a pump well installed in the pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, Installed at the pump, the total head that can be pumped from the water level of the closed channel at the rated flow rate, the total head that can be pumped from the water level of the open channel at a specified flow rate, and the discharge between the closed channel and the open channel. This is achieved by having a pump characteristic that maximizes pump efficiency at the flow rate.

【0016】上記目的は、大深度地下に配設された緩い
傾斜の大容量の地下水路と、該地下水路に地表や地表近
くの放水路から排水を流下させる立坑と、前記地下水路
の下流端に設けたポンプ井と、該ポンプ井に流入する水
をポンプにより河川若しくは海に揚水するポンプ機場と
から構成した大深度地下排水施設において、前記ポンプ
機場のポンプを前記地下水路のほぼ中心部水位に設置
し、定格流量で閉水路水位からの揚水が可能な全揚程
と、最少流量で開水路水位からの揚水が可能な全揚程と
なる可変ピッチ型としたことにより達成される。
[0016] The above-mentioned object is to provide a large-capacity underground waterway arranged at a deep underground with a gentle slope, a shaft for draining the drainage from the surface or a discharge channel near the surface to the underground waterway, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well installed in the pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, It is achieved by adopting a variable pitch type that is installed at the pump and has a total pump head that can pump water from the closed channel water level at the rated flow rate and a pump head that can pump water from the open channel water level at the minimum flow rate.

【0017】上記目的は、大深度地下に配設された緩い
傾斜の大容量の地下水路と、該地下水路に地表や地表近
くの放水路から排水を流下させる立坑と、前記地下水路
の下流端に設けたポンプ井と、該ポンプ井に流入する水
をポンプにより河川若しくは海に揚水するポンプ機場と
から構成した大深度地下排水施設において、前記ポンプ
機場のポンプを前記地下水路のほぼ中心部水位に設置
し、定格流量で閉水路水位からの揚水が可能な全揚程が
得られる第1の翼と、最少流量で開水路水位からの揚水
が可能な全揚程が得られる第2の翼とを備えた2段翼型
としたことにより達成される。
[0017] The above-mentioned object is to provide a large-capacity underground waterway arranged at a deep underground with a gentle slope, a vertical shaft for draining drainage from the surface or a discharge channel near the surface to the underground waterway, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well installed in the pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, Installed at, the first blade that can obtain the total head that can be pumped from the closed channel water level at the rated flow rate, and the second blade that can obtain the total head that can be pumped from the open channel water level at the minimum flow rate. This is achieved by adopting a two-stage airfoil equipped with it.

【0018】上記目的は、地表や地表近くの放水路から
立坑へ排水を流下させ、該立坑から大深度地下に配設さ
れた緩い傾斜の大容量の地下水路へ流下させ、該地下水
路の下流端に設けたポンプ井に流入する排水をポンプ機
場のポンプにより河川若しくは海に揚水する大深度地下
排水施設の運用方法において、前記ポンプを前記地下水
路のほぼ中心部水位に設置し、前記地下水路が満管とな
る閉水路の時に前記ポンプを定格流量で運転し、前記地
下水路の水位が低下し空間が生じる開水路の時ポンプを
締切り状態にならない程度の最少流量で運転する閉水路
・開水路共存運転を行うことにより達成される。
The above-mentioned purpose is to cause the drainage to flow down from the surface or a discharge channel near the surface to the vertical shaft, and to flow down from the vertical shaft to a large-capacity underground water channel with a gentle slope, which is disposed deep underground, and downstream of the underground water channel. In an operation method of a deep underground drainage facility in which drainage flowing into a pump well provided at an end is pumped to a river or the sea by a pump at a pump station, the pump is installed at approximately the central water level of the underground waterway, Is operated at a rated flow rate when the waterway is full, and when the waterway in which the water level of the underground waterway drops and a space is created, the pump is operated at a minimum flow rate that does not make it a closed state. Achieved by coexistence operation of waterways.

【0019】上記目的は、大深度地下に配設された緩い
傾斜の大容量の地下水路と、該地下水路に地表や地表近
くの放水路から排水を流下させる立坑と、前記地下水路
の下流端に設けたポンプ井と、該ポンプ井に流入する水
をポンプにより河川若しくは海に揚水するポンプ機場と
から構成した大深度地下排水施設において、前記ポンプ
機場のポンプを少なくとも前記地下水路の上端より浅い
地下に設置し、前記ポンプ井と前記ポンプの間に底面が
前記ポンプと同じレベルの大容量吸水槽を設けたことに
より達成される。
[0019] The above-mentioned object is to provide a large-capacity underground waterway that is installed deep underground and has a gentle slope, a shaft that allows drainage to flow down from the surface or a discharge channel near the surface to the underground waterway, and the downstream end of the underground waterway. In a deep underground drainage facility composed of a pump well provided in the pump well and a pump station for pumping the water flowing into the pump well to a river or the sea, the pump at the pump station is at least shallower than the upper end of the ground water channel. It is achieved by installing it underground and providing a large-capacity water absorption tank whose bottom surface is at the same level as the pump between the pump well and the pump.

【0020】上記目的は、大深度地下に配設された緩い
傾斜の大容量の地下水路と、該地下水路に地表や地表近
くの放水路から排水を流下させる立坑と、前記地下水路
の下流端に設けたポンプ井と、該ポンプ井に流入する水
をポンプにより河川若しくは海に揚水するポンプ機場と
からなる大深度地下排水施設の建設費が最少となる形式
を選択する大深度地下排水施設の選択方法において、ポ
ンプ機場の敷地取得が困難な場合は前記ポンプを前記地
下水路のほぼ中心部水位に設置した大深度地下排水施設
を選択し、敷地取得が容易な場合は前記ポンプ機場のポ
ンプを少なくとも前記地下水路の上端より浅い地下に設
置し、前記ポンプ井と前記ポンプの間に大容量吸水槽を
設けた大深度地下排水施設を選択することことにより達
成される。
The above-mentioned object is to provide a large-capacity underground canal with a gentle slope, which is installed deep underground, a vertical shaft for draining drainage from the surface or a discharge channel near the surface to the underground channel, and a downstream end of the underground channel. Of the deep underground drainage facility that selects the type that minimizes the construction cost of the deep underground drainage facility consisting of the pump well installed in the pump well and a pump station for pumping the water flowing into the pump well into the river or the sea. In the selection method, if it is difficult to acquire the site of the pump station, select the deep underground drainage facility where the pump is installed at the water level in the central part of the underground waterway, and if the site acquisition is easy, select the pump of the pump station. This is achieved by selecting a deep underground drainage facility which is installed at least shallow underground from the upper end of the underground waterway and has a large-capacity water absorption tank between the pump well and the pump.

【0021】上記目的は、降雨情報により降雨量を算出
し、該降雨量と降雨パタンと降雨パタンの時間間隔で定
める流出係数から立坑への流入量を算出し、該立坑への
流入量からポンプ場への流入量を算出し、該ポンプ場へ
の流入量を排水するためのポンプ台数と能力を定めるこ
とにより達成される。
The purpose is to calculate the amount of rainfall from rainfall information, calculate the amount of inflow to the vertical shaft from the amount of rainfall and the outflow coefficient determined by the time interval between the rainfall pattern and the rainfall pattern, and to pump from the amount of inflow to the vertical shaft. This is achieved by calculating the inflow amount into the pumping station and determining the number of pumps and the capacity for draining the inflowing amount into the pumping station.

【0022】[0022]

【作用】ポンプ機場のポンプを地下水路のほぼ中心部水
位に設置して開水路運用を行い、ポンプの定格流量を地
下水路を満管にした閉水路運用時の高い水位の全揚程で
得られるように計画することにより、従来の定格流量を
開水路運用時の地下水路の底レベルから揚水する場合よ
り全揚程が小さくなり、ポンプ及び駆動機の設備費が低
減されかつ揚水のエネルギ消費も少なくなる。また、ポ
ンプを地下水路の中心部に設置したことにより、地下水
路の中心部から天井迄の空間が得られ長い地下水路の貯
留効果により水位上昇のリスクが小さくなるから径を縮
小でき、地下水路掘削工事費が低減される。
[Operation] The pump at the pump station is installed at the water level in the central part of the underground waterway to operate the open waterway, and the rated flow rate of the pump can be obtained at the total head of a high water level when the closed waterway is operated with the underground waterway fully filled. By doing so, the total pump head will be smaller than when pumping the rated flow from the bottom level of the underground canal when operating the open channel, and the equipment cost of the pump and drive machine will be reduced and the energy consumption of pumped water will be low. Become. Also, by installing the pump in the center of the groundwater channel, a space from the center of the groundwater channel to the ceiling is obtained, and the risk of water level rise is reduced due to the storage effect of the long groundwater channel, so the diameter can be reduced, and Excavation costs are reduced.

【0023】上記ポンプに定格流量で閉水路水位からの
揚水が可能な全揚程と、最少流量で開水路水位からの揚
水が可能な全揚程となるポンプ特性を具備したことによ
り、低い全揚程で定格流量の揚水が要求される閉水路水
位時と、高い全揚程で最少流量の揚水で十分な開水路水
位時の双方を同じポンプで運用でき、ポンプ設置台数の
増加を抑制することが可能となる。
Since the above pump is provided with a pump characteristic that it can pump water from a closed channel water level at a rated flow rate and a pump head that can pump water from an open channel water level at a minimum flow rate, a low total pump head can be obtained. The same pump can be used for both closed channel water level where pumping at a rated flow rate is required and open channel level when a minimum total flow rate is high with a high total head, and it is possible to suppress an increase in the number of pumps installed. Become.

【0024】上記ポンプの効率を前記閉水路時と前記開
水路時との間の吐出流量で最高となるように定めたこと
により開水路・閉水路中間運用を行うポンプ及び駆動機
の設備費を低減できる。
By setting the efficiency of the pump to be the maximum at the discharge flow rate between the closed water channel and the open water channel, the equipment cost of the pump and the drive unit for the intermediate operation of the open water channel and the closed water channel can be reduced. It can be reduced.

【0025】上記ポンプに定格流量で閉水路水位からの
揚水が可能な全揚程と、最少流量で開水路水位からの揚
水が可能な全揚程とを翼のピッチを可変する型を用いる
ことにより、閉水路水位時と開水路水位時の双方を同じ
ポンプで運用でき、ポンプ設置台数の増加を抑制するこ
とが可能となる。
By using a type in which the pitch of the blades is variable, the above pump is capable of pumping from the closed channel water level at the rated flow rate and the total head capable of pumping from the open channel level at the minimum flow rate. The same pump can be used for both the closed water level and the open water level, and it is possible to suppress an increase in the number of pumps installed.

【0026】上記ポンプに定格流量で閉水路水位からの
揚水が可能な全揚程と、最少流量で開水路水位からの揚
水が可能な全揚程のそれぞれに対応した翼を備えた2段
翼型を用いることにより、閉水路水位時と開水路水位時
の双方を同じポンプで運用でき、ポンプ設置台数の増加
を抑制することが可能となる。
The above-mentioned pump has a two-stage blade type equipped with blades corresponding to the total head capable of pumping from the closed channel water level at the rated flow rate and the total head capable of pumping from the open channel level at the minimum flow rate. By using it, it is possible to operate both the closed water level and the open water level with the same pump, and it is possible to suppress an increase in the number of pumps installed.

【0027】地下水路が閉水路の時にポンプを定格流量
で運転し、地下水路が開水路の時ポンプを最少流量で運
転する閉水路・開水路共存運転を行うことにより、地下
水路の状態に拘らず大深度地下排水施設の安定運用が可
能となる。
By operating the pump at the rated flow rate when the ground water channel is closed and operating the pump at the minimum flow rate when the ground water channel is open, the closed water channel / open water channel coexisting operation is performed, so that the state of the ground water channel can be maintained. This enables stable operation of deep underground drainage facilities.

【0028】閉水路運用を行う大深度地下排水施設のポ
ンプ井とポンプの間に大容量吸水槽を設けたことによ
り、その貯留効果から地下水路より地上へ溢流するリス
クが低減され、地下水路の径を縮小できる。また、吸水
槽の貯留効果により閉水路運用における大深度地下排水
施設の安定運用が可能となる。
By providing a large-capacity water absorption tank between the pump well and the pump of the deep underground drainage facility that operates the closed water channel, the risk of overflowing from the ground water channel to the ground due to its storage effect is reduced, The diameter of can be reduced. Also, due to the storage effect of the water absorption tank, stable operation of deep underground drainage facilities in closed channel operation becomes possible.

【0029】ポンプ機場の建設にあたり敷地取得が困難
な場合は大容量吸水槽を必要としない開水路・閉水路共
存型を選択し、大容量吸水槽のための敷地取得が容易な
場合はポンプ揚程が小さい閉水路型を選択することによ
り、最少建設費の大深度地下排水施設を選択できる。
If it is difficult to acquire a site for the construction of a pumping station, select an open channel / closed channel coexistence type that does not require a large capacity water absorption tank, and if the site acquisition for a large capacity water absorption tank is easy, lift the pump head. By selecting a closed channel type with a small size, a deep underground drainage facility with a minimum construction cost can be selected.

【0030】一般に降雨パターンは降雨量が時間の経過
と共に増加しピークを経て下降しゼロとなり、次の降り
始め迄の時間間隔により土中への浸透度が異なり、例え
ば時間間隔が短いと土中へ浸透せず立坑への流入量が多
くなる。この降雨パタンと降雨パタンの時間間隔で流出
係数を変えて降雨量と演算して立坑への流入量を求め、
ポンプ機場への流入量を精度良く予測することにより、
適切なポンプ機場の運転管理を行い大深度地下排水施設
の安定運用が可能となる。
Generally, the rainfall pattern is such that the amount of rainfall increases with the passage of time, drops to zero after reaching a peak, and the degree of penetration into the soil varies depending on the time interval until the start of the next rainfall. For example, if the time interval is short, It does not permeate into the shaft and the amount of inflow into the shaft increases. The runoff coefficient is changed at the time interval of this rainfall pattern and the rainfall pattern, and the amount of rainfall is calculated to obtain the inflow amount to the shaft,
By accurately predicting the flow rate into the pumping station,
Stable operation of deep underground drainage facilities will be possible through proper operation and management of pumping stations.

【0031】[0031]

【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0032】先ず、大深度地下排水施設の基本的な構成
を説明する。
First, the basic structure of the deep underground drainage facility will be described.

【0033】図1は本発明の大深度地下排水施設の基本
的な構成を示す斜視図である。
FIG. 1 is a perspective view showing the basic structure of a deep underground drainage facility of the present invention.

【0034】大深度地下排水施設は、図示のように地下
の深いところに地下水路1が埋設され、これに立坑2を
介して放水路、管渠等から雨水等が流入する。地下水路
1の下流端はポンプ機場に連通し、ポンプ機場に流入す
る流入水を、ポンプ7により放流先の河川に排水するよ
うに構成している。
In the deep underground drainage facility, a groundwater channel 1 is buried deep in the underground as shown in the drawing, and rainwater or the like flows into the deepwater channel 1 through a shaft 2 from a discharge channel, a pipe or the like. The downstream end of the groundwater channel 1 communicates with the pumping station, and the inflow water flowing into the pumping station is drained to the discharge destination river by the pump 7.

【0035】次に、開水路・閉水路共存運用を行う大深
度地下排水施設の実施例の特徴部構成について説明す
る。
Next, the construction of the characteristic parts of the embodiment of the deep underground drainage facility for coexisting operation of open channel and closed channel will be explained.

【0036】図2は本発明の開水路・閉水路共存運用を
行う実施例の構成を説明する説明図である。
FIG. 2 is an explanatory view for explaining the structure of an embodiment of the present invention in which an open channel / closed channel coexisting operation is performed.

【0037】図示のように、地下の深いところに地下水
路1が埋設され、これに立坑2を介して放水路3、管渠
4、河川5等から雨水等が流入する。地下水路1の下流
端はポンプ機場のポンプ井6に連通し、ポンプ井6に流
入する流入水を、ポンプ7により放流先の吐出水槽8に
排水する。
As shown in the figure, a groundwater channel 1 is buried deep underground, and rainwater and the like flow into it through a shaft 2 from a discharge channel 3, pipe 4, river 5, and the like. The downstream end of the groundwater channel 1 communicates with the pump well 6 of the pumping station, and the inflow water flowing into the pump well 6 is drained by the pump 7 to the discharge water tank 8 of the discharge destination.

【0038】従来の開水路運用におけるポンプ設置レベ
ルは地下水路1の底部としているが、本実施例の開水路
運用ではポンプ7を地下水路1の中心部に設置し、排水
可能な最低水位L.W.Lが地下水路1の中心部とな
る。開水路・閉水路共存運用のうちの開水路運用では地
下水路1の水位を最低水位L.W.Lに保持し、地下水
路1はその中心部から天井迄に空間を有する開水路とな
る。一方閉水路運用では地下水路1を満管にして閉水路
とし、立坑2迄水位を上昇させることを許容する。 次
に開水路・閉水路共存運用の場合のポンプ全揚程Hにつ
いて説明する。
Although the pump installation level in the conventional open water channel operation is the bottom of the ground water channel 1, in the open water channel operation of this embodiment, the pump 7 is installed in the central portion of the ground water channel 1 and the lowest water level L. W. L is the central part of the underground waterway 1. In the open channel operation of the open channel / closed channel coexisting operation, the water level of the ground channel 1 is set to the minimum level L. W. The ground water channel 1 is maintained at L, and the ground water channel 1 is an open water channel having a space from the center to the ceiling. On the other hand, in the closed channel operation, the underground channel 1 is filled with a closed channel to allow the water level to rise to the vertical shaft 2. Next, the total pump head H in the coexistence operation of the open channel and the closed channel will be described.

【0039】図3は本実施例の開水路・閉水路共存運用
を行う場合のポンプ起動水位を説明する説明図である。
FIG. 3 is an explanatory view for explaining the pump starting water level when the open channel / closed channel coexisting operation of this embodiment is performed.

【0040】図4は本実施例と従来技術のポンプ特性を
説明する図表である。
FIG. 4 is a table for explaining the pump characteristics of this embodiment and the prior art.

【0041】一般的にポンプ全揚程Hは、ポンプ実揚程
Haに吐出管路損失を加えた値であり、次の式で表すこ
とが出来る。
In general, the total pump head H is a value obtained by adding the discharge line loss to the actual pump head Ha and can be expressed by the following equation.

【0042】H=吐出水槽水位−ポンプ起動時の水位
W.L+吐出管路損失 例えば図4の実線で示すようにポンプ実揚程Haが57
m、吐出管路損失が3.5mとすれば全揚程Hは 60.5m=57m+3.5m となる。図4の点線で示すように従来の開水路運用では
この最低水位L.W.Lから揚水する全揚程Hで定格流
量が得られるように計画されている。しかし開水路・閉
水路共存運用の場合には地下水路1が満管になり立坑2
迄水位が上昇した閉水路の場合に定格流量での排水が要
求される。図3(a)に示すように閉水路の最高水位
H.W.Lからのポンプ実揚程Haを35.5mとすれ
ば吐出管路損失の3.5mは同じであるから全揚程Hは 39.0m=35.5m+3.5m となり、39.0/60.5=0.644で64.4%に
低減できる。
H = Discharge water tank water level-Water level at pump start-up W. L + Discharge pipe loss For example, as shown by the solid line in FIG. 4, the actual pump head Ha is 57.
m and the discharge pipe loss is 3.5 m, the total head H is 60.5 m = 57 m + 3.5 m. As shown by the dotted line in FIG. 4, in the conventional open channel operation, this minimum water level L. W. It is planned that the rated flow rate can be obtained at the total pumping height H that is pumped from L. However, when the open channel and closed channel coexist, the underground channel 1 becomes full and the vertical shaft 2
Drainage at the rated flow rate is required in the case of a closed channel where the water level has risen up to this point. As shown in FIG. 3A, the maximum water level H. W. If the actual pump head Ha from L is 35.5 m, the discharge line loss of 3.5 m is the same, so the total head H is 39.0 m = 35.5 m + 3.5 m, and 39.0 / 60.5 = It can be reduced to 64.4% at 0.644.

【0043】図3(b)に示す如く開水路・閉水路共存
運用の開水路の場合にポンプ起動時の水位W.Lは最低
水位L.W.Lとなりポンプ実揚程Haは大きくなる
が、水位が低くリスクが小さいから定格流量は必要が無
くその時の全揚程Hで得られる流量でポンプを運転すれ
ば良い。
As shown in FIG. 3 (b), in the case of the open water channel in which the open water channel / closed water channel coexist, the water level W. L is the lowest water level L. W. Although the actual pump head Ha becomes L, the actual pump head Ha becomes large, but since the water level is low and the risk is small, the rated flow rate is not necessary, and the pump can be operated at the flow rate obtained by the total pump head H at that time.

【0044】そして、最低水位L.W.Lは地下水路1
の管径10m、ポンプ7の起動時の水位W.Lを管径の
30%〜90%とした場合、ポンプ設置位置を従来の3
mないし9m上方に設置でき掘削工事費が低減される。
The lowest water level L. W. L is the underground waterway 1
With a pipe diameter of 10 m and the water level W. When L is 30% to 90% of the pipe diameter, the pump installation position is 3
It can be installed above m or 9m, and excavation work cost can be reduced.

【0045】このようにして本実施例では定格流量でポ
ンプを起動する時の水位W.Lが従来の最低水位L.
W.Lから最高水位H.W.Lになったことにより、ポ
ンプの能力を低減でき、ポンプを駆動するディゼルエン
ジンの出力も低減でき燃料消費も少なくなる。
Thus, in this embodiment, the water level W.V. when starting the pump at the rated flow rate. L is the conventional minimum water level L.
W. Highest water level from L. W. By setting to L, the capacity of the pump can be reduced, the output of the diesel engine that drives the pump can be reduced, and the fuel consumption can be reduced.

【0046】地下水路1は長大な距離により大容量の一
時貯留効果を有し、例えば管径10m、路長10kmで
約40万m3の容積を持ち、能力200m3/Secのポ
ンプで約30分間の貯留時間を有し、この時間の余裕が
ポンプ7を上方に設置可能とし、地下水路1の管径を水
位上昇のリスクが小さくなるから従来の12.5mから
10mに縮小することができる。地下水路1の管径の縮
小により大深度地下排水施設の建設費の殆どを占める地
下水路1の掘削工事費を低減できる。また、貯留効果に
よりポンプ7の頻繁な発停が発生するハンチングを防止
できる。
The underground waterway 1 has a large-capacity temporary storage effect due to a long distance. For example, a pipe diameter of 10 m and a channel length of 10 km has a volume of about 400,000 m 3 , and a capacity of 200 m 3 / Sec is about 30. It has a storage time of 3 minutes, and this time allowance allows the pump 7 to be installed above, and the pipe diameter of the underground waterway 1 can be reduced from the conventional 12.5 m to 10 m because the risk of water level rise is reduced. . By reducing the pipe diameter of the underground waterway 1, it is possible to reduce the excavation work cost of the underground waterway 1 which accounts for most of the construction cost of the deep underground drainage facility. In addition, it is possible to prevent hunting in which the pump 7 frequently starts and stops due to the storage effect.

【0047】次に開水路・閉水路共存運用に適したポン
プについて説明する。
Next, a pump suitable for coexistence operation of an open channel and a closed channel will be described.

【0048】図5は本実施例の開水路・閉水路共存運用
に適したポンプ特性を説明する図表である。
FIG. 5 is a table for explaining the pump characteristics suitable for the coexistence operation of the open water channel and the closed water channel of this embodiment.

【0049】本図の実線で示す曲線のように開水路・閉
水路共存運用に適したポンプは、閉水路運用の場合10
0%の定格流量で最高水位H.W.Lからの揚水が可能
な全揚程Aと、例えば40%の最少流量で開水路水位か
らの揚水が可能な全揚程Bとなる全揚程H−吐出量Q特
性を具備したことにより、低い全揚程で定格流量の揚水
が要求される閉水路水位時と、高い全揚程で最少流量の
揚水で十分な開水路水位時の双方を同じポンプで運用で
き、ポンプ設置台数の増加を抑制することが可能とな
る。
A pump suitable for coexisting operation of open channel / closed channel as shown by the solid line in the figure is 10 when the closed channel is operated.
Maximum water level H. 0 at rated flow of 0%. W. A low total lift due to having a total lift A capable of pumping water from L and a total lift H-discharging amount Q characteristic of being a total lift B capable of pumping from the open channel water level at a minimum flow rate of 40%, for example. The same pump can be used for both closed channel water level, which requires pumping at the rated flow rate, and open channel level, where the minimum flow rate is sufficient for a high total head, and it is possible to suppress an increase in the number of pumps installed. Becomes

【0050】また、本図の点線で示す曲線のように従来
の開水路運用をおこな行うポンプは定格流量で最低水位
L.W.Lからの揚水が可能な全揚程Cが得られる場合
に最高効率となるように計画されているが、本実施例の
ポンプの効率を閉水路時と開水路時との中間の吐出流量
例えば80%で最高となるように定めたことにより開水
路・閉水路中間運用を行うポンプ及び駆動機の設備費を
低減できる。
Further, as shown by the dotted line curve in the figure, the conventional pump that operates the open channel has a minimum water level L. W. The pump is designed to have the highest efficiency when the total head C capable of pumping water from L is obtained, but the efficiency of the pump of this embodiment is set to an intermediate discharge flow rate between the closed water channel and the open water channel, for example, 80. By setting it to be the highest in%, it is possible to reduce the equipment cost of the pump and the drive unit that perform the intermediate operation of the open channel and closed channel.

【0051】そして、上記ポンプに定格流量で閉水路水
位からの揚水が可能な全揚程と、最少流量で開水路水位
からの揚水が可能な全揚程とを翼のピッチを可変する型
を用いることにより、閉水路水位時と開水路水位時の双
方を同じポンプで運用でき、ポンプ設置台数の増加を抑
制することが可能となる。
For the pump, use a type in which the pitch of the blades is variable between the total head allowing pumping from the closed channel water level at the rated flow rate and the total head allowing pumping from the open channel level at the minimum flow rate. As a result, the same pump can be used for both the closed water level and the open water level, and it is possible to suppress an increase in the number of pumps installed.

【0052】更に、上記ポンプに定格流量で閉水路水位
からの揚水が可能な全揚程と、最少流量で開水路水位か
らの揚水が可能な全揚程のそれぞれに対応した翼を備え
た2段翼型を用いることにより、閉水路水位時と開水路
水位時の双方を同じポンプで運用でき、ポンプ設置台数
の増加を抑制することが可能となる。
Further, the pump has a two-stage blade provided with blades corresponding to a total head capable of pumping from a closed channel water level at a rated flow rate and a total head capable of pumping from an open channel level at a minimum flow rate. By using the type, it is possible to operate both the closed water level and the open water level with the same pump, and it is possible to suppress an increase in the number of pumps installed.

【0053】このようにして地下水路が閉水路の時にポ
ンプを定格流量で運転し、地下水路が開水路の時ポンプ
を最少流量で運転する閉水路・開水路共存運転を行うこ
とにより、地下水路の状態に拘らず大深度地下排水施設
の安定運用が可能となる。
In this way, by operating the pump at a rated flow rate when the groundwater channel is closed and by operating the pump at the minimum flowrate when the groundwater channel is open, the coexisting operation of the closed channel and open channel can be performed. The stable operation of deep underground drainage facilities is possible regardless of the state.

【0054】次に、閉水路運用を行う大深度地下排水施
設の実施例について説明する。
Next, an example of a deep underground drainage facility that operates a closed channel will be described.

【0055】図6は本発明の閉水路運用を行う実施例の
構成を説明する説明図である。
FIG. 6 is an explanatory view for explaining the construction of an embodiment for operating a closed water channel according to the present invention.

【0056】本図に示すように閉水路運用を行う大深度
地下排水施設のポンプ井6とポンプの7間に大容量吸水
槽61を設けたことにより、その貯留効果から地下水路
1より地上へ溢流するリスクが低減され、地下水路1の
径を縮小できる。また、大容量吸水槽61の貯留効果に
より閉水路運用における大深度地下排水施設の安定運用
が可能となる。
As shown in the figure, a large-capacity water absorption tank 61 is provided between the pump wells 6 and 7 of the deep underground drainage facility that operates a closed water channel. The risk of overflow is reduced, and the diameter of the groundwater channel 1 can be reduced. Further, the storage effect of the large-capacity water absorption tank 61 enables stable operation of the deep underground drainage facility in the closed channel operation.

【0057】ポンプ機場の建設にあたり敷地取得が困難
な場合は大容量吸水槽61を必要としない開水路・閉水
路共存型を選択し、大容量吸水槽61設置のための敷地
取得が容易な場合はポンプ揚程が小さい閉水路型を選択
することにより、最少建設費の大深度地下排水施設を選
択できる。
When it is difficult to acquire a site for construction of a pumping station, if an open channel / closed channel coexistence type that does not require a large capacity water absorption tank 61 is selected and it is easy to acquire a site for installing a large capacity water absorption tank 61 By selecting a closed channel type with a small pump head, a deep underground drainage facility with a minimum construction cost can be selected.

【0058】次にポンプ機場への流入量を正確に予測及
び制御する技術について説明する。
Next, a technique for accurately predicting and controlling the amount of inflow to the pumping station will be described.

【0059】上述した地下水路の一時貯留効果もポンプ
機場への流入量を正確に予測及び制御を行い、ポンプ機
場への流入量に見合った安定運用を行なうことが前提で
あり、その前提が成立しないと立坑及びポンプ井から溢
流が発生する。
The temporary storage effect of the underground waterway described above is also premised on accurately predicting and controlling the amount of inflow to the pumping station and performing stable operation commensurate with the amount of inflowing to the pumping station. Otherwise, overflow will occur from the shaft and pump well.

【0060】図7は本発明のポンプ機場への流入量を正
確に予測及び制御する実施例の構成を説明する説明図で
ある。
FIG. 7 is an explanatory view for explaining the constitution of an embodiment for accurately predicting and controlling the inflow amount into the pumping station of the present invention.

【0061】本図に示すように雨量レーダ71からのデ
ータにより降雨量を予測し、各ポイントに配置した雨量
計から降雨量データを収集し、降雨量予測値と降雨量デ
ータから地中に浸透せず立坑2に流入する流出量解析を
行って流出量を算出する。各立坑2に流入する流量を集
計し地下水路1管内の流れ解析を行い地下水路1の流量
と水位を算出する。地下水路1の流量からポンプ井流入
量解析を行いポンプ井6への流入量と水位を算出する。
ポンプ井6への流入量と水位からポンプの運転シュミレ
ーションを行いポンプの運転台数、吐出量、発停のタイ
ミングを決めポンプを制御すると共に地下水路1管内の
流れ解析ステップへフィードバックする。 次にポンプ
機場への流入量を正確に予測する方法のうち、降雨情報
すなわち降雨量の時間変化に対し、立坑への流入量を正
確に予測する実施例を説明する。
As shown in the figure, the rainfall amount is predicted by the data from the rainfall radar 71, the rainfall amount data is collected from the rain gauges arranged at the respective points, and the rainfall amount prediction value and the rainfall amount data are infiltrated into the ground. Without doing so, the outflow amount that flows into the vertical shaft 2 is analyzed to calculate the outflow amount. The flow rate in the underground waterway 1 and the water level are calculated by collecting the flow rate flowing into each shaft 2 and analyzing the flow inside the underground waterway 1. The inflow rate of the pump well 6 is calculated from the flow rate of the underground waterway 1, and the inflow rate and water level of the pump well 6 are calculated.
The operation of the pump is simulated based on the inflow amount and the water level into the pump well 6 to determine the number of pumps to be operated, the discharge amount, the timing of starting and stopping, and to control the pumps and feed them back to the flow analysis step in the underground waterway 1. Next, an embodiment of a method of accurately predicting the inflow amount to the pumping station will be described in which the inflow amount to the vertical shaft is accurately predicted with respect to the rainfall information, that is, the time change of the rainfall amount.

【0062】図8は降雨からポンプ排水決定に到る手順
のフローチャートを示す。
FIG. 8 shows a flowchart of a procedure from rainfall to determination of pump drainage.

【0063】図9は時間と降雨量、時間と流入量の関係
を示す図表である。
FIG. 9 is a table showing the relationship between time and rainfall, and time and inflow.

【0064】排水の対象となる地域に降雨が有った場
合、ステップ1で降雨情報例えば1時間当り何mmとい
った値から時間の変化に対する降雨量を求め、降雨と降
雨の時間間隔ΔTにより土中への水の浸透度が大幅に異
なるため立坑への流入量が変化するから流出係数を降雨
パターンにより変更する。例えば、図9のΔTにより流
出係数を0.3〜0.9に変化させる。ステップ2でこの
流出係数と降雨量から立坑への流入量を求め、ステップ
3でこの立坑への流入量からポンプ機場への流入量予測
手段によりポンプ機場への流入量求め、ステップ4でこ
のポンプ機場への流入量とポンプ運転方案とによりポン
プ排水量、即ち運転するポンプ台数と吐出量を決める。
図9に示すようにそれぞれの時間の変化に対する流入量
の変化パターンは遅れて行くからその予測も同じに行
う。
When there is rainfall in the area subject to drainage, in step 1, the rainfall amount with respect to a change in time is obtained from the rainfall information, for example, a value such as how many millimeters per hour, and the soil time is calculated by the time interval ΔT between rainfall and rainfall. Since the infiltration degree of water into the shaft changes significantly, the outflow coefficient changes depending on the rainfall pattern. For example, the outflow coefficient is changed to 0.3 to 0.9 by ΔT in FIG. In step 2, the inflow rate to the shaft is obtained from the outflow coefficient and rainfall, in step 3, the inflow rate to the pump station is calculated from the inflow rate to the shaft by means of the inflow rate predicting means, and in step 4, the pump The pump discharge amount, that is, the number of pumps to be operated and the discharge amount are determined by the inflow amount to the machine and the pump operation plan.
As shown in FIG. 9, the change pattern of the inflow amount with respect to each time change is delayed, so that the prediction is made in the same manner.

【0065】一般に降雨パターンは降雨量が時間の経過
と共に増加しピークを経て下降しゼロとなり、次の降り
始め迄の時間間隔により土中への浸透度が異なり、例え
ば時間間隔が短いと土中へ浸透せず立坑への流入量が多
くなる。この降雨パタンと降雨パタンの時間間隔で流出
係数を変えて降雨量と演算して立坑への流入量を求め、
ポンプ機場への流入量を精度良く予測することにより、
適切なポンプ機場の運転管理を行い大深度地下排水施設
の安定運用が可能となる。
Generally, the rainfall pattern is such that the amount of rainfall increases with the passage of time, drops to zero after reaching a peak, and the degree of penetration into the soil varies depending on the time interval until the start of the next rainfall. For example, if the time interval is short, It does not permeate into the shaft and the amount of inflow into the shaft increases. The runoff coefficient is changed at the time interval of this rainfall pattern and the rainfall pattern, and the amount of rainfall is calculated to obtain the inflow amount to the shaft,
By accurately predicting the flow rate into the pumping station,
Stable operation of deep underground drainage facilities will be possible through proper operation and management of pumping stations.

【0066】そしてポンプ場への流入量の予測手段とし
て次の手段が挙げられる。
The following means may be mentioned as means for predicting the amount of inflow to the pumping station.

【0067】1.物理的シミュレーションによる。1. By physical simulation.

【0068】2.上流側立坑の水位変化による。2. It depends on the water level change in the upstream shaft.

【0069】3.上流において鉄砲水を検知する。3. Detects flash floods upstream.

【0070】4.学習機能を有するニューロにより予測
する。
4. Predict with a neuro having a learning function.

【0071】このうち上流において鉄砲水を検知する手
段について詳細に説明する。
Of these, the means for detecting flash flood upstream will be described in detail.

【0072】図10は本実施例の排水システムの鉄砲水
検知と到達時間の予測の手順を示すフローチャートであ
る。
FIG. 10 is a flow chart showing the procedure of flash flood detection and arrival time prediction of the drainage system of this embodiment.

【0073】図11は本実施例の排水システムの全体構
成図を示す。
FIG. 11 shows the overall construction of the drainage system of this embodiment.

【0074】図11に示すように、本実施例の排水シス
テムは、放流先河川の近傍に排水ポンプ機場2を配置
し、排水対象地域に配設された小河川を含む排水路4に
よって雨水等の排水を集め、この排水を排水ポンプ機場
2に導き、ここから河川に放流するようにしている。排
水路4は、幹線管路6と複数の枝管路8−i(図ではi
=1〜4)から形成されている。排水ポンプ機場2は、
図示のように、幹線水路4から流入される排水を貯留す
る図示せざるポンプ井6と、そのポンプ井6の排水を汲
み上げて放流先の河川等に放流する排水ポンプ12と、
この排水ポンプ12の運転を制御するポンプ制御装置1
4を含んで構成されている。
As shown in FIG. 11, in the drainage system of this embodiment, a drainage pump station 2 is arranged near the discharge destination river, and rainwater or the like is generated by the drainage channel 4 including the small river arranged in the drainage target area. The wastewater is collected, guided to the drainage pump station 2, and discharged to the river from here. The drainage channel 4 includes a main pipeline 6 and a plurality of branch pipelines 8-i (i in the figure).
= 1 to 4). The drainage pump station 2
As shown in the figure, a pump well 6 (not shown) that stores the drainage flowing from the main waterway 4, a drainage pump 12 that pumps up the drainage of the pump well 6 and discharges it to a river or the like at the discharge destination,
Pump control device 1 for controlling the operation of this drainage pump 12
4 is included.

【0075】枝管路8−1の上流地点aとその地点より
も下流の地点bに、それぞれ水位検出器16(a,b)
が、また枝管路8−2の上流地点eとその下流地点f
に、それぞれ水位検出器16(e,f)が設置されてい
る。これらの水位検出器16は、枝管路内の水位を検出
するものであり、静電容量式や超音波式等の周知の構成
のものが適用できる。水位検出器16により検出された
各地点の水位検出値は、図示していない通信設備により
前記ポンプ制御装置14に伝送されるようになってい
る。なお、他の枝管路8−3,8−4には水位検出器を
設けていないが、必要に応じて設けてもよい。すなわ
ち、流量の大きい鉄砲水で、かつ最も早く排水ポンプ機
場2に到達する鉄砲水を検知し、その到達時間を予測で
きればよいことから、本実施例は排水系の全体構成や地
形等を考慮し、排水ポンプ機場2に近く、大きな排水対
象地域をカバーする枝管路を対象とし、その枝管路にて
鉄砲水を検知するようにしたのである。
The water level detectors 16 (a, b) are respectively provided at the upstream point a of the branch pipe 8-1 and the downstream point b thereof.
However, the upstream point e and the downstream point f of the branch pipeline 8-2 are also
, And water level detectors 16 (e, f) are installed in the respective. These water level detectors 16 detect the water level in the branch pipes, and a well-known configuration such as a capacitance type or an ultrasonic type can be applied. The water level detection value at each point detected by the water level detector 16 is transmitted to the pump control device 14 by communication equipment (not shown). Although the water level detectors are not provided in the other branch pipe lines 8-3 and 8-4, they may be provided if necessary. That is, since flash flood having a large flow rate and the flash flood that reaches the drainage pump station 2 earliest can be detected and the arrival time thereof can be predicted, the present embodiment considers the overall configuration of the drainage system, topography, etc. The target is a branch pipe near the pumping station 2 and covering a large drainage target area, and the flash flood is detected in the branch pipe.

【0076】このように構成される排水システムにおい
て、通常は、ポンプ制御装置14の働きにより、排水ポ
ンプ機場2の内水位を基準に、排水ポンプP1,P2,P
3の運転台数と回転数などの排水能力を自動的に制御し
て排水量を調整する。また、周知の流入量予測に基づい
て自動制御するようにする。
In the drainage system constructed as described above, the drainage pumps P 1 , P 2 , P are normally operated by the operation of the pump controller 14 with reference to the internal water level of the drainage pump station 2.
The drainage capacity is automatically controlled by controlling the drainage capacity such as the number of operating units and the number of revolutions in 3 . In addition, automatic control is performed based on a well-known inflow prediction.

【0077】ここで、図10を用い、本実施例の鉄砲水
の検知と、鉄砲水のポンプ地点への到達時間の予測に係
る詳細構成について、動作と共に説明する。
Now, with reference to FIG. 10, a detailed structure relating to detection of flash flood and prediction of arrival time at the pump point of the flash flood of this embodiment will be described together with the operation.

【0078】基本的に、鉄砲水の検知と到達時間の予測
は、水位検出器16aとb,16eとfにより検出され
た水位データに基づき、ポンプ制御装置14にて実行さ
れる。ポンプ制御装置14はコンピュータを含んで構成
され、水位検出器16a〜fから伝送される水位データ
を所定のサンプリング周期ごとに取り込み、通常の入力
信号処理を施した後、メモリのデータテーブルに格納
し、この格納された水位データを適宜読み出して、図1
0に示すような処理を実行するようになっている。
Basically, the detection of flash flood and the prediction of the arrival time are executed by the pump controller 14 based on the water level data detected by the water level detectors 16a and 16b and 16e and 15f. The pump control device 14 is configured to include a computer, fetches the water level data transmitted from the water level detectors 16a to 16f at a predetermined sampling period, performs normal input signal processing, and then stores the data in a data table of a memory. , The stored water level data is read out as appropriate, as shown in FIG.
The processing shown in 0 is executed.

【0079】図10に、枝管路8−1に発生した鉄砲水
にかかる処理を示す。なお、枝管路8−2についても同
様の処理になるので、ここでは枝管路8−1についての
み説明する。鉄砲水の発生(流下)はステップ31と3
2の処理で検出する。鉄砲水の場合の水位の変化パター
ンは、急激に増大するパターンである。そこで、本実施
例では、上流地点aの水位検出値ha(t)をサンプリング
し、数式1により1周期前の水位検出値ha(t+1)との差
を演算して、水位の増加率Δha(t)を求める(ステップ
31)。
FIG. 10 shows the treatment of flash flood generated in the branch pipe line 8-1. Since the same processing is performed for the branch pipe line 8-2, only the branch pipe line 8-1 will be described here. Generation of flash floods (downflow) is steps 31 and 3
It is detected by the process of 2. The change pattern of the water level in flash flood is a pattern that increases rapidly. Therefore, in the present embodiment, the water level detection value ha (t) at the upstream point a is sampled, and the difference from the water level detection value ha (t + 1) one cycle before is sampled by Equation 1 to calculate the increase rate of the water level. Δha (t) is calculated (step 31).

【0080】[0080]

【数1】Δha(t)=ha(t)−ha(t+1) 次に、増加率Δha(t)が予め定めた鉄砲水判定基準の設
定値k以上か否かにより鉄砲水の発生を検知する(ステ
ップ32)。この判定が否定のときはステップ31に戻
って次のデータに対して同一の処理を繰り返す。肯定の
ときは、ステップ33にて、鉄砲水の最高水位hmを検
出する。この検出は、前記データテーブルの水位検出値
ha(t)の変化を監視し、極大値を示した検出値を最高水
位として特定することにより行う。最高水位を検出した
ときタイミングにタイマをセットして、その鉄砲水が下
流の地点bに到達する時間の実測を開始する(ステップ
34)。なお、鉄砲水を検知したとき、その検知信号に
より警報などを発したり、グラフィックパネル等の表示
装置にその旨と発生地点とを表示するようにしてもよ
い。また、鉄砲水の検知は、上記の水位増加率のほか、
水位そのものが所定の設定値を超えたこと、又は排水の
濁度が異常に高くなったことを条件として検出できる。
次のステップ35からステップ43までは、水理計算
による鉄砲水の到達時間の予測の精度を上げるための補
正係数αを求めるステップである。到達時間の予測に用
いる原理として、周知の水理モデルから種々の方法が考
えられるが、本実施例では予測の処理時間を考慮して簡
便な段波モデルによる方法を適用した。この段波モデル
による鉄砲水の伝播速度(流下速度)ωは数式2によっ
て表される。なお、このモデルは、長方形管路の場合で
あるが、円形管路の場合はそれに合わせて変数を変形し
て適用すればよい。
[Formula 1] Δha (t) = ha (t) −ha (t + 1) Next, the occurrence of flash flood is detected depending on whether or not the increase rate Δha (t) is equal to or greater than a preset flash flood judgment criterion set value k. (Step 32). When this determination is negative, the process returns to step 31 and the same processing is repeated for the next data. If affirmative, in step 33, the maximum water level hm of flash flood is detected. This detection is performed by monitoring the change in the water level detection value ha (t) in the data table and specifying the detection value showing the maximum value as the maximum water level. When the maximum water level is detected, a timer is set at the timing, and the actual measurement of the time for the flash flood to reach the downstream point b is started (step 34). It should be noted that when flash flood is detected, an alarm or the like may be issued by the detection signal, or that fact and the point of occurrence may be displayed on a display device such as a graphic panel. In addition, flash flood detection, in addition to the above water level increase rate,
It can be detected on the condition that the water level itself exceeds a predetermined set value or that the turbidity of the wastewater becomes abnormally high.
The following steps 35 to 43 are steps for obtaining the correction coefficient α for improving the accuracy of prediction of the arrival time of flash flood by hydraulic calculation. Various methods can be considered from the well-known hydraulic model as a principle used for the prediction of the arrival time, but in this embodiment, a method using a simple step wave model is applied in consideration of the processing time of the prediction. The propagation velocity (downflow velocity) ω of the flash flood according to this step wave model is expressed by Equation 2. This model is for a rectangular pipeline, but for a circular pipeline, the variables may be modified and applied accordingly.

【0081】[0081]

【数2】 [Equation 2]

【0082】ここで、hoは鉄砲水前面の初期水位であ
り、Vは初期水位hoのときの初期流速で、数式3によ
り求める。また、gは重力加速度である。
Here, ho is the initial water level at the front of the flash flood, and V is the initial flow velocity at the initial water level ho, which is obtained by equation (3). Further, g is a gravitational acceleration.

【0083】[0083]

【数3】 [Equation 3]

【0084】ここで、nは管路の粗度係数であり、Iは
管路の勾配である。従って、流下速度ωを求めれば、同
一排水管の下流地点に到達する到達時間は、そこまでの
距離をωで割算すれば求められる。
Here, n is the roughness coefficient of the pipeline, and I is the gradient of the pipeline. Therefore, if the downflow velocity ω is obtained, the arrival time to reach the downstream point of the same drainage pipe can be obtained by dividing the distance to that point by ω.

【0085】上記の水理理論に従い、ステップ35で地
点aにおける初期流速Vaを数式3により求める。次
に、ステップ36で数式2により流下速度ωaを求め
る。そして、ステップ37において、数式4により、距
離Labだけ離れた下流の地点bまでの到達時間の予測値
T'abを演算する。
According to the above hydraulic theory, in step 35, the initial flow velocity Va at the point a is obtained by the mathematical formula 3. Next, in step 36, the downflow velocity ωa is calculated by the equation 2. Then, in step 37, the predicted value T′ab of the arrival time to the downstream point b separated by the distance Lab is calculated by the mathematical expression 4.

【0086】[0086]

【数4】T'ab=Lab/ωa 次のステップ38から40においては、地点bにおける
鉄砲水検知と、最高水位hmを検出する。この処理内容
は前記ステップ31から33と同一であるから説明を省
略する。ステップ40で地点bに鉄砲水の最高水位が到
達したことを検知したタイミングで、前記タイマを停止
させ(ステップ41)、地点aからbまでの到達時間の実
測値Tabを求める(ステップ42)。そして、ステップ4
3にて、次式5により、予測時間の補正係数αを演算す
る。
## EQU4 ## T'ab = Lab / ωa In the following steps 38 to 40, flash flood detection at the point b and the maximum water level hm are detected. Since the contents of this processing are the same as those in steps 31 to 33, their explanation is omitted. At the timing at which it is detected that the maximum water level of the flash flood has reached the point b in step 40, the timer is stopped (step 41), and the measured value Tab of the arrival time from the point a to b is obtained (step 42). And step 4
In 3, the correction coefficient α of the prediction time is calculated by the following equation 5.

【0087】[0087]

【数5】α=T'ab/Tab 通常、理論による予測値よりも実測値の方が大きいか
ら、α≦1.0である。
## EQU00005 ## .alpha. = T'ab / Tab Normally, .alpha..ltoreq.1.0 because the measured value is larger than the theoretically predicted value.

【0088】次に、地点bからポンプ地点dに鉄砲水が
到達する予測時間T'bdを、数式6により演算する。
Next, the estimated time T'bd for the flash flood to reach the pumping point d from the point b is calculated by the equation (6).

【0089】[0089]

【数6】T'bd=α(T'bc+T'cd) の式におけるT'bcとT'cdの予測は、それぞれ基本的に
数式2,3,4を用いる。但し、幹線管路6は枝管路8
−1と管径などの管路条件が異なるので、初期水位ho
と最高水位hmは、地点aの検出値に基づき、比例計算
により推定する。この場合、初期水位hoには、他の枝
管路8−2,8−3,8−4等から合流点cに流入して
いる排水量をも考慮する必要がある。したがって、合流
点cに水位検出器を設置して、初期水位hoを検出する
のが好ましい。しかし、枝管路8−1の鉄砲水が最も早
く合流点cに到達する場合は、他の枝管路から合流点c
に流入する量は、通常時の流量であるから、過去の各枝
管路の流量割合の実績データ等に基づく相関係数を設定
しておき、地点aの初期水位にその相関係数を乗じて、
合流点cの初期水位を推定することができる。本実施例
はこの方法によっている。なお、本実施例は基本的に最
も早く排水ポンプ地点に到達する鉄砲水についての到達
時間を予測すればよいから、枝管路8−1よりも枝管路
8−2に発生した鉄砲水が最も早く合流点cに到達する
場合は、枝管路8−2の鉄砲水について到達時間T'fd
を予測する。
[Equation 6] For the prediction of T'bc and T'cd in the equation of T'bd = α (T'bc + T'cd), the equations 2, 3 and 4 are basically used. However, the main pipeline 6 is a branch pipeline 8
Since the pipe line conditions such as -1 and the pipe diameter are different, the initial water level ho
And the maximum water level hm are estimated by proportional calculation based on the detected value at the point a. In this case, for the initial water level ho, it is also necessary to consider the amount of drainage flowing into the junction c from the other branch pipe lines 8-2, 8-3, 8-4. Therefore, it is preferable to install a water level detector at the confluence point c to detect the initial water level ho. However, when the flash flood of the branch conduit 8-1 reaches the merging point c earliest, the merging point c from the other branch conduit
Since the amount of water flowing into the water is the flow at a normal time, the correlation coefficient based on the past flow rate data of each branch pipe is set, and the initial water level at point a is multiplied by the correlation coefficient. hand,
The initial water level at the confluence c can be estimated. This embodiment uses this method. In this embodiment, basically, the arrival time of the flash flood which reaches the drainage pump point may be predicted at the earliest, so that the flash flood occurring in the branch pipe 8-2 is the earliest than the branch pipe 8-1. When reaching the confluence c, the arrival time T'fd for flash flood of the branch pipe line 8-2
Predict.

【0090】このようにして予測した到達時間T'bdに
基づいて、ステップ45において、排水ポンプの運転台
数とその運転開始タイミングについて決定すると共に、
その決定にしたがって鉄砲水に対する先行待機運転の制
御を行う。通常、排水ポンプは複数台設けられているか
ら、鉄砲水の強さに応じて運転する台数を決める。
Based on the arrival time T'bd predicted in this way, in step 45, the number of drainage pumps to be operated and the operation start timing are determined, and
According to the decision, the control of the preliminary standby operation for flash flood is performed. Normally, multiple drainage pumps are provided, so the number of drainage pumps to be operated is determined according to the strength of the flash flood.

【0091】上述したように、本実施例によれば、排水
路の上流地点aにて排水路の水位を検出し、その増加率
が急激であるか否かを判断していることから、鉄砲水が
発生を素早く検知できる。これにより、排水ポンプの対
応運転を余裕を持って行うことができる。
As described above, according to this embodiment, the water level in the drainage channel is detected at the upstream point a of the drainage channel, and it is determined whether or not the rate of increase is rapid. Can be detected quickly. Thereby, the corresponding operation of the drainage pump can be performed with a margin.

【0092】また、鉄砲水の程度(水位又は増加率)
と、鉄砲水の検知地点から排水ポンプ地点までの距離
と、排水路条件とに基づき、水理理論に従って排水ポン
プ地点までの鉄砲水の到達時間を予測演算していること
から、更に余裕を持って排水ポンプの対応運転を行うこ
とができる。
The degree of flash flood (water level or rate of increase)
Also, based on the distance from the flash flood detection point to the drainage pump point and the drainage channel conditions, the flash flood arrival time to the drainage pump point is predicted and calculated according to hydraulic theory, so there is a further margin for drainage. The corresponding operation of the pump can be performed.

【0093】そして、その予測結果に基づいて排水ポン
プを先行して運転する台数や運転開始タイミングを決定
していることから、鉄砲水の到来に容易に対応できる。
Since the number of drainage pumps to be operated in advance and the operation start timing are determined based on the prediction result, the arrival of flash flood can be easily dealt with.

【0094】また、排水ポンプを先行待機運転できる時
間は、ポンプ軸受の冷却システム等により制限を受ける
が、上記予測により先行待機運転時間を最適化でき、ポ
ンプ軸受の損傷を防止できる。立坑及びポンプ機場への
流入量制御手段として下記の手段が挙げられる。
Although the time during which the drainage pump can be operated in advance standby is limited by the cooling system of the pump bearings, etc., the above-described prediction can optimize the time in advance standby and prevent damage to the pump bearing. The following means can be mentioned as means for controlling the inflow to the vertical shaft and pumping station.

【0095】1)複数排水路から立坑への流入量制御。1) Control of the inflow amount from a plurality of drainage channels to the shaft.

【0096】2)可動堰によるポンプ機場への流入量制
御。
2) Control of the inflow amount to the pumping station by the movable weir.

【0097】3)開水路、閉水路の排水。3) Drainage of open and closed channels.

【0098】4)複数機場の統合管理。4) Integrated management of multiple machines.

【0099】5)ポンプ吐出側の越流堰による流量制
御。
5) Flow control by the overflow weir on the pump discharge side.

【0100】先ず、1)複数排水路から立坑への流入量
制御手段について詳細に説明する。図12地下排水シス
テムの一実施例を示し、本図に示すように、河川や排水
路から流入立坑1,2,3への導水路に可動の流入量調
整装置8を設けた。これにより、各河川や排水路から地
下放水路4への流入量を調整し、各河川や排水路の水位
や流入量に応じて各河川や排水路から流入立坑1,2,
3への流入量を別々に調節することができる。
First, 1) the means for controlling the inflow amount from a plurality of drainage channels to the vertical shaft will be described in detail. FIG. 12 shows an example of an underground drainage system, and as shown in the figure, a movable inflow amount adjusting device 8 is provided in a water conduit from a river or drain to the inflow shafts 1, 2 and 3. Thereby, the inflow amount from each river or drainage channel to the underground discharge channel 4 is adjusted, and the inflow shafts 1, 2 or 3 from each river or drainage channel are adjusted according to the water level or the inflow amount of each river or drainage channel.
The inflow to 3 can be adjusted separately.

【0101】次に2)可動堰によるポンプ機場への流入
量制御について説明する。
Next, 2) control of the inflow amount to the pumping station by the movable weir will be described.

【0102】図13は、図12における可動の流入量調
整装置8を可動堰9で構成したものである。可動堰9と
しては、図13に示すように上下に堰高さを調節しうる
ものや、スウィング式のものが考えられるが、大規模な
システムでは、制御動力を小さくでき、しかも異物のひ
っかかりにくい図13のほうが良い。
FIG. 13 shows the movable inflow amount adjusting device 8 shown in FIG. As the movable weir 9, as shown in FIG. 13, one that can adjust the height of the weir up and down and a swing type can be considered, but in a large-scale system, the control power can be made small and foreign matter is not easily caught. 13 is better.

【0103】図14は、河川や排水路から流入立坑1,
2,3への導水路を管路とし、図12における流量調整
装置8をバルブとしたものである。この場合バルブとし
ては、流量調節可能であり、比較的大形のものも製作可
能なバタフライバルブが適している。
FIG. 14 shows an inflow shaft 1 from a river or drainage channel.
The water conduit to 2 and 3 is a pipe, and the flow rate adjusting device 8 in FIG. 12 is a valve. In this case, as the valve, a butterfly valve whose flow rate can be adjusted and a relatively large one can be manufactured is suitable.

【0104】次に、上記のように構成された地下排水シ
ステムの運用方法について説明する。すなわち、ポンプ
7の運転状態、地下放水路4の水位、全体の流入量、あ
るいはその予測結果と各河川や排水路の水位から、当該
河川や排水路からの最適な流入量を決定し、流量調整装
置8により最適値に調整する。例えば、気象条件などに
より、ある特定の河川や排水路への流入が多く冠水の恐
れが生じた場合には、ポンプ7の運転状態、地下放水路
4の水位及び全体の流入量の許す限り、優先的に当該河
川や排水路から排水することにより、冠水被害を防止す
ることができ、排水システムとして最大限の能力を発揮
させることができる。
Next, a method of operating the underground drainage system configured as described above will be described. That is, from the operating state of the pump 7, the water level of the underground discharge channel 4, the total inflow rate, or the prediction result and the water level of each river or drainage channel, the optimum inflow amount from the river or drainage channel is determined, and the flow rate is determined. The adjusting device 8 adjusts to an optimum value. For example, when there is a large amount of inflow to a certain river or drainage channel due to weather conditions and the risk of submergence occurs, as long as the operating state of the pump 7, the water level of the underground discharge channel 4 and the total inflow amount allow, By preferentially discharging the water from the river or drainage channel, it is possible to prevent flood damage and maximize the capacity of the drainage system.

【0105】図15は本実施例の河川や排水路からの最
適な流入量を決定し、最適値に調整する流量調整装置の
ブロック図である。
FIG. 15 is a block diagram of a flow rate adjusting device for determining an optimum inflow amount from a river or drainage channel and adjusting it to an optimum value in this embodiment.

【0106】本図に示すように、地下排水施設によって
複数の河川A、排水路B及び管渠Cを制御している状態
を想定する。制御装置12は、河川A、排水路B及び管
渠Cの水位、流入立坑1,2,3への流入量Q、地下放
水路4の水位、排水ポンプの排水量ΣQなどが常時監視
できるものとする。
As shown in the figure, it is assumed that a plurality of rivers A, drainage channels B and culverts C are controlled by an underground drainage facility. The controller 12 can constantly monitor the water level of the river A, the drainage channel B and the pipe C, the inflow rate Q into the inflow shafts 1, 2 and 3, the water level of the underground discharge channel 4, the drainage rate ΣQ of the drainage pump, etc. To do.

【0107】いま、河川Aの流域の降雨量が大きく、水
位が上昇している場合には、地下放水路4の水位、排水
ポンプ7の排水量などからポンプの運転状態を把握し、
ポンプの容量に余裕がある場合には、河川Aの流量調節
装置8に制御信号を送り、河川Aからの流入量Qaを増
加させる。この時、仮に排水ポンプ7の容量に余裕がな
い場合でも、河川Aの水位上昇速度が大きく、冠水の恐
れがある場合には、他の排水路B,管渠Cの水位に余裕
がある場合には、それらの流量制御装置8に制御信号を
送り流入量Qb,Qcを減少させ、しかる後に河川Aか
らの流入量Qaを増加させるように制御装置12を構成
しておけば、当該排水システムの機能を最大限に発揮さ
せ、排水システムとしての信頼性を向上させることがで
きる。
When the amount of rainfall in the basin of river A is large and the water level is rising, the operating state of the pump is ascertained from the water level of the underground discharge channel 4, the drainage amount of the drainage pump 7, etc.
When the capacity of the pump has a margin, a control signal is sent to the flow rate adjusting device 8 of the river A to increase the inflow amount Qa from the river A. At this time, even if the capacity of the drainage pump 7 is not sufficient, if the water level rising speed of the river A is large and there is a risk of flooding, if there is room in the water levels of the other drainage channels B and culverts C. If the control device 12 is configured to send a control signal to the flow rate control devices 8 to decrease the inflow amounts Qb and Qc, and then increase the inflow amount Qa from the river A, the drainage system It is possible to maximize the function of and to improve the reliability of the drainage system.

【0108】また、河川や排水路からの雨水の流入量或
いは、その予測結果をもとに、急激な流入が予想される
河川、排水路から予め優先的に地下放水路4に導き、ポ
ンプの運転可能最低水位まで水位を上昇させ、しかる後
にポンプを起動し、排水運転を行い、当該河川や排水路
の水位を最低水位付近まで下げておけば、河川や排水路
自体の貯留効果を利用し、急激な流入に備えてポンプの
待機運転を行うことができる。
Further, based on the inflow amount of rainwater from a river or drainage or the prediction result thereof, a river or drainage where a rapid inflow is expected is preferentially led to the underground discharge channel 4 in advance, If you raise the water level to the lowest operable water level, then start the pump, perform drainage operation, and lower the water level of the river or drainage channel near the minimum water level, you can use the storage effect of the river or drainage channel itself. The standby operation of the pump can be performed in preparation for a sudden inflow.

【0109】また、この際、ポンプ7を可動翼ポンプ或
いは回転数制御可能なポンプで構成し、低流量排水運転
とすれば、当該河川や排水路の自然流下による排水能力
を最大限に利用でき、効率的な待機運転が可能となる。
At this time, if the pump 7 is composed of a movable vane pump or a pump capable of controlling the number of revolutions and the low flow rate drainage operation is performed, the drainage capacity by natural flow down of the river or drainage can be utilized to the maximum extent. It enables efficient standby operation.

【0110】図16は、他の実施例を示すものであり、
ポンプ機場上流側の地下放水路4に可動の堰11を設け
たものである。このように構成することにより、流入初
期における初期汚水がポンプ井6に流入するのも防止で
き、ポンプ7の信頼性をさらに向上することができる。
FIG. 16 shows another embodiment.
A movable weir 11 is provided in the underground discharge channel 4 on the upstream side of the pump station. With such a configuration, it is possible to prevent the initial wastewater from flowing into the pump well 6 at the initial stage of inflow, so that the reliability of the pump 7 can be further improved.

【0111】また、この排水システムが開水路の状態で
運用される場合には、地下放水路4の勾配θにもよる
が、例えばポンプ7の不具合などでポンプ7の立上りが
遅れた場合には、可動堰11を閉じて地下放水路4の貯
留効果を最大限に利用できる。
When this drainage system is operated in an open channel, depending on the gradient θ of the underground discharge channel 4, for example, when the pump 7 is delayed in startup due to a malfunction of the pump 7 or the like. The movable weir 11 can be closed to maximize the storage effect of the underground discharge channel 4.

【0112】さらに、このような構成とすれば、河川や
排水路からの流入量或いは、その予測結果に応じて可動
堰11の高さを調節することにより、ポンプ井6の水位
を安定化させ、従ってポンプ7の運転を安定化させるこ
とができるので、特に大規模ポンプシステム場合には、
ポンプ7の信頼性を高めることができる。
Further, with this structure, the water level of the pump well 6 is stabilized by adjusting the height of the movable weir 11 according to the inflow amount from the river or drainage or the prediction result thereof. Therefore, since the operation of the pump 7 can be stabilized, especially in the case of a large-scale pump system,
The reliability of the pump 7 can be improved.

【0113】次に3)地下放水路が開水路、閉水路の状
態に有る時の排水について説明する。流入水路が閉水路
の状態で計画水量を排水可能とし、開水路においても締
切運転にならないポンプをポンプ井に配置する。このポ
ンプは可動翼ポンプとし、翼角最小付近で排水待機運転
し、ポンプ井の水位上昇又はその水位上昇速度に応じて
ポンプの翼角を調整し、排水量調整を行なう。また、こ
のポンプを回転数制御型とし、低速回転で排水待機運転
し、ポンプ井の水位上昇又はその水位上昇速度に応じて
回転数を調整し、排水量調整を行なっても良い。また、
ポンプ井に、地下流入水路が開水路の状態で計画水量を
排水可能でありかつ排水待機運転される小容量高揚程ポ
ンプと、閉水路の状態で計画水量を排水可能な大容量低
揚程ポンプとを組合せても良い。ポンプ吐出側にバルブ
を設置せず越流堰又はサイホンを形成して流量制御を行
うこともできる。
Next, 3) the drainage when the underground discharge channel is in the open or closed channel will be described. A pump that can discharge the planned amount of water when the inflow channel is closed and that does not close even in the open channel is placed in the pump well. This pump is a movable vane pump, and the drainage standby operation is performed near the minimum blade angle, and the blade angle of the pump is adjusted according to the rising water level of the pump well or the rising speed of the water level to adjust the drainage amount. Further, this pump may be a rotation speed control type, and a drainage standby operation may be performed at a low speed rotation, and the rotation speed may be adjusted according to the water level rise of the pump well or the water level rise rate to adjust the drainage amount. Also,
In the pump well, there are a small-capacity high-lift pump that can discharge the planned amount of water when the underground inflow channel is open and a drainage standby operation, and a large-capacity low-lift pump that can discharge the planned amount of water when the channel is closed. May be combined. The flow rate can be controlled by forming an overflow weir or siphon without installing a valve on the discharge side of the pump.

【0114】次に大深度地下排水施設(ポンプ機場)の
安定運用について下記の手段が挙げられる。
Next, the following means can be mentioned for stable operation of the deep underground drainage facility (pump station).

【0115】(1)ポンプ翼角・回転数制御による排水
待機運転。
(1) Drainage standby operation by controlling pump blade angle and rotation speed.

【0116】(2)ポンプの先行待機運転。(2) Advance standby operation of the pump.

【0117】(3)小容量・高揚程、大容量・低揚程ポ
ンプの組合せ。
(3) A combination of small capacity / high head and large capacity / low head pumps.

【0118】(4)排水優先運転アルゴリズムの適用。(4) Application of the drainage priority operation algorithm.

【0119】(5)ポンプ井水位の上昇・下降速度によ
るポンプのオン、オフ水位補正。
(5) Pump well ON / OFF water level correction by rising / falling speed of water level.

【0120】(6)一時貯留・事前放流の為のポンプ近
傍に設けたサージ防止用貯水池。
(6) A surge prevention reservoir provided near the pump for temporary storage and prior discharge.

【0121】(1)ポンプ翼角・回転数制御による排水
待機運転の詳細は上述のとおりであるが、ポンプ機場の
安定運用にも有効である。
(1) The details of the drainage standby operation by controlling the pump blade angle / rotational speed are as described above, but they are also effective for stable operation of the pumping station.

【0122】(2)ポンプの先行待機運転とは吸水槽へ
の流入水の流入予測に従って流入水が吸水槽に到達する
前に放流路の弁を開き、ポンプの運転を始める操作を指
す。
(2) The preceding standby operation of the pump means an operation of opening the valve of the discharge passage and starting the operation of the pump before the inflow water reaches the water absorption tank according to the prediction of the inflow of the water into the water absorption tank.

【0123】図17は本実施例の排水施設の構成を示す
縦断面図である。
FIG. 17 is a vertical sectional view showing the construction of the drainage facility of this embodiment.

【0124】本図に示すように貯水池10から流入主管
路1に連通させた放流路13に弁14が挿入されてい
る。流入主管路1の終端に吸水槽5が設けられ、吸水槽
5内にポンプ4が浸漬されている。ポンプ4の吐出管6
の吐出弁7よりも上流側から分岐して貯水池10に連通
させた還流路15が設けられ、この還流路15に弁16
が挿入されている。降雨があると吸水槽5への流入予測
が行われ、流入水が吸水槽5に到達する前に放流路13
の弁14を開き吸水槽5へ貯水池10の貯留水を供給す
る。一定時間遅れて放流水が吸水槽5へ到着し吸水槽5
の水位がポンプ4の運転可能な値に上昇した時ポンプ4
の運転を開始する。このようにして放流水が流入し始め
た段階で本格的な放流水の流入に先行して待機運転を行
うことができる。
As shown in the figure, a valve 14 is inserted into the discharge passage 13 which communicates with the main inflow conduit 1 from the reservoir 10. A water absorption tank 5 is provided at the end of the inflow main pipeline 1, and the pump 4 is immersed in the water absorption tank 5. Discharge pipe 6 of pump 4
Is connected to the reservoir 10 by branching from the upstream side of the discharge valve 7.
Has been inserted. When there is rainfall, the inflow of water into the water absorption tank 5 is predicted, and the discharge channel 13 is provided before the inflow water reaches the water absorption tank 5.
The valve 14 is opened to supply the water stored in the reservoir 10 to the water absorption tank 5. The discharge water arrives at the water absorption tank 5 after a certain delay, and the water absorption tank 5
Pump 4 when the water level rises to a level at which pump 4 can operate
Start driving. In this way, the standby operation can be performed prior to the full-scale inflow of the discharged water at the stage when the discharged water starts to flow.

【0125】(3)小容量・高揚程、大容量・低揚程ポ
ンプの組合せについて説明する。
(3) A combination of a small capacity / high head and a large capacity / low head pump will be described.

【0126】図18は本実施例の排水施設の構成を示す
縦断面図である。
FIG. 18 is a vertical sectional view showing the structure of the drainage facility of this embodiment.

【0127】一般に、地下水路1の埋設深さが深くなる
と、ポンプ井7の低水位LWLと高水位HWLの差が大
きくなる。また、地下排水施設ではポンプ井7の水位が
低い場合は排水量は少なくてよく、水位が高くなるにつ
れて排水利用を増大すればよい。そこで、図18に示す
ように、必要排水量を賄う排水ポンプを分割して階層状
に設置し、下の階層に高揚程ポンプ8aを、上の階層に
低揚程ポンプ8bを設置することが望ましい。この場
合、低揚程ポンプ8bは少なくとも地下貯留池10の底
面よりも下のレベルに設ける。
In general, when the buried depth of the underground waterway 1 becomes deep, the difference between the low water level LWL and the high water level HWL of the pump well 7 becomes large. Further, in the underground drainage facility, when the water level of the pump well 7 is low, the amount of drainage may be small, and the use of drainage may be increased as the water level rises. Therefore, as shown in FIG. 18, it is desirable that the drainage pumps that cover the required amount of drainage are divided and installed in layers, and the high lift pump 8a is installed in the lower hierarchy and the low lift pump 8b is installed in the upper hierarchy. In this case, the low head pump 8b is provided at least at a level below the bottom surface of the underground reservoir 10.

【0128】このように構成することにより、上層階の
排水ポンプ8bは設置レベルが高い分だけ放流先河川9
の水位Hoとの差が小さくなるから、その分だけ必要揚
程が小さくなるので、排水動力を節減できることにな
る。特に、上階層の排水ポンプ8bの定格を低揚程・大
容量のものにし、水位の上昇に応じて運転を開始するよ
うにすれば、低揚程大容量のポンプは広い範囲にわたっ
てポンプ効率が高いので、排水動力の節減効果が著し
い。また、ポンプ井7の水位が低いときはそれほど速や
かに排水する必要はないから、低い階層の排水ポンプ8
aは高揚程ではあるが、小容量でよい。
With this structure, the drainage pump 8b on the upper floors has a high installation level, and therefore the discharge river 9
Since the difference between the water level Ho and the water level Ho becomes smaller, the required head is also reduced accordingly, so that the drainage power can be saved. In particular, if the rating of the drainage pump 8b in the upper layer is set to a low lift / large capacity and the operation is started according to the rise of the water level, the pump with a low lift / large capacity has a high pump efficiency over a wide range. , The drainage power saving effect is remarkable. Further, when the water level in the pump well 7 is low, it is not necessary to drain the water so quickly.
Although a has a high head, a small capacity is sufficient.

【0129】また、複数の排水ポンプを少なくとも2階
の階層状に設置したことから、必要な地下ポンプ建家の
建築面積を小さくすることができる。これにより、地下
掘削作業を含む作業量を低減でき、建設費の増大を抑え
ることができる。
Further, since a plurality of drainage pumps are installed in a hierarchy of at least the second floor, it is possible to reduce the required construction area of the underground pump building. As a result, the amount of work including underground excavation work can be reduced, and an increase in construction costs can be suppressed.

【0130】次に(5)ポンプ井水位の上昇・下降速度
によるポンプのオン、オフ水位補正について説明する。
Next, (5) ON / OFF water level correction of the pump based on the rising / falling speed of the pump well water level will be described.

【0131】図19は本実施例のポンプ井水位上昇速度
を示したものである。実線は水位上昇速度大、点線は通
常の速度、一点鎖線は水位上昇速度小の場合を示す。
FIG. 19 shows the pump well water level rise rate of this embodiment. The solid line shows the case where the water level rise rate is high, the dotted line shows the case where the water level rises normally, and the chain line shows the case where the water level rise rate is small.

【0132】図20は本実施例のポンプ井水位上昇速度
が大きい場合の起動パタンを示したものである。
FIG. 20 shows the starting pattern when the pump well water level rising speed in this embodiment is high.

【0133】起動水位は従来に比較しB2低い水位で起
動する。又、全台(今回の例は3台)起動する迄の水位
差はA2であり従来(A1)に対し小さくなる。すなわ
ち、水位上昇速度が大きい場合、低い水位で1台目が立
ち上がり、かつ全台立ち上がる水位も低く急激な水位上
昇に対し早く対応が出来る。
The starting water level is B2 lower than that of the conventional one. Further, the water level difference before starting all the units (3 units in this example) is A2, which is smaller than that of the conventional unit (A 1 ). That is, when the rate of water level rise is high, the first unit rises at a low water level, and the water level at which all units stand up is low, and a rapid rise in water level can be dealt with quickly.

【0134】図21は本実施例のポンプ井水位上昇速度
が遅い場合の起動パタンを示したものである。
FIG. 21 shows a starting pattern when the pump well water level rising speed in this embodiment is slow.

【0135】1台目起動の水位はB3だけ高く、停止時
も低水位で停止するようにする。すなわち、起動と停止
の水位差を従来(C1)に比較し、大きく(C3)出来
るのでハンチング防止に効果がある。
The water level at the start of the first unit is high by B3, and the water level is stopped at the low water level even when stopped. That is, the water level difference between start and stop can be made larger (C3) compared to the conventional (C1), which is effective in preventing hunting.

【0136】次に(6)一時貯留・事前放流の為のポン
プ近傍に設けたサージ防止用貯水池について説明する。
Next, (6) the surge prevention reservoir provided near the pump for temporary storage and prior discharge will be described.

【0137】図22は本実施例の地下排水施設の概念構
成を示す縦断面図である。
FIG. 22 is a vertical sectional view showing the conceptual structure of the underground drainage facility of this embodiment.

【0138】本図のように、地下水路1の比較的下流側
に、地表と地下水路1の中間に位置させて、一定の容積
を有する地下貯留池10が埋設されている。この地下貯
留池10は連通立坑11を介して地下水路1に連結され
ている。この連通立坑11の地下貯留池10との連通部
のレベル(入口レベル)は、貯留池底面よりも高いレベ
ルの側面部に位置されている。地下貯留池10の底部は
貯留水の放流管路12を介して連通立坑11に連結され
ている。この放流管路12には管路を開閉する開閉弁又
はゲート弁(以下、開閉弁と総称する)13が設けられ
ている。ここで、放流管路12は地下水路1に直接連結
することも可能である。また、地下貯留池10の底部に
連通させて揚水ポンプ15が設けられ、貯留水を地上に
汲み揚げ可能になっており、これにより必要に応じてそ
の貯留水を消防用水、道路や公園の散水用等に有効利用
できるようにしている。一方、地下貯留池10の上部は
空気孔14を介して大気に開口され、地下貯留池10に
対応する地表面には公園17や運動場等の公共施設が、
更に地表と地下貯留池10との間のスペースを利用して
地下駐車場16などの施設が設けられている。
As shown in the figure, an underground reservoir 10 having a constant volume is buried in the intermediate position between the ground surface and the groundwater channel 1 on the relatively downstream side of the groundwater channel 1. The underground reservoir 10 is connected to the underground waterway 1 via a communication shaft 11. The level (inlet level) of the communicating portion of the communicating shaft 11 with the underground reservoir 10 is located on the side surface portion at a level higher than the bottom surface of the reservoir. The bottom of the underground reservoir 10 is connected to a communicating shaft 11 via a reservoir water discharge pipe 12. An on-off valve or a gate valve (hereinafter referred to as an on-off valve) 13 that opens and closes the conduit is provided in the discharge conduit 12. Here, the discharge pipe line 12 can be directly connected to the ground water channel 1. Further, a pumping pump 15 is provided so as to communicate with the bottom of the underground storage pond 10 so that the stored water can be pumped up to the ground. As a result, the stored water can be used for fire fighting, sprinkling roads and parks. It can be effectively used for business purposes. On the other hand, the upper part of the underground reservoir 10 is opened to the atmosphere through the air holes 14, and public facilities such as a park 17 and a playground are provided on the ground surface corresponding to the underground reservoir 10.
Further, facilities such as an underground parking lot 16 are provided by utilizing a space between the surface of the earth and the underground reservoir 10.

【0139】また、地下貯留池10の容量は、流入量予
測と排水ポンプの排水能力等の排水システムの条件から
要求される貯留能力から、地下水路1の貯留能力を差し
引いた量以上に設定する。
Further, the capacity of the underground reservoir 10 is set to be equal to or more than the storage capacity required by the conditions of the drainage system such as the inflow prediction and the drainage capacity of the drainage pump minus the storage capacity of the underground waterway 1. .

【0140】このように構成される実施例の動作及び運
転方法を次に説明する。
The operation and operating method of the embodiment thus constructed will be described below.

【0141】雨が降って河川3等の水位が上昇すると地
下水路1に流入する水量が増加し、雨量の程度に応じて
地下水路1の水位が上昇する。集中豪雨などのような流
入水の急激な増大が生ずると、地下水路1が満水状態に
なり、地下貯留池10の連通立坑11の水位が急激に上
昇し、図22に示した動水勾配20に従って、水位が地
下貯留池10の入口レベルに達する。水位がこのレベル
に達すると、地下貯留池10の貯留効果が発揮されるた
め、それ以降の急激な水位の上昇が緩和される。したが
って、流下水がポンプ井7に到達してから、排水ポンプ
8の運転を開始するまでの時間を十分にとることができ
る。つまり、地下貯留池10の入口レベルに水位が到達
してから排水ポンプ8を運転開始しても、上流側水路の
河川3、管渠4、放水路5又は空気孔6から流入水が逆
流して生ずる冠水を防止できる。
When it rains and the water level of the river 3 or the like rises, the amount of water flowing into the ground water channel 1 increases, and the water level of the ground water channel 1 rises according to the amount of rainfall. When a sudden increase in the inflow of water such as a torrential rain occurs, the groundwater channel 1 becomes full, and the water level of the communication shaft 11 of the underground storage pond 10 rapidly rises, resulting in the hydraulic gradient 20 shown in FIG. Accordingly, the water level reaches the entrance level of the underground reservoir 10. When the water level reaches this level, the storage effect of the underground reservoir 10 is exerted, so that a rapid rise in the water level thereafter is moderated. Therefore, it is possible to take a sufficient time from the arrival of the falling water to the pump well 7 to the start of the operation of the drainage pump 8. That is, even if the drainage pump 8 is started after the water level reaches the entrance level of the underground reservoir 10, the inflow water flows back from the river 3, the pipe 4, the discharge channel 5 or the air hole 6 of the upstream side water channel. Can prevent flooding.

【0142】なお、排水ポンプ8の総排水能力は、流入
量予測に基づいて定められるが、通常は、単位時間当た
りの流入量に応じた総排水能力に設定される。従って、
地下貯留池10に水位が達してから排水ポンプ8を運転
開始すれば、水位の上昇を抑えられるのである。
Although the total drainage capacity of the drainage pump 8 is determined based on the inflow rate prediction, it is usually set to the total drainage capacity according to the inflow rate per unit time. Therefore,
If the drainage pump 8 is started after the water level reaches the underground storage pond 10, the rise in the water level can be suppressed.

【0143】本発明はポンプの全揚程を低減してポンプ
そのものの小型化、原動機の小型化により、ポンプ機場
の省スペース化を図っているが他に下記のような手段が
挙げられる。
In the present invention, the total head of the pump is reduced to reduce the size of the pump itself and the size of the prime mover to save space in the pumping station, but the following means are also available.

【0144】イ.ポンプ機場の階層化。A. Hierarchical pump station.

【0145】ロ.円形に配置したポンプ機場。B. A pumping station arranged in a circle.

【0146】ハ.鉛直方向に配置したポンプ機場。C. A pumping station located vertically.

【0147】イ.のポンプ機場を階層化し、かつ円形に
配置した例について説明する。
A. An example will be described in which the pumping stations of (1) are hierarchically arranged in a circle.

【0148】図23は本実施例の排水ポンプ機場の概念
構成を示す縦断面図である。
FIG. 23 is a vertical sectional view showing the conceptual structure of the drainage pump station of this embodiment.

【0149】図24は図23の部分詳細図である。FIG. 24 is a partial detailed view of FIG.

【0150】排水対象区域に配設された地下水路1によ
り集められた雨水などの流入水はポンプ井2に流入され
る、ポンプ井2内の流入水は排水ポンプ群3によって汲
み揚げられ、集合吐出管路4と排水路5を介して放流先
の河川6に排出されるようになっている。排水ポンプ群
3は設置レベルを異ならせて2階層状に配置された複数
の排水ポンプPL1〜n(nは自然数)とPH1〜nか
ら構成されている。ここで、排水ポンプPHには低揚程
・大容量のポンプが適用され、排水ポンプPLには高揚
程・小容量のポンプが適用されている。これらの排水ポ
ンプPH,PLは階層別にそれぞれ円形状に設置されて
いる。各排水ポンプPH,PLの吸込管路7,8は環状
の集合吸込管路9,10を介してそれぞれポンプ井2に
連通されている。集合吸込管路7、8は排水ポンプの円
形配置に合わせてそれぞれ環状に形成されている。各ポ
ンプの吸込管路7,8にはそれぞれ吸込仕切り弁11,
12が設けられている。集合吐出管路4は排水ポンプ群
3の中心に縦型に設けられ、各排水ポンプPH,PLの
吐出管路13,14が連結されている。集合吐出管路4
の上部は排水路5によって河川6に連通されている。ま
た、集合吐出管路4の管径は階層ごとの排水ポンプの排
水量に合わせ、下層に行くほど細く形成されている。上
記の排水ポンプ群3が設置される地下ポンプ建家20の
外形は、上方に広がる円錐台状に形成されている。この
ような形状にしたのは、下層の階に設置される高揚程・
小容量の排水ポンプPLは、上層の階に設置される低揚
程・大容量の排水ポンプPHに比べて設置面積が小さく
て済むからである。なお、地下ポンプ建家20は図24
のように下層部のみ円錐台状にし、上層部は円柱状にし
てもよい。また、地下ポンプ建家20内には排水ポンプ
PH,PLおよび電動機15,16などを保守するため
の保守エリア17,18が設けられている。なお、図に
示すように、集合吐出管路4の上端を地上に露出させ、
その部分に例えば噴水又は滝21を設けたり、地下ポン
プ建家20の地上部分を公園22等として利用できるよ
うにしてもよい。
Inflow water such as rainwater collected by the groundwater channel 1 arranged in the drainage target area flows into the pump well 2, and the inflow water in the pump well 2 is pumped up by the drainage pump group 3 and collected. The water is discharged to the discharge destination river 6 through the discharge pipe line 4 and the drainage line 5. The drainage pump group 3 is composed of a plurality of drainage pumps PL1 to n (n is a natural number) and PH1 to n arranged in two layers at different installation levels. Here, a low head / large capacity pump is applied to the drainage pump PH, and a high head / small capacity pump is applied to the drainage pump PL. These drainage pumps PH and PL are installed in a circular shape for each floor. The suction pipe lines 7 and 8 of the drainage pumps PH and PL are communicated with the pump well 2 via annular collecting suction pipe lines 9 and 10, respectively. The collective suction pipe lines 7 and 8 are each formed in an annular shape in accordance with the circular arrangement of the drainage pumps. The suction sluice valve 11,
12 are provided. The collective discharge pipe line 4 is provided vertically at the center of the drainage pump group 3, and the discharge pipe lines 13 and 14 of the drainage pumps PH and PL are connected to each other. Collective discharge line 4
The upper part of the is connected to the river 6 by the drainage channel 5. Further, the pipe diameter of the collective discharge pipe line 4 is formed so as to become lower toward the lower layer in accordance with the drainage amount of the drainage pump for each layer. The outer shape of the underground pump building 20 in which the drainage pump group 3 is installed is formed in a truncated cone shape that spreads upward. This shape is due to the high heads installed on the lower floors.
This is because the small-capacity drainage pump PL requires a smaller installation area than the low-lift, large-capacity drainage pump PH installed on the upper floor. The underground pump building 20 is shown in Fig. 24.
As described above, only the lower layer portion may have a truncated cone shape, and the upper layer portion may have a cylindrical shape. In addition, maintenance areas 17 and 18 for maintaining the drainage pumps PH and PL and the electric motors 15 and 16 are provided in the underground pump building 20. In addition, as shown in the figure, the upper end of the collective discharge pipe line 4 is exposed to the ground,
For example, a fountain or a waterfall 21 may be provided in that portion, or the above-ground portion of the underground pump building 20 may be used as a park 22 or the like.

【0151】このように構成されることから、本実施例
によれば、上層階の排水ポンプPHは設置レベルが高い
分だけ放流先河川6の水位Hoとの差が小さくなるか
ら、その分だけ必要揚程が小さくなるので、排水動力を
節減できることになる。特に、高い階層の排水ポンプP
Hの定格を低揚程・大容量のものにすれば、低揚程大容
量のポンプは広い範囲にわたってポンプ効率が高いの
で、排水動力の節減効果が著しい。
With such a configuration, according to the present embodiment, the difference between the drainage pump PH on the upper floors and the water level Ho of the discharge destination river 6 becomes smaller due to the higher installation level. Since the required head is smaller, drainage power can be saved. Especially, the drainage pump P of the higher floor
If the rating of H is set to low lift and large capacity, a pump with low lift and large capacity has high pump efficiency over a wide range, so that the drainage power saving effect is remarkable.

【0152】また、排水システムではポンプ井2の水位
が低い場合は排水量は少なくてよく、ポンプ井の水位が
高くなるにつれて排水量を増大させればよいから、例え
ば図23に示すようにLWL(例えば、Ho−60m)
とHWL(例えば、Ho−15m)の中間に運転台数制
御用の中間水位MWL1,2(例えば、Ho−45m,
Ho−30m)を設定し、水位が上昇するにつれて順次
高い階層の排水ポンプを運転するようにすれば、排水動
力を効果的に節減できる。
Further, in the drainage system, when the water level of the pump well 2 is low, the drainage amount may be small, and the drainage amount may be increased as the water level of the pump well increases. Therefore, for example, as shown in FIG. , Ho-60m)
And HWL (for example, Ho-15 m), intermediate water levels MWL1, 2 (for example, Ho-45 m,
Ho-30m) is set and the drainage pumps of higher floors are sequentially operated as the water level rises, whereby drainage power can be effectively saved.

【0153】また、複数の排水ポンプを少なくとも2階
の階層状に設置したことから、必要な地下ポンプ建家の
建築面積を小さくすることができる。これにより、地下
掘削作業を含む作業量を低減でき、建設費の増大を抑え
ることができる。特に、排水ポンプを円形に配置したの
で地下ポンプ建家20の外形も円形にすることができ、
建設費低減の効果が著しい。
Further, since the plurality of drainage pumps are installed in a hierarchy of at least the second floor, it is possible to reduce the required construction area of the underground pump building. As a result, the amount of work including underground excavation work can be reduced, and an increase in construction costs can be suppressed. In particular, since the drainage pumps are arranged in a circular shape, the outer shape of the underground pump building 20 can also be circular,
The effect of reducing construction costs is remarkable.

【0154】また、ポンプ井2の水位が低いときはそれ
ほど速やかに排水する必要はないから、低い階層の排水
ポンプPLは高揚程ではあるが、小容量でよい。従っ
て、地下建家の各階層の面積は下層になるほど小面積で
よく、少なくとも下部外形が上に広がる円錐台状に形成
すれば、特に深いところにおける掘削量を低減できるの
で、建設費等の低減効果が著しい。
Further, when the water level of the pump well 2 is low, it is not necessary to drain water so quickly, so that the drain pump PL of the lower hierarchy has a high head but a small capacity. Therefore, the area of each floor of the underground building may be smaller as it goes down, and if at least the outer shape of the lower part is formed into a truncated cone shape, the amount of excavation can be reduced especially at deep places, thus reducing construction costs, etc. The effect is remarkable.

【0155】次にハ.鉛直方向に配置したポンプ機場に
ついて説明する。
Next, c. The pumping station arranged in the vertical direction will be described.

【0156】図25は本実施例の立軸駆動多重ポンプを
配置したポンプ機場を示す縦断面図である。
FIG. 25 is a vertical cross-sectional view showing a pumping station in which the vertical axis driving multiplex pump of this embodiment is arranged.

【0157】本図に示すように、1はポンプ羽根車(図
示せず)の駆動源となる駆動機であり、その主軸17は
鉛直方向にある。2は大容量で低揚程のポンプであり、
3は小容量で高揚程のポンプで、鉛直方向に配設されて
いる。4は、回転トルクの伝達・不伝達が可能な継手で
あり、前記駆動機1の主軸17は、継手4によって鉛直
方向に配設した2台のポンプ2,3の各主軸18と連結
している。すなわち、駆動機1は、鉛直方向に配設した
2台のポンプ2,3の間に位置し、詳細は図示しない
が、両掛駆動構成となっている。
As shown in the figure, reference numeral 1 is a drive machine which is a drive source of a pump impeller (not shown), and its main shaft 17 is in the vertical direction. 2 is a pump with a large capacity and a low head,
3 is a small-capacity, high-lift pump, which is arranged in the vertical direction. Reference numeral 4 denotes a joint capable of transmitting / not transmitting rotational torque, and the main shaft 17 of the driving machine 1 is connected to the main shafts 18 of the two pumps 2 and 3 arranged vertically by the joint 4. There is. That is, the driving machine 1 is located between the two pumps 2 and 3 arranged in the vertical direction, and has a double-screw drive structure, although not shown in detail.

【0158】9は地下導水路、10は、地下導水路9に
接続して設けられた取水縦坑、13は、吐出流路に係る
吐出管である。前記取水縦坑10と吐出管13との間
に、鉛直方向に配設された2台以上(図25では2台)
のポンプからなる立軸駆動多重ポンプが配置されてい
る。上方側のポンプ2の吸込管7−1は仕切弁8−1を
介して取水縦坑10の上部に接続し、下方側のポンプ3
の吸込管7−2は仕切弁8−2を介して取水縦坑10の
下部に接続している。また、前記ポンプ2,3の吐出側
は仕切弁6−1,6−2を介して吐出管13に接続して
いる。
Reference numeral 9 is an underground headrace, 10 is an intake shaft provided in connection with the underground headrace 9, and 13 is a discharge pipe associated with a discharge channel. Two or more units arranged vertically between the intake shaft 10 and the discharge pipe 13 (two units in FIG. 25)
Vertical drive multiple pumps are installed. The suction pipe 7-1 of the pump 2 on the upper side is connected to the upper part of the intake shaft 10 via the gate valve 8-1, and the pump 3 on the lower side is connected.
The suction pipe 7-2 is connected to the lower part of the water intake shaft 10 through a gate valve 8-2. The discharge sides of the pumps 2 and 3 are connected to the discharge pipe 13 via sluice valves 6-1 and 6-2.

【0159】地下導水路9から取水縦坑10に流入し溜
った水は、仕切弁8(8−1,8−2の総称)が開のと
き吸込管7(7−1,7−2の総称)に流入し、ポンプ
によって吐出管13に吐出される。吐出管13は大容量
で低揚程のポンプ2の吐出流が合流する位置から断面積
が拡大している。吐出側の仕切弁6(6−1,6−2の
総称)はポンプ停止時には閉となり、吐出流の逆流を防
止する。また、14,15は水流方向であり、11,1
2は水位を示す。
The water that has flowed into the intake shaft 10 from the underground headrace 9 and pooled the suction pipe 7 (7-1, 7-2) when the sluice valve 8 (general term for 8-1, 8-2) is open. Generically) and is discharged to the discharge pipe 13 by the pump. The discharge pipe 13 has an enlarged cross-sectional area from a position where the discharge flows of the pump 2 having a large capacity and a low head are joined. The sluice valve 6 on the discharge side (collective term for 6-1 and 6-2) is closed when the pump is stopped, and prevents the reverse flow of the discharge flow. Also, 14 and 15 are water flow directions, and 11 and 1
2 shows the water level.

【0160】本実施例は以上のように構成されているの
で、地下の排水ポンプ機場の平面スペースを、従来のポ
ンプの水平方向配置の場合よりも必要としない。
Since this embodiment is constructed as described above, it does not require a flat space in the underground drainage pump station as compared with the conventional horizontal arrangement of pumps.

【0161】また、駆動機1の主軸17とポンプ2,3
の主軸18とは回転トルクの伝達・不伝達が可能な継手
4によって連結されているので、必要なポンプ羽根車の
みを回転させることができ、エネルギーの浪費を防止で
きる。
Further, the main shaft 17 of the driving machine 1 and the pumps 2, 3
Since the main shaft 18 is connected to the main shaft 18 by the joint 4 capable of transmitting / not transmitting the rotational torque, only the necessary pump impeller can be rotated, and the waste of energy can be prevented.

【0162】さらに、鉛直方向に配設される2台のポン
プ2,3は、上方側が大容量で低揚程のポンプ2、下方
側が小容量で高揚程のポンプ3という構成にしたので、
取水縦坑10の水位が低い水位11のときには高揚程の
ポンプ3を運転し、取水縦坑10の水位が高い水位12
のときには低揚程のポンプ2を運転することができる。
また、それらの同時運転もできる。
Further, the two pumps 2 and 3 arranged in the vertical direction are configured such that the upper side has a large capacity and low head pump 2, and the lower side has a small capacity and high head pump 3.
When the water level of the intake shaft 10 is low 11, the pump 3 having a high head is operated to increase the water level 12 of the intake shaft 10.
At this time, the pump 2 with a low head can be operated.
Also, they can be operated simultaneously.

【0163】さらに、駆動機1は、両ポンプ駆動として
構成を簡単化した。
Further, the driving machine 1 has a simple structure as it is driven by both pumps.

【0164】また、流路断面積が下流方向に増加する吐
出管を配備しているので、効率の良い運転を可能として
いる。さらに、複数台のポンプに対して1本の吐出管1
3の併用が可能なのでポンプ装置の構成が簡単となると
いう効果もある。
Since the discharge pipe whose flow passage cross-sectional area increases in the downstream direction is provided, efficient operation is possible. Furthermore, one discharge pipe 1 for multiple pumps
Since 3 can be used together, there is also an effect that the structure of the pump device is simplified.

【0165】本実施例によれば、大容量で低揚程のポン
プ2を運転しないとき、ポンプ2の前後の仕切弁6−
1,8−1を閉にして抜水し、ポンプ2をフライホィー
ルとして作動させることができ、省エネルギーと水撃防
止の効果もある。
According to this embodiment, when the large capacity, low head pump 2 is not operated, the sluice valves 6-
1, 8-1 can be closed to drain water, and the pump 2 can be operated as a flywheel, which also has the effect of saving energy and preventing water hammer.

【0166】更に、他の実施例を図26を参照して説明
する。
Further, another embodiment will be described with reference to FIG.

【0167】図26は他の実施例の立軸駆動多重ポンプ
を配置したポンプ機場を示す縦断面図である。
FIG. 26 is a vertical cross-sectional view showing a pumping station in which a vertical shaft driven multiple pump according to another embodiment is arranged.

【0168】図中、図25と同一符号のものは、先の実
施例と同等部であるから、その説明を省略する。
In the figure, those having the same reference numerals as those in FIG. 25 are the same parts as those in the previous embodiment, and therefore their explanations are omitted.

【0169】本図に示す実施例では、鉛直方向に配設さ
れた3台のポンプ20の羽根車回転軸は水平方向にあ
り、さらに、3台のポンプ20は同一構造のものであ
る。
In the embodiment shown in the figure, the impeller rotating shafts of the three pumps 20 arranged in the vertical direction are in the horizontal direction, and the three pumps 20 have the same structure.

【0170】本図において、1Aは、ポンプ(或いはポ
ンプ羽根車)の駆動源となる駆動機、17Aは、駆動機
1の主軸、20は、鉛直方向に配設された2台以上(図
26の例では3台)の軸流ポンプ、17Bは、これら軸
流ポンプ20を鉛直方向に連結する連結軸、21は、駆
動機1の主軸17Aと前記軸流ポンプ20の各連結軸1
7Bとを連結する軸継手である。軸流ポンプ20は、軸
流形の羽根車19と案内羽根22,23を備えている。
18Aは、羽根車19の回転軸で水平方向にある。 2
4は、連結軸17Bのトルクを上記各羽根車の回転軸1
8Aに伝達する直交伝達機構に係る傘歯車、25は、軸
流ポンプのケーシングに設けた軸貫通用開口部である。
In this figure, 1A is a driving machine which is a driving source of a pump (or a pump impeller), 17A is a main shaft of the driving machine 1, and 20 is two or more units vertically arranged (see FIG. 26). In the above example, three axial flow pumps, 17B are connecting shafts connecting these axial flow pumps 20 in the vertical direction, and 21 is a main shaft 17A of the driving machine 1 and each connecting shaft 1 of the axial flow pump 20.
7B is a shaft coupling that connects with 7B. The axial flow pump 20 includes an axial flow type impeller 19 and guide vanes 22 and 23.
18A is the rotation axis of the impeller 19 and lies in the horizontal direction. Two
Reference numeral 4 denotes the torque of the connecting shaft 17B for the rotary shaft 1 of each impeller.
A bevel gear 25 related to the orthogonal transmission mechanism that transmits to 8A is a shaft penetrating opening provided in the casing of the axial pump.

【0171】各羽根車の回転軸18Aと傘歯車24と
は、回転トルクの伝達・不伝達が可能な継手4によって
連結されている。
The rotary shaft 18A of each impeller and the bevel gear 24 are connected by a joint 4 capable of transmitting / not transmitting the rotational torque.

【0172】地下導水路9に接続した取水縦坑10と吐
出管13との間に、ポンプ室があり、鉛直方向に配設さ
れた2台以上(図26では3台)の軸流ポンプ20から
なる立軸駆動多重軸流ポンプが配置されている。各軸流
ポンプ20の上流側は仕切弁8を介して取水縦坑10
に、下流側は仕切弁6を介して吐出管13に通じてい
る。 本実施例の場合は、先の図25に示した実施例と
同様、経済的なポンプ機場構成およびポンプの効率的運
転を可能とするほか、各ポンプの羽根車19の回転軸1
8Aを水平に配置しているので、ポンプ羽根車として軸
流形羽根車に限らず、斜流形羽根車を組み込むことも可
能である。
There is a pump chamber between the intake shaft 10 connected to the underground conduit 9 and the discharge pipe 13, and there are two or more (three in FIG. 26) axial flow pumps 20 arranged in the vertical direction. A vertical drive multi-axial pump consisting of The upstream side of each axial pump 20 is connected to the intake shaft 10 via the sluice valve 8.
In addition, the downstream side communicates with the discharge pipe 13 via the sluice valve 6. In the case of the present embodiment, as with the embodiment shown in FIG. 25 described above, an economical pumping station configuration and efficient pump operation are possible, and the rotary shaft 1 of the impeller 19 of each pump is
Since 8A is arranged horizontally, the pump impeller is not limited to the axial-flow impeller, and a mixed-flow impeller can be incorporated.

【0173】本実施例では、吐出管13出口の排水口の
高さは一定であり、さらに、取水縦坑10の水は押し込
みとして作用するので、水位がどの高さにあっても上下
方向の各軸流ポンプ20に要求される揚程は同じであ
り、ポンプを同一構造とすることができる。また、各ポ
ンプが同一構造であるので、パッケージ式という考え方
ができ、ポンプの増設を容易にし、さらに、製品コスト
の低減が可能という本実施例特有の効果がある。
In this embodiment, the height of the drain port at the outlet of the discharge pipe 13 is constant, and the water in the intake shaft 10 acts as a push. The heads required for the axial pumps 20 are the same, and the pumps can have the same structure. Further, since each pump has the same structure, there is an effect peculiar to the present embodiment that it can be considered as a package type, the number of pumps can be easily increased, and the product cost can be reduced.

【0174】ポンプ機場に配置されるポンプは容量が大
きいことから大型になり、振動が大きいとポンプ本体、
配管系の疲労破壊の原因となり、振動は騒音の発生原因
でもあるから作業環境にも影響を与える。従って振動を
低減するために脈動を低減したポンプについて説明す
る。
The pump arranged at the pumping station becomes large due to its large capacity, and if the vibration is large, the pump body,
This causes fatigue damage to the piping system, and vibration also causes noise, which affects the working environment. Therefore, a pump with reduced pulsation in order to reduce vibration will be described.

【0175】図27〜図29に本実施例の片吸込遠心型
のディフューザポンプを示す。
27 to 29 show a single suction centrifugal type diffuser pump of this embodiment.

【0176】図27はポンプ回転軸と直交する方向の断
面図である。
FIG. 27 is a sectional view in a direction orthogonal to the pump rotation axis.

【0177】図28は図27のII−IIから見た断面図で
ある。
FIG. 28 is a sectional view taken along the line II-II of FIG.

【0178】図29は図27のIII−IIIから見た断面図
である。
FIG. 29 is a sectional view taken along the line III-III in FIG.

【0179】それぞれの図に示すように、片吸込遠心型
の羽根車1の外側にディフューザ3が設けられ、さらに
その外側にボリュートケーシング10が設けられてい
る。このボリュートケーシング10にはポンプ吐出口1
1が一体に形成されている。また、このボリュートケー
シング10に接続して、ポンプ吸込口15を有する吸込
ケーシング16が設けられ、これらによりディフューザ
ポンプの流水部が構成されている。
As shown in the respective drawings, the diffuser 3 is provided outside the one-suction centrifugal impeller 1 and the volute casing 10 is provided outside the diffuser 3. The volute casing 10 has a pump discharge port 1
1 is integrally formed. Further, a suction casing 16 having a pump suction port 15 is provided so as to be connected to the volute casing 10, and these constitute a flowing water portion of the diffuser pump.

【0180】ディフューザ3の側壁4A,4Bの中間に
隔壁5が設けられている。そして、隔壁5によりディフ
ューザ3内の流路は、軸方向に独立した2つの流路6
A,6Bに分割されている。この2つの流路6A,6B
にそれぞれディフューザ羽根7A,7Bが配設されてい
る。これらの羽根7A,7Bは互いに回転角方向の位置
をずらして配置されている。本実施例では、一方の流路
のディフューザ羽根の入口端の中間に、他方の流路のデ
ィフューザ羽根の入口端が位置するように位置をずらし
てある。図27の例では、羽根7Bの入口端7B’は羽
根7Aの入口7A’に対し、羽根車の回転方向に角度ζ
°だけずらしている。
A partition wall 5 is provided between the side walls 4A and 4B of the diffuser 3. Further, the flow path in the diffuser 3 by the partition wall 5 is two flow paths 6 independent in the axial direction.
It is divided into A and 6B. These two channels 6A, 6B
The diffuser blades 7A and 7B are respectively disposed in the. These blades 7A and 7B are arranged so that their positions in the rotational angle direction are displaced from each other. In the present embodiment, the positions are shifted so that the inlet ends of the diffuser blades of the other flow passage are located in the middle of the inlet ends of the diffuser blades of the one flow passage. In the example of FIG. 27, the inlet end 7B ′ of the blade 7B is at an angle ζ with respect to the inlet 7A ′ of the blade 7A in the rotating direction of the impeller.
Only shifted by °.

【0181】このように構成される本実施例の動作につ
いて次に説明する。
The operation of the present embodiment having such a configuration will be described below.

【0182】ポンプ吸込口15から流入した流れは、羽
根車1の回転により流速が高まり、ディフューザ3へ吐
出される。ここで流れは減速し、静圧を回復した流れは
さらにボリュートケーシング10を通り、ポンプ吐出口
11から吐出される。
The flow flowing from the pump suction port 15 has its flow velocity increased by the rotation of the impeller 1 and is discharged to the diffuser 3. Here, the flow is decelerated, and the flow that has recovered the static pressure further passes through the volute casing 10 and is discharged from the pump discharge port 11.

【0183】羽根車1の出口部の流れは、前述したよう
に、羽根の厚み、羽根車1内の羽根面に沿う流れの境界
層の発達等の影響を受けて、羽根車1の羽根間隔を1ピ
ッチとする不均一な流速分布になっている。そして、こ
の不均一な流れがディフューザ羽根7A,7Bの入口を
通過する際に、この1ピッチの回転に要する時間を基本
周期とする圧力脈動が生ずる。発生した圧力脈動はボリ
ュート出口に伝達され、それらの合成された圧力脈動波
が吐出配管に伝達することになる。また、一部は羽根車
内を通って吸込配管へ伝達することになる。
As described above, the flow at the outlet of the impeller 1 is affected by the thickness of the impeller, the development of the boundary layer of the flow along the impeller surface within the impeller 1, and the like. Has a non-uniform flow velocity distribution with 1 as the pitch. Then, when this nonuniform flow passes through the inlets of the diffuser blades 7A and 7B, pressure pulsation having a basic period of time required for this one pitch rotation occurs. The generated pressure pulsation is transmitted to the volute outlet, and the combined pressure pulsation wave is transmitted to the discharge pipe. In addition, a part of it will be transmitted to the suction pipe through the inside of the impeller.

【0184】しかし、本実施例によれば、ディフューザ
流路を隔壁5により独立した流路6A,6Bに分割し、
かつそれらの流路のディフューザ羽根入口端7A’,7
B’の位置を、羽根車の回転方向に対し、互いにずれた
位置にしている。従って、羽根車流路から流出する流体
は、そのずれ量に応じた回転角の位相角度ζ°がずれた
関係で、2つのディフューザ流路6A,6Bに流入し
て、流出することになる。従って、2つのディフューザ
流路6A,6Bの入り口部で発生した圧力脈動は、その
位相ずれに応じて出口部で互いに打消され、ディフュー
ザ流路出口部における圧力脈動が低減される。
However, according to this embodiment, the diffuser flow passage is divided by the partition wall 5 into independent flow passages 6A and 6B,
And the diffuser blade inlet ends 7A ′, 7 of those flow paths
The position of B'is displaced from each other with respect to the rotating direction of the impeller. Therefore, the fluid flowing out from the impeller flow path will flow into and out of the two diffuser flow paths 6A and 6B in a relationship that the phase angle ζ ° of the rotation angle corresponding to the deviation amount is deviated. Therefore, the pressure pulsations generated at the inlets of the two diffuser flow paths 6A and 6B are canceled at the outlets according to the phase shift, and the pressure pulsations at the diffuser flow path outlets are reduced.

【0185】特に、各ディフューザ流路6A,6Bの羽
根の入口端7A’,7B’を、ほぼ羽根車の羽根ピッチ
の半分の角度だけずらせた場合は、各ディフューザ流路
6A,6Bで交互に発生する圧力脈動の位相が、互いに
1/2波長ずれるので、両流路の圧力脈動が打消しあっ
て圧力脈動を大幅に減少することになる。即ち、羽根車
の羽根枚数をZi、ディフューザの羽根枚数をZdと
し、前記角度ζ°について、下記の関係に設定した場
合、 ζ°=1/2×360°/Zi あるいは 360°/Zd−ζ°=1/2×360°/Zi 両流路6A,6Bから交互に発生する脈動は、互いに位
相が1/2波長ずれるため、両流路を伝わる圧力脈動が
干渉し、圧力脈動は著しく減少する。
In particular, when the inlet ends 7A ', 7B' of the blades of the diffuser passages 6A, 6B are displaced by an angle of about half the blade pitch of the impeller, the diffuser passages 6A, 6B are alternately arranged. Since the phases of the pressure pulsations that are generated deviate from each other by 1/2 wavelength, the pressure pulsations of both flow paths cancel each other out, and the pressure pulsations are greatly reduced. That is, when the number of blades of the impeller is Zi and the number of blades of the diffuser is Zd, and the angle ζ is set to the following relationship, ζ ° = 1/2 × 360 ° / Zi or 360 ° / Zd-ζ ° = 1/2 × 360 ° / Zi Since the pulsations alternately generated from both flow paths 6A and 6B are out of phase with each other by 1/2 wavelength, the pressure pulsations transmitted through both flow paths interfere and the pressure pulsation is significantly reduced. To do.

【0186】なお、両流路6A,6Bの羽根入口端7
A’,7B’の位置をずらせたことにより、これらの位
置とポンプ吐出口までの距離が異なってくる。しかし、
この距離の違いは、一般に圧力脈動の波長にくらべ著し
く小さいので、前記位相のずれに与える影響は無視でき
る。従って、上記式を満足するζ°だけずらせればよ
い。 上述したように、本実施例は、ディフューザ部の
形状の工夫により脈動低減を図ったのである。そして、
隔壁5は円板状となり、ディフューザの羽根も通常2次
元形状になる。これに対し、羽根車内の流路を隔壁によ
り仕切り、この隔壁の両側の羽根をずらして圧力脈動を
減少させる従来技術によれば、片吸込遠心型羽根車の場
合の隔壁は流線に沿った曲面形状となり、かつ羽根車の
羽根は通常3次元曲面に形成することが多い。従って、
従来技術にくらべ本実施例によればポンプの製作が容易
となる。
The blade inlet end 7 of both flow paths 6A and 6B
By shifting the positions of A ′ and 7B ′, these positions and the distance to the pump discharge port are different. But,
Since the difference in the distance is generally significantly smaller than the wavelength of the pressure pulsation, the influence on the phase shift can be ignored. Therefore, it is sufficient to shift by ζ that satisfies the above expression. As described above, in this embodiment, the pulsation is reduced by devising the shape of the diffuser portion. And
The partition wall 5 has a disk shape, and the diffuser blades also usually have a two-dimensional shape. On the other hand, according to the prior art in which the flow passage in the impeller is partitioned by partition walls and the blades on both sides of this partition wall are displaced to reduce pressure pulsation, the partition wall in the case of the single-suction centrifugal impeller is along the streamline. It has a curved shape, and the blades of the impeller are usually formed in a three-dimensional curved surface. Therefore,
According to this embodiment, the pump can be easily manufactured as compared with the prior art.

【0187】また、本実施例によれば、羽根車入口部に
隔壁を設けていないので、キャビテーション性能の悪化
を生じない。
Further, according to this embodiment, since the partition wall is not provided at the impeller inlet portion, the cavitation performance is not deteriorated.

【0188】また、羽根車内の中央流線に沿った隔壁が
ないため、ポンプを小流量で運転するとき、羽根車内の
遠心流れおよび逆流の発生が抑制されず、ポンプ揚程曲
線の不安定化等の特性悪化を生ずることがない。
Further, since there is no partition wall along the central streamline in the impeller, when the pump is operated at a small flow rate, the generation of centrifugal flow and backflow in the impeller is not suppressed, and the pump head curve becomes unstable. Does not cause deterioration of characteristics.

【0189】今迄に述べた開水路・閉水路共存運用を行
う大深度地下排水施設には下記のような効果がある。
[0189] The deep underground drainage facility for coexisting open channel / closed channel operation described above has the following effects.

【0190】A.ポンプ全揚程の低減が顕著で、ポンプ
及び駆動機を含むポンプ機場の設備備費が小さくなる。
A. The total head of the pump is significantly reduced, and the equipment cost of the pumping station including the pump and the driving machine is reduced.

【0191】B.地下水路の掘削工事費が低減される。B. The cost of excavating the underground waterway is reduced.

【0192】C.長大な地下水路の貯留効果により地上
へ溢流するリスクが小さくなる。
C. The risk of overflow to the ground is reduced due to the storage effect of the long underground waterway.

【0193】D.上記の貯留効果により大容量吸水槽を
必要としないから土地の取得が困難な都心にポンプ機場
の建設ができる。
D. Due to the storage effect described above, a pumping station can be constructed in the city center where land acquisition is difficult because a large capacity water absorption tank is not required.

【0194】以上大深度地下排水施設に関し、種々の実
施例を説明したが、本発明は上記実施例に記載された各
技術を適宜組み合わせて実施する態様も含むものであ
る。
Although various embodiments have been described with respect to the deep underground drainage facility, the present invention also includes a mode in which the techniques described in the above embodiments are appropriately combined and implemented.

【0195】[0195]

【発明の効果】本発明によれば、ポンプの設置位置を地
下水路の中央部に定めて開水路、閉水路共存運用を行う
ことにより、ポンプ全揚程を低減しポンプ設備費の低減
が可能となり、長い地下水路の貯留効果により水位上昇
のリスクが小さくなるから径を縮小でき、地下水路掘削
工事費が低減される効果が得られる。
EFFECTS OF THE INVENTION According to the present invention, the pump installation position is set at the central portion of the underground waterway, and the open water channel and the closed water channel are coexistently operated, whereby the total pump head and pump equipment cost can be reduced. Since the risk of water level rise is reduced due to the storage effect of the long underground canal, the diameter can be reduced and the cost of excavating the underground canal can be reduced.

【0196】開水路、閉水路共存運用に適した形式のポ
ンプを用いることによりポンプ及び駆動機の設備費を低
減できる。
By using a pump of a type suitable for coexistence operation of an open water channel and a closed water channel, the equipment cost of the pump and the driving machine can be reduced.

【0197】ポンプ井とポンプの間に大容量吸水槽を設
けて閉水路運用を行うことにより、その貯留効果から地
下水路より地上へ溢流するリスクが低減され、地下水路
の径を縮小できる。
By providing a large-capacity water absorption tank between the pump well and the pump to operate the closed water channel, the risk of overflowing from the ground water channel to the ground due to its storage effect can be reduced, and the diameter of the ground water channel can be reduced.

【0198】ポンプ機場の建設にあたり敷地取得が困難
な場合は大容量吸水槽を必要としない開水路・閉水路共
存型を選択し、大容量吸水槽のための敷地取得が容易な
場合はポンプ揚程が小さい閉水路型を選択することによ
り、最少建設費の大深度地下排水施設を選択できる。
If it is difficult to acquire a site for construction of a pumping station, select an open channel / closed channel coexistence type that does not require a large capacity water absorption tank, and if it is easy to acquire a site for a large capacity water absorption tank, pump head By selecting a closed channel type with a small size, a deep underground drainage facility with a minimum construction cost can be selected.

【0199】また、降雨パタンと降雨パタンの時間間隔
で流出係数を変えて降雨量と演算して立坑への流入量を
求め、ポンプ機場への流入量を精度良く予測し、適切な
ポンプ機場の運転管理を行い大深度地下排水施設の安定
運用が可能となる。
Further, the outflow coefficient is changed at time intervals between rainfall patterns and the rainfall amount is calculated to calculate the inflow amount into the vertical shaft, and the inflow amount into the pumping station is accurately predicted to determine an appropriate pumping station. Operation management will be possible to enable stable operation of deep underground drainage facilities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の大深度地下排水施設の基本的な構成を
示す斜視図である。
FIG. 1 is a perspective view showing the basic configuration of a deep underground drainage facility of the present invention.

【図2】本発明の開水路・閉水路共存運用を行う実施例
の構成を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating a configuration of an embodiment of the present invention in which an open channel / closed channel coexisting operation is performed.

【図3】本発明の実施例の開水路・閉水路共存運用を行
う場合のポンプ起動水位を説明する説明図である。
FIG. 3 is an explanatory diagram illustrating a pump starting water level when the open channel / closed channel coexisting operation of the embodiment of the present invention is performed.

【図4】本発明の実施例のポンプ特性を説明する図表で
ある。
FIG. 4 is a chart illustrating pump characteristics according to an embodiment of the present invention.

【図5】本発明の実施例の開水路・閉水路共存運用に適
したポンプ特性を説明する図表である。
FIG. 5 is a diagram illustrating pump characteristics suitable for coexistence operation of an open water channel and a closed water channel according to an embodiment of the present invention.

【図6】本発明の実施例の閉水路運用を行う実施例の構
成を説明する説明図である。
FIG. 6 is an explanatory diagram illustrating a configuration of an embodiment in which the closed water channel is operated according to the embodiment of this invention.

【図7】本発明のポンプ機場への流入量を正確に予測及
び制御する実施例の構成を説明する説明図である。
FIG. 7 is an explanatory diagram illustrating a configuration of an embodiment for accurately predicting and controlling an inflow amount into a pumping station of the present invention.

【図8】本発明の実施例の降雨からポンプ排水決定に到
る手順のフローチャートを示す。
FIG. 8 shows a flowchart of a procedure from rainfall to determination of pump drainage according to an embodiment of the present invention.

【図9】本発明の実施例の時間と降雨量、時間と流入量
の関係を示す図表である。
FIG. 9 is a table showing the relationship between time and rainfall amount and time and inflow amount according to the embodiment of the present invention.

【図10】本発明の本実施例の排水システムの鉄砲水検
知と到達時間の予測の手順を示すフローチャートであ
る。
FIG. 10 is a flowchart showing a procedure for flash flood detection and arrival time prediction of the drainage system according to the embodiment of the present invention.

【図11】本発明の実施例の排水システムの全体構成図
を示す。
FIG. 11 shows an overall configuration diagram of a drainage system according to an embodiment of the present invention.

【図12】本発明の実施例の地下排水施設の構成を示す
縦断面図である。
FIG. 12 is a vertical cross-sectional view showing the configuration of an underground drainage facility according to an embodiment of the present invention.

【図13】図12における可動の流入量調整装置を可動
堰で構成した縦断面図である。
13 is a vertical cross-sectional view in which the movable inflow amount adjusting device in FIG. 12 is configured by a movable weir.

【図14】図12における可動の流入量調整装置をバル
ブで構成した縦断面図である。
14 is a vertical cross-sectional view in which the movable inflow amount adjusting device in FIG. 12 is constituted by a valve.

【図15】本発明の実施例の河川や排水路からの最適な
流入量を決定し、最適値に調整する流量調整装置のブロ
ック図である。
FIG. 15 is a block diagram of a flow rate adjusting device that determines an optimum inflow amount from a river or a drainage channel and adjusts it to an optimum value according to an embodiment of the present invention.

【図16】本発明の実施例のポンプ機場上流側の地下放
水路に可動の堰を設けた縦断面図である。
FIG. 16 is a vertical cross-sectional view showing a movable weir provided in an underground discharge channel on the upstream side of a pumping station according to an embodiment of the present invention.

【図17】本発明の実施例の排水施設の構成を示す縦断
面図である。
FIG. 17 is a vertical cross-sectional view showing the configuration of the drainage facility of the embodiment of the present invention.

【図18】本発明の実施例の排水施設の構成を示す縦断
面図である。
FIG. 18 is a vertical cross-sectional view showing the configuration of the drainage facility of the embodiment of the present invention.

【図19】本発明の実施例のポンプ井水位上昇速度を示
した図表である。
FIG. 19 is a chart showing the pump well water level rise rate in the example of the present invention.

【図20】本発明の実施例のポンプ井水位上昇速度が大
きい場合の起動パタンを示したものである。
FIG. 20 is a diagram showing a starting pattern when the pump well water level rising speed is high in the embodiment of the present invention.

【図21】本発明の実施例のポンプ井水位上昇速度が遅
い場合の起動パタンを示したものである。
FIG. 21 is a diagram showing a starting pattern when the pump well water level rising speed is slow in the example of the present invention.

【図22】本発明の実施例の地下排水施設の概念構成を
示す縦断面図である。
FIG. 22 is a vertical cross-sectional view showing the conceptual configuration of the underground drainage facility of the embodiment of the present invention.

【図23】本発明の実施例の排水ポンプ機場の概念構成
を示す縦断面図である。
FIG. 23 is a vertical cross-sectional view showing the conceptual configuration of the drainage pump station according to the embodiment of the present invention.

【図24】図23の部分詳細図である。FIG. 24 is a partial detailed view of FIG. 23.

【図25】本発明の実施例の立軸駆動多重ポンプを配置
したポンプ機場を示す縦断面図である。
FIG. 25 is a vertical cross-sectional view showing a pumping station in which the vertical drive multiplex pump according to the embodiment of the present invention is arranged.

【図26】本発明の他の実施例の立軸駆動多重ポンプを
配置したポンプ機場を示す縦断面図である。
FIG. 26 is a vertical cross-sectional view showing a pumping station in which a vertical drive multiple pump according to another embodiment of the present invention is arranged.

【図27】本発明の実施例の片吸込遠心型のディフュー
ザポンプ回転軸と直交する方向の断面図である。
FIG. 27 is a cross-sectional view in a direction orthogonal to the rotation axis of the single-suction centrifugal diffuser pump of the embodiment of the present invention.

【図28】図27のII−IIから見た断面図である。28 is a sectional view taken along the line II-II in FIG. 27.

【図29】図27のIII−IIIから見た断面図である。29 is a sectional view taken along the line III-III in FIG. 27.

【図30】従来の開水路運用の構成を説明する説明図で
ある。
FIG. 30 is an explanatory diagram illustrating a configuration of conventional open channel operation.

【符号の説明】[Explanation of symbols]

1 地下水路 2 立坑 3 放水路 4 管渠 5 河川 6 ポンプ井 7 ポンプ 8 吐出水槽 61 大容量吸水槽 71 雨量レーダ 1 Groundwater channel 2 Vertical shaft 3 Drainage channel 4 Pipe 5 River 6 Pump well 7 Pump 8 Discharge water tank 61 Large-capacity water absorption tank 71 Rainfall radar

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 大深度地下に配設された緩い傾斜の大容
量の地下水路と、該地下水路に地表や地表近くの放水路
から排水を流下させる立坑と、前記地下水路の下流端に
設けたポンプ井と、該ポンプ井に流入する水をポンプに
より河川若しくは海に揚水するポンプ機場とから構成し
た大深度地下排水施設において、前記ポンプ機場のポン
プを前記地下水路のほぼ中心部水位に設置したことを特
徴とする大深度地下排水施設。
1. A gently sloping large-capacity underground waterway disposed deep underground, a vertical shaft for draining drainage from the surface or a discharge channel near the surface of the underground waterway, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, the pump of the pump station is installed at the water level in approximately the center of the underground waterway. A deep underground drainage facility that has been characterized.
【請求項2】 大深度地下に配設された緩い傾斜の大容
量の地下水路と、該地下水路に地表や地表近くの放水路
から排水を流下させる立坑と、前記地下水路の下流端に
設けたポンプ井と、該ポンプ井に流入する水をポンプに
より河川若しくは海に揚水するポンプ機場とから構成し
た大深度地下排水施設において、前記ポンプ機場のポン
プを前記地下水路のほぼ中心部水位に設置し、定格流量
で閉水路水位からの揚水が可能な全揚程と、最少流量で
開水路水位からの揚水が可能な全揚程となるポンプ特性
を具備したことを特徴とする大深度地下排水施設。
2. A gently sloping large-capacity underground waterway arranged deep underground, a shaft for draining the drainage from the surface or a discharge channel near the surface, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, the pump of the pump station is installed at the water level in approximately the center of the underground waterway. However, the deep underground drainage facility is characterized by having pump characteristics such that the total head is capable of pumping from the closed channel water level at the rated flow rate and the total head is capable of pumping from the open channel water level at the minimum flow rate.
【請求項3】 大深度地下に配設された緩い傾斜の大容
量の地下水路と、該地下水路に地表や地表近くの放水路
から排水を流下させる立坑と、前記地下水路の下流端に
設けたポンプ井と、該ポンプ井に流入する水をポンプに
より河川若しくは海に揚水するポンプ機場とから構成し
た大深度地下排水施設において、前記ポンプ機場のポン
プを前記地下水路のほぼ中心部水位に設置し、定格流量
で閉水路水位からの揚水が可能な全揚程と、所定流量で
開水路水位からの揚水が可能な全揚程と、前記閉水路時
と前記開水路時との間の吐出流量でポンプ効率が最高と
なるポンプ特性を具備したことを特徴とする大深度地下
排水施設。
3. A gently sloping large-capacity underground waterway arranged deep underground, a vertical shaft for draining drainage from the surface or a discharge channel near the surface, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, the pump of the pump station is installed at the water level in approximately the center of the underground waterway. However, the total head that can be pumped from the water level of the closed channel at the rated flow rate, the total head that can be pumped from the water level of the open channel at a predetermined flow rate, and the discharge flow rate between the closed channel and the open channel. A deep underground drainage facility characterized by having pump characteristics that maximize pump efficiency.
【請求項4】 前記ポンプに固定翼を用いたことを特徴
とする請求項1から請求項3のうち何れかの請求項に記
載の大深度地下排水施設。
4. The deep underground drainage facility according to any one of claims 1 to 3, wherein a fixed blade is used for the pump.
【請求項5】 大深度地下に配設された緩い傾斜の大容
量の地下水路と、該地下水路に地表や地表近くの放水路
から排水を流下させる立坑と、前記地下水路の下流端に
設けたポンプ井と、該ポンプ井に流入する水をポンプに
より河川若しくは海に揚水するポンプ機場とから構成し
た大深度地下排水施設において、前記ポンプ機場のポン
プを前記地下水路のほぼ中心部水位に設置し、定格流量
で閉水路水位からの揚水が可能な全揚程と、最少流量で
開水路水位からの揚水が可能な全揚程となる可変ピッチ
型としたことを特徴とする大深度地下排水施設。
5. A gently sloping large-capacity underground waterway arranged deep underground, a vertical shaft for draining the drainage from the surface or a discharge channel near the surface to the underground waterway, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, the pump of the pump station is installed at the water level in approximately the center of the underground waterway. However, it is a deep pitch underground drainage facility characterized by a total pitch that allows pumping from the closed channel water level at the rated flow rate, and a variable pitch type that has a total pumping height that allows pumping from the open channel level at the minimum flow rate.
【請求項6】 大深度地下に配設された緩い傾斜の大容
量の地下水路と、該地下水路に地表や地表近くの放水路
から排水を流下させる立坑と、前記地下水路の下流端に
設けたポンプ井と、該ポンプ井に流入する水をポンプに
より河川若しくは海に揚水するポンプ機場とから構成し
た大深度地下排水施設において、前記ポンプ機場のポン
プを前記地下水路のほぼ中心部水位に設置し、定格流量
で閉水路水位からの揚水が可能な全揚程が得られる第1
の翼と、最少流量で開水路水位からの揚水が可能な全揚
程が得られる第2の翼とを備えた2段翼型としたことを
特徴とする大深度地下排水施設。
6. A gently sloping large-capacity underground waterway arranged deep underground, a vertical shaft for draining the drainage from the surface or a discharge channel near the surface to the underground waterway, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, the pump of the pump station is installed at the water level in approximately the center of the underground waterway. However, it is possible to obtain a total head that allows pumping from the water level of the closed channel at the rated flow.
Deep-drainage drainage facility, characterized in that it is a two-stage wing type equipped with a blade of No.1 and a second blade that can obtain a total head that allows pumping from the open channel water level at the minimum flow rate.
【請求項7】 地表や地表近くの放水路から立坑へ排水
を流下させ、該立坑から大深度地下に配設された緩い傾
斜の大容量の地下水路へ流下させ、該地下水路の下流端
に設けたポンプ井に流入する排水をポンプ機場のポンプ
により河川若しくは海に揚水する大深度地下排水施設の
運用方法において、前記ポンプを前記地下水路のほぼ中
心部水位に設置し、前記地下水路が満管となる閉水路の
時に前記ポンプを定格流量で運転し、前記地下水路の水
位が低下し空間が生じる開水路の時ポンプを締切り状態
にならない程度の最少流量で運転する閉水路・開水路共
存運転を行うことを特徴とする大深度地下排水施設の運
用方法。
7. The drainage is made to flow down from a surface or a discharge channel near the surface to a vertical shaft, and is made to flow from the vertical shaft to a deeply sloping large-capacity underground water channel arranged deep underground, at the downstream end of the underground water channel. In the operation method of the deep underground drainage facility that pumps the drainage flowing into the established pump well to the river or the sea by the pump at the pump station, the pump is installed at the water level in the center of the groundwater channel and the groundwater channel is fully filled. Coexistence of closed and open channels where the pump is operated at the rated flow rate when the channel is a pipe, and the pump is operated at the minimum flow rate that does not make a closed state when the open channel creates a space due to the water level of the underground channel decreasing. A method of operating a deep underground drainage facility characterized by operating.
【請求項8】 大深度地下に配設された緩い傾斜の大容
量の地下水路と、該地下水路に地表や地表近くの放水路
から排水を流下させる立坑と、前記地下水路の下流端に
設けたポンプ井と、該ポンプ井に流入する水をポンプに
より河川若しくは海に揚水するポンプ機場とから構成し
た大深度地下排水施設において、前記ポンプ機場のポン
プを少なくとも前記地下水路の上端より浅い地下に設置
し、前記ポンプ井と前記ポンプの間に底面が前記ポンプ
と同じレベルの大容量吸水槽を設けたことを特徴とする
大深度地下排水施設。
8. A deeply sloping large-capacity underground waterway arranged deep underground, a vertical shaft for draining the drainage from the surface or a discharge channel near the surface to the underground waterway, and a downstream end of the underground waterway. In a deep underground drainage facility consisting of a pump well and a pump station for pumping the water flowing into the pump well into a river or the sea, the pump of the pump station is at least shallow underground from the upper end of the underground waterway. A deep underground drainage facility, which is installed and has a large-capacity water absorption tank having a bottom surface at the same level as the pump between the pump well and the pump.
【請求項9】 大深度地下に配設された緩い傾斜の大容
量の地下水路と、該地下水路に地表や地表近くの放水路
から排水を流下させる立坑と、前記地下水路の下流端に
設けたポンプ井と、該ポンプ井に流入する水をポンプに
より河川若しくは海に揚水するポンプ機場とからなる大
深度地下排水施設の建設費が最少となる形式を選択する
大深度地下排水施設の選択方法において、ポンプ機場の
敷地取得が困難な場合は前記ポンプを前記地下水路のほ
ぼ中心部水位に設置した大深度地下排水施設を選択し、
敷地取得が容易な場合は前記ポンプ機場のポンプを少な
くとも前記地下水路の上端より浅い地下に設置し、前記
ポンプ井と前記ポンプの間に大容量吸水槽を設けた大深
度地下排水施設を選択することを特徴とする大深度地下
排水施設の選択方法。
9. A gently sloping large-capacity underground waterway arranged deep underground, a vertical shaft for draining drainage from the surface or a discharge channel near the surface to the underground waterway, and a downstream end of the underground waterway. Method for selecting a deep underground drainage facility that minimizes the construction cost of the deep underground drainage facility consisting of a pump well and a pumping station that pumps the water flowing into the pump well into a river or the sea. In, when it is difficult to acquire the site of the pump station, select a deep underground drainage facility where the pump is installed at the water level in the central part of the underground waterway,
If site acquisition is easy, select a deep underground drainage facility where a pump at the pumping station is installed at least shallow underground from the upper end of the underground waterway and a large capacity water absorption tank is provided between the pump well and the pump. A method of selecting a deep underground drainage facility, which is characterized in that
【請求項10】 降雨情報により降雨量を算出し、該降
雨量と降雨パタンと降雨パタンの時間間隔で定める流出
係数から立坑への流入量を算出し、該立坑への流入量か
らポンプ場への流入量を算出し、該ポンプ場への流入量
を排水するためのポンプ台数と能力を定めることを特徴
とする大深度地下排水施設の運用方法。
10. A rainfall amount is calculated from rainfall information, and an inflow amount into a vertical shaft is calculated from the rainfall amount and a runoff coefficient determined by a time interval between the rainfall pattern and the rain pattern, and the inflow amount into the vertical shaft is transferred to a pumping station. The method of operating a deep underground drainage facility, characterized in that the number of pumps and the capacity for draining the inflow to the pumping station are calculated.
JP5018783A 1992-06-18 1993-02-05 Deep underground drainage facility and its operation method Expired - Fee Related JP2789290B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5018783A JP2789290B2 (en) 1993-02-05 1993-02-05 Deep underground drainage facility and its operation method
DE4403154A DE4403154C2 (en) 1993-02-05 1994-02-02 Water drainage system arranged at great depth
US08/192,289 US5487621A (en) 1992-06-18 1994-02-04 Large-depth underground drainage facility and method of running same
US08/552,840 US5634740A (en) 1992-06-18 1995-11-03 Large-depth underground drainage facility and method of running same
US09/272,094 US6102618A (en) 1992-06-18 1999-03-18 Large-depth underground drainage facility and method of running same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018783A JP2789290B2 (en) 1993-02-05 1993-02-05 Deep underground drainage facility and its operation method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP7206922A Division JP2736964B2 (en) 1995-08-14 1995-08-14 Deep underground drainage facilities and drainage pumps
JP9201472A Division JP2932062B2 (en) 1997-07-28 1997-07-28 Deep underground drainage facility

Publications (2)

Publication Number Publication Date
JPH06229000A true JPH06229000A (en) 1994-08-16
JP2789290B2 JP2789290B2 (en) 1998-08-20

Family

ID=11981225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018783A Expired - Fee Related JP2789290B2 (en) 1992-06-18 1993-02-05 Deep underground drainage facility and its operation method

Country Status (2)

Country Link
JP (1) JP2789290B2 (en)
DE (1) DE4403154C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108130948A (en) * 2018-01-18 2018-06-08 武汉市政工程设计研究院有限责任公司 A kind of pressure current water inlet flow channel system suitable for deeper subsurface draining Boosting pumping station
CN108222213A (en) * 2018-01-25 2018-06-29 上海水顿智能科技有限公司 Analysis forced-ventilated system connects the method and system of river distribution
CN114320303A (en) * 2021-12-09 2022-04-12 中国铁建大桥工程局集团有限公司 Method for excavating vertical shaft flood discharge tunnel body support

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527523A1 (en) * 1995-07-27 1997-01-30 Siemens Ag Pump control method for inlet lift pump arrangement in sewage purification plant - controlling additional usage of pump in rain weather condition, in response to measured amount of rain water sediment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029967A (en) * 1988-06-25 1990-01-12 Toshiba Corp Operation control device for rain pump
JPH0485187U (en) * 1990-11-29 1992-07-23
JPH04363427A (en) * 1991-06-11 1992-12-16 Hitachi Ltd Underground drainage equipment and operating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029967A (en) * 1988-06-25 1990-01-12 Toshiba Corp Operation control device for rain pump
JPH0485187U (en) * 1990-11-29 1992-07-23
JPH04363427A (en) * 1991-06-11 1992-12-16 Hitachi Ltd Underground drainage equipment and operating method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108130948A (en) * 2018-01-18 2018-06-08 武汉市政工程设计研究院有限责任公司 A kind of pressure current water inlet flow channel system suitable for deeper subsurface draining Boosting pumping station
CN108130948B (en) * 2018-01-18 2023-10-20 武汉市政工程设计研究院有限责任公司 Pressure flow water inlet runner system suitable for deep underground drainage lifting pump station
CN108222213A (en) * 2018-01-25 2018-06-29 上海水顿智能科技有限公司 Analysis forced-ventilated system connects the method and system of river distribution
CN108222213B (en) * 2018-01-25 2023-09-29 上海水顿智能科技有限公司 Method and system for analyzing river-connecting distribution of forced drainage system
CN114320303A (en) * 2021-12-09 2022-04-12 中国铁建大桥工程局集团有限公司 Method for excavating vertical shaft flood discharge tunnel body support

Also Published As

Publication number Publication date
JP2789290B2 (en) 1998-08-20
DE4403154C2 (en) 2000-12-14
DE4403154A1 (en) 1994-08-11

Similar Documents

Publication Publication Date Title
US6102618A (en) Large-depth underground drainage facility and method of running same
US5487621A (en) Large-depth underground drainage facility and method of running same
JP2992776B2 (en) Underground drainage facility and its operation method
US5752785A (en) Drainage pump station and drainage operation method for drainage pump station
KR101900678B1 (en) Apparatus and operating method for Smart Pump Gate
US7874809B2 (en) Water-lifting pump apparatus and method for controlling operation thereof
JP2004524467A (en) How to remove sediment from a sand trap
JP3357982B2 (en) Drainage pump for underground drainage facility
JP2789290B2 (en) Deep underground drainage facility and its operation method
CN106103856B (en) Method for starting up a drain for siphoning liquid and drain
JP2932062B2 (en) Deep underground drainage facility
JP2736964B2 (en) Deep underground drainage facilities and drainage pumps
JP4920740B2 (en) Horizontal shaft pump
JP2860721B2 (en) Drainage pump station and its operation method
JP2014234665A (en) Subsurface drainage pumping station and operation method of the same
JP2506233B2 (en) Pump station equipment
JP4435064B2 (en) Pump station system and sewage treatment method in combined sewer
JP2003328423A (en) Rainwater conduit
JPH11323884A (en) Discharge pump system
JP3532023B2 (en) Operation method of the preceding standby operation type pump
JP2860736B2 (en) Pump station
JP3663493B2 (en) Drainage pump station
Malmur Methods of drainage and transfer of rainwater
JP3306453B2 (en) Underground drainage facility
JP2833322B2 (en) Underground drainage system and its operation method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees