JPH0622888B2 - Method for producing molded polyphosphazene - Google Patents

Method for producing molded polyphosphazene

Info

Publication number
JPH0622888B2
JPH0622888B2 JP61030949A JP3094986A JPH0622888B2 JP H0622888 B2 JPH0622888 B2 JP H0622888B2 JP 61030949 A JP61030949 A JP 61030949A JP 3094986 A JP3094986 A JP 3094986A JP H0622888 B2 JPH0622888 B2 JP H0622888B2
Authority
JP
Japan
Prior art keywords
polyphosphazene
temperature
molded product
present
mechanical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61030949A
Other languages
Japanese (ja)
Other versions
JPS62189138A (en
Inventor
和己 大河
紀次 斉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61030949A priority Critical patent/JPH0622888B2/en
Publication of JPS62189138A publication Critical patent/JPS62189138A/en
Publication of JPH0622888B2 publication Critical patent/JPH0622888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、力学的特性の改善されたポリホスフアゼン成
形物の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polyphosphazene molded article having improved mechanical properties.

さらに詳しくは、特定の条件下で延伸熱処理を行なうこ
とにより、力学的、機械的性質の良好なポリホスフアゼ
ン成形物を効率的に製造する方法に関する。
More specifically, the present invention relates to a method for efficiently producing a polyphosphazene molded product having good mechanical and mechanical properties by performing a stretching heat treatment under specific conditions.

<従来の技術> ポリホスフアゼンは主鎖が無機元素のみからなり、耐熱
性、耐薬品性が極めて優れているため、近年、かかる特
性を生かしたプラスチツクス、エラストマーとして興味
を持たれている。また、側鎖を適当に選択することによ
り、耐魔耗性、耐酸化性、撥水撥油性、低発煙性、生体
親和性等各種優れた特性を有するポリホスフアゼンが得
られることも良く知られている。
<Prior Art> Polyphosphazene has a main chain consisting only of an inorganic element and is extremely excellent in heat resistance and chemical resistance. Therefore, in recent years, polyphosphazene has been attracting interest as a plastics and an elastomer utilizing such characteristics. It is also well known that by appropriately selecting the side chain, polyphosphazene having various excellent properties such as abrasion resistance, oxidation resistance, water and oil repellency, low smoke generation, and biocompatibility can be obtained. There is.

また、このような優れた特性を有するポリホスフアゼン
を、例えば、湿式成形により、繊維状、フイルム状等に
成形することも知られている。しかしながら、従来の方
法で得られたこれら成形物は、未だその力学的、機械的
性質が不十分なため、更にこれらの性質を向上させるこ
とが望まれている。
It is also known to form a polyphosphazene having such excellent properties into a fibrous shape, a film shape or the like by, for example, wet molding. However, since these molded products obtained by the conventional methods are still insufficient in mechanical and mechanical properties, it is desired to further improve these properties.

<発明の目的> 本発明の目的は、通常用いられているポリホスフアゼン
から、力学的、機械的性質の向上したポリホスフアゼン
成形物を容易に製造しうる方法を提供することにある。
すなわち従来の方法の如く、ポリホスフアゼン成形物を
単に延伸するのみでは、延伸時の工程安定性が悪かつた
り、あるいは得られる成形物の機械的性質が向上するも
ののまだ実用上不十分なものしか得られない等の欠点を
有している。
<Object of the Invention> An object of the present invention is to provide a method capable of easily producing a polyphosphazene molded article having improved mechanical and mechanical properties from a commonly used polyphosphazene.
That is, just by stretching a polyphosphazene molded product as in the conventional method, the process stability at the time of stretching is deteriorated, or the mechanical properties of the resulting molded product are improved, but only a practically insufficient product is obtained. It has drawbacks such as not being possible.

本発明は、かかる不都合な点がなく、良好な力学的機械
的特性を有するポリホスフアゼン成形物を工業的に得る
方法を提供しようとするものである。
The present invention is intended to provide a method for industrially obtaining a polyphosphazene molded article having good mechanical properties without such disadvantages.

<発明の構成> 本発明者らは、前記目的を達成すべく鋭意研究した結
果、ポリホスフアゼン成形物を特定の温度範囲で延伸
し、更に特定の温度範囲で熱処理することにより容易に
達成できることを見い出し、本発明に到達したものであ
る。
<Structure of the Invention> As a result of intensive studies to achieve the above-mentioned object, the inventors have found that it can be easily achieved by stretching a polyphosphazene molded product in a specific temperature range and further heat-treating it in a specific temperature range. The present invention has been reached.

すなわち、本発明は、主として下記一般式(I)で表わさ
れる繰り返し単位からなるポリホスフアゼンを主たる構
成成分とするポリホスフアゼン成形物を下記(II)式で表
わされる範囲内の温度で延伸し、次いで下記(III)式で
表わされる範囲内の温度で熱処理することを特徴とする
力学的機械的性質のすぐれたポリホスフアゼン成形物の
製造方法である。
That is, the present invention mainly stretches a polyphosphazene molded article having a polyphosphazene consisting of repeating units represented by the following general formula (I) as a main constituent at a temperature within a range represented by the following formula (II), and then It is a method for producing a polyphosphazene molded article having excellent mechanical and mechanical properties, characterized by heat treatment at a temperature within the range represented by the formula (III).

本発明で用いられる一般式(I)で表わされるポルホスフ
アゼンは公知の方法により容易に合成することができ、
「繊維と工業」38巻8号397ページ、「フアインケ
ミカル」14巻6号22ページ等に記載されている。例
えば次の反応式で示す反応によつてポリホスフアゼンを
合成することができる。
Porphosphazene represented by the general formula (I) used in the present invention can be easily synthesized by a known method,
"Fiber and Industry", Vol. 38, No. 8, page 397, "Huain Chemical", Vol. 14, No. 6, page 22, etc. For example, polyphosphazene can be synthesized by the reaction represented by the following reaction formula.

(ただし、Phはフエニル基) 本発明において、好適に用いられるポリホスフアゼンと
しては、例えば次のようなものをあげることができる。
(However, Ph is a phenyl group) In the present invention, examples of the polyphosphazene preferably used include the following.

(ただし、x+y=2) (ただし、x+y=2) また得られる成形物に要求される力学的特性、物理化学
的特性等を損わないかぎり、これらの共重合体であつて
も良いし、側鎖が他種置換基で交換されたものであつて
も良い。
(However, x + y = 2) (However, x + y = 2) Moreover, these copolymers may be used as long as they do not impair the mechanical properties, physicochemical properties, etc. required for the obtained molded product, and the side chain is a substituent of another kind. It may be the one exchanged in.

また、かかるポリホスフアゼンの重量平均分子量は5万
以上、好ましくは10万以上が好ましい。これより小さ
いものであつては、得られる成形物の力学的性能が極め
て不十分なものとなるため好ましくない。
The weight average molecular weight of the polyphosphazene is preferably 50,000 or more, more preferably 100,000 or more. If it is smaller than this, the mechanical performance of the obtained molded product becomes extremely insufficient, which is not preferable.

また、前記のポリホスフアゼンを2種以上混合して使用
してもさしつかえない。
It is also possible to use a mixture of two or more of the above polyphosphazenes.

さらに本発明で用いられるポリホスフアゼンは、示差熱
量計で測定した際に、結晶状態からメソフエーズ状態に
変わる転移温度T(1)とメソフエーズ状態から融液状態
に変わる転移温度Tmを有する必要がある。前記T
(1)、Tmを持たない非晶のポリホスフアゼンでは得ら
れる成形物の力学特性が不十分なため好ましくない。
Further, the polyphosphazene used in the present invention needs to have a transition temperature T (1) at which a crystalline state changes to a mesophase state and a transition temperature Tm at which a mesophase state changes to a melt state when measured by a differential calorimeter. The T
(1) Amorphous polyphosphazene having no Tm is not preferable because the resulting molded product has insufficient mechanical properties.

本発明において、上記ポリホスフアゼンを主たる構成成
分とする成形物とは、全ポリマー成分に対して少なくと
もポリホスフアゼンが70重量%以上、好ましくは80
重量%以上からなるものを言い、これ以下にあつてはポ
リホスフアゼンが有する優れた諸特性が弱められるため
好ましくない。
In the present invention, the term "molded product containing polyphosphazene as a main constituent component" means that at least 70% by weight or more, preferably 80% or more, of polyphosphazene is based on all polymer components.
It means that the content of the polyphosphazene is more than 1% by weight, and if it is less than this, the excellent various properties of polyphosphazene are weakened, which is not preferable.

本発明において、ポリホスフアゼン成形物は任意の形態
をとることができ、繊維状、フイルム状、棒状、シート
状、円筒状等どの様な形態のものであつてもかまわな
い。しかし実質的に延伸処理が不可能な複雑な形態を有
する成形物には、本発明を適用することはできない。
In the present invention, the polyphosphazene molded product may have any form, and may have any form such as a fibrous form, a film form, a rod form, a sheet form, and a cylindrical form. However, the present invention cannot be applied to a molded product having a complicated shape that cannot be substantially stretched.

本発明の延伸処理及び熱処理を適用する前のポリホスフ
アゼン成形物は、公知の方法で製造することができる。
例えば、ポリホスフアゼンの濃厚溶液をノズルから押し
出すことにより繊維状のものを、またスリツトから押し
出すことによりフイルム、シート状のものを容易に得る
ことができる。
The polyphosphazene molded product before applying the stretching treatment and heat treatment of the present invention can be manufactured by a known method.
For example, a fibrous product can be easily obtained by extruding a concentrated solution of polyphosphazene from a nozzle, and a film or sheet can be easily obtained by extruding it from a slit.

更には、あらかじめポリホスフアゼン側鎖に少量の架橋
性反応基を導入したものを用い成形時もしくは成形後架
橋したものを用いても良い。かかる反応性基としては、 −OCH2CH=CH2、−O-C6H4−CH2CH=CH2等をあげることができる。これらの反応性基を反応させ
て架橋させるには公知の方法、例えば過酸化物等のラジ
カル発生剤を混練し、成形時に架橋を進行させる方法、
あるいは成形後熱処理、光照射で架橋させる方法等を適
用できる。しかしながら、架橋をあまり進めすぎると、
本発明の延伸処理及び熱処理の効果が低減するので好ま
しくない。
Further, a polyphosphazene side chain having a small amount of a crosslinkable reactive group introduced thereinto may be used and then crosslinked during or after molding. Such reactive groups, -OCH 2 CH = CH 2, -OC 6 H 4 -CH 2 CH = CH 2, Etc. can be given. A known method for reacting and cross-linking these reactive groups, for example, a method in which a radical generator such as a peroxide is kneaded, and cross-linking proceeds during molding,
Alternatively, a method such as heat treatment after molding or crosslinking by light irradiation can be applied. However, if the crosslinking proceeds too much,
It is not preferable because the effects of the stretching treatment and heat treatment of the present invention are reduced.

なお、本発明において使用するポリホスフアゼン成形物
は、必要に応じて、着色剤、紫外線吸収剤、帯電防止
剤、熱劣化防止剤、滑剤、無機充填剤等の添加剤を適宜
の割合いで含有させることができる。
The polyphosphazene molded product used in the present invention may contain additives such as a colorant, an ultraviolet absorber, an antistatic agent, a heat deterioration inhibitor, a lubricant, and an inorganic filler in an appropriate ratio, if necessary. You can

上述の方法で得られた未処理の成形物は、まず(II)式で
表わされる範囲、好ましくはT(1)−30<Td<T(1)+10
の範囲の温度(Td)で延伸される。ここでメソフエース
転移温度T(1)とは、示差熱量計で窒素雰囲気下、10℃
/分の昇温速度で測定した時、結晶相からメゾフエース
相に転移する時に現われる吸熱ピークの温度である。延
伸温度Tdが上記範囲より低いと成形物が安定に延伸さ
れず、ボイドの発生したものしか得られないとか、最終
的に得られる成形物の力学的特性が不十分なため好まし
くない。一方、延伸温度Tdが、これより高いと延伸に
よる配向効果が発現しないためと考えられるが、力学的
特性が不十分となるため好ましくない。
The untreated molded product obtained by the above-mentioned method has a range represented by the formula (II), preferably T (1) -30 <Td <T (1) +10.
Is stretched at a temperature (Td) in the range. Here, the mesophase transition temperature T (1) is 10 ° C in a nitrogen atmosphere with a differential calorimeter.
This is the temperature of the endothermic peak that appears when the crystalline phase transitions to the mesophase phase, when measured at a heating rate of 1 / min. When the stretching temperature Td is lower than the above range, the molded product is not stably stretched, only voids are obtained, and the mechanical properties of the finally obtained molded product are insufficient, which is not preferable. On the other hand, if the stretching temperature Td is higher than this, it is considered that the orientation effect due to stretching does not appear, but this is not preferable because the mechanical properties become insufficient.

本発明において、延伸を行なう際の倍率はその延伸温度
で測定した時の最大延伸倍率の0.5〜0.95倍、好まし
くは0.6〜0.9倍延伸すれば良い。
In the present invention, the stretching ratio is 0.5 to 0.95 times, preferably 0.6 to 0.9 times the maximum stretching ratio when measured at the stretching temperature.

本発明においては、前述のように延伸した成形物は、最
終的に(III)式に表わす温度範囲内(Th)で熱処理が施さ
れる。もしこの温度範囲より低い温度で処理すると、十
分な力学的特性の向上が得られなくなり、一方、この温
度範囲を越える温度で処理しようとすると成形物の軟化
が進み、逆に成形物の力学的特性が低下するので好まし
くない。熱処理の方法は乾熱あるいは湿熱のどちらでも
良く、また、熱処理の応力はかけてもかけなくてもどち
らでも良い。得られるポリホスフアゼン成形物の特性に
よつて適宜選択することができる。
In the present invention, the molded product stretched as described above is finally heat-treated within the temperature range (Th) represented by the formula (III). If the temperature is lower than this temperature range, sufficient improvement of mechanical properties cannot be obtained. On the other hand, if the temperature is higher than this temperature range, the molded product is softened and the mechanical properties of the molded product are conversely increased. It is not preferable because the characteristics are deteriorated. The heat treatment method may be either dry heat or wet heat, and the heat treatment stress may or may not be applied. It can be appropriately selected depending on the characteristics of the obtained polyphosphazene molded article.

<発明の効果> 以上に説明した如く、本発明の方法によれば、ポリホス
フアゼン成形物を前記特定の温度範囲内にて延伸するこ
とによつて配向の進んだ延伸成形物が得られる。また、
この成形物をさらに前記特定の温度範囲内にて熱処理す
ることによつて、力学的特性がさらに向上した成形物を
得ることができる。
<Effects of the Invention> As described above, according to the method of the present invention, a stretched and molded product having an advanced orientation can be obtained by stretching the polyphosphazene molded product within the specific temperature range. Also,
By further heat-treating this molded product within the above-mentioned specific temperature range, a molded product with further improved mechanical properties can be obtained.

かくして得られるポリホスフアゼン成形物は、その特性
に応じて医療用、電気部品用、化学工業分野でも苛酷な
条件下での利用等巾広い分野に適用できる。
The thus-obtained polyphosphazene molded article can be applied to a wide range of fields such as medical applications, electrical parts, and chemical industry fields under severe conditions depending on its properties.

<実施例> 以下実施例によつて本発明をさらに詳細に説明するが、
本発明はこれに限定されるものではない。実施例中のT
(1)は、理学電機DSC−10D型示差熱量計で窒素流下、1
0℃/分の昇温速度で測定し、その吸熱ピークのピーク
温度から求めた。
<Example> Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to this. T in the examples
(1) is a Rigaku Denki DSC-10D differential calorimeter under nitrogen flow, 1
The temperature was measured at a temperature rising rate of 0 ° C./min, and the peak temperature of the endothermic peak was determined.

実施例1 25℃下アセトン溶液で測定した時の固有粘度が0.52の
ポリ(ビストリフルオロエトキシホスフアゼン)をアセ
トンに溶解させ50重量パーセントのドープを調整し、
これを水中に押し出して繊度700deのモノフイラメント
を得た。このもののT(1)温度は63℃であつた。この
未延伸モノフイラメントを各種温度で延伸した結果を表
1に示す。
Example 1 Poly (bistrifluoroethoxyphosphazene) having an intrinsic viscosity of 0.52 when measured with an acetone solution at 25 ° C. was dissolved in acetone to prepare a 50 weight percent dope.
This was extruded into water to obtain a monofilament with a fineness of 700 de. The T (1) temperature of this product was 63 ° C. The results of stretching this unstretched monofilament at various temperatures are shown in Table 1.

この結果より本発明の温度範囲内で延伸すると最大延伸
倍率(DRmax)が大きく延伸性が良好であるのに対し
て、この範囲を外れるとDRmaxが低下して延伸性が劣つ
ていることがわかる。またDRmaxの0.75倍に延伸して得
られた糸の強度を表1にあわせて示したが、この結果か
らも本発明の温度範囲内で延伸するのが、延伸糸の物性
でも優れていることが明らかである。
From these results, it is found that when the temperature is within the temperature range of the present invention, the maximum draw ratio (DRmax) is large and the drawability is good, whereas when the temperature is out of this range, the DRmax is decreased and the drawability is poor. . The strength of the yarn obtained by drawing 0.75 times DRmax is also shown in Table 1. From these results, it can be seen that drawing in the temperature range of the present invention is also excellent in the physical properties of the drawn yarn. Is clear.

前述の延伸処理を行つた延伸モノフイラメントのうち、
延伸温度60℃、延伸倍率8.7倍の延伸モノフイラメ
ントを、熱板を用いて緊張状態下熱処理した結果を表−
2に示す。
Of the stretched monofilaments that have undergone the above-mentioned stretching treatment,
Table 1 shows the results of heat treatment of a stretched monofilament having a stretch temperature of 60 ° C and a stretch ratio of 8.7 times under a tension using a hot plate.
2 shows.

熱処理温度が本発明で特定した範囲外にあつてはモノフ
イラメント糸の強度はほとんど向上しないか、逆に低下
するのに対して、本発明によれば熱処理効果が認めら
れ、強度が向上していることがわかる。
When the heat treatment temperature is out of the range specified in the present invention, the strength of the monofilament yarn is hardly improved or, conversely, is decreased, whereas according to the present invention, the heat treatment effect is recognized and the strength is improved. You can see that

実施例2 テトラヒドロフラン溶液にて25℃で測定した固有粘度
が2.75 のポリ(ビスフエノキシポリホスフアゼン)を
160℃下圧縮成形を行なつて厚さ1mmのシートを得
た。このものの力学的特性は、破断強度0.9kg/m
m2、破断伸度 185%であり、またT(1)温度は145℃
であつた。このシートを130℃にて3倍延伸し、次い
で180℃にて無緊張下30秒熱処理した時の力学的特
性は破断強度1.6kg/mm2、破断伸度84%であつ
た。
Example 2 Poly (bisphenoxypolyphosphazene) having an intrinsic viscosity of 2.75 measured at 25 ° C. in a tetrahydrofuran solution was compression-molded at 160 ° C. to obtain a sheet having a thickness of 1 mm. The mechanical properties of this product are breaking strength 0.9kg / m
m 2 , rupture elongation of 185%, and T (1) temperature of 145 ° C
It was. When this sheet was stretched 3 times at 130 ° C. and then heat treated at 180 ° C. for 30 seconds without tension, the mechanical properties were a breaking strength of 1.6 kg / mm 2 and a breaking elongation of 84%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 85:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area B29K 85:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主として下記一般式(I)で表わされる繰
り返し単位からなるポリホスファゼンを主たる構成成分
とするポリホスファゼン成形物を、下記(II)式で表わ
される範囲内の温度(Td)で延伸処理し、次いで下記
(III) 式で表わされる範囲内の温度(Th)で熱処理す
ることを特徴とする、力学的機械的性質のすぐれたポリ
ホスファゼン成形物の製造方法。
1. A polyphosphazene molded product containing polyphosphazene, which is mainly composed of a repeating unit represented by the following general formula (I), as a main constituent and stretched at a temperature (Td) within a range represented by the following formula (II). Processed, then below
A method for producing a polyphosphazene molded article having excellent mechanical and mechanical properties, which comprises heat-treating at a temperature (Th) within the range represented by the formula (III).
JP61030949A 1986-02-17 1986-02-17 Method for producing molded polyphosphazene Expired - Lifetime JPH0622888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030949A JPH0622888B2 (en) 1986-02-17 1986-02-17 Method for producing molded polyphosphazene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030949A JPH0622888B2 (en) 1986-02-17 1986-02-17 Method for producing molded polyphosphazene

Publications (2)

Publication Number Publication Date
JPS62189138A JPS62189138A (en) 1987-08-18
JPH0622888B2 true JPH0622888B2 (en) 1994-03-30

Family

ID=12317925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030949A Expired - Lifetime JPH0622888B2 (en) 1986-02-17 1986-02-17 Method for producing molded polyphosphazene

Country Status (1)

Country Link
JP (1) JPH0622888B2 (en)

Also Published As

Publication number Publication date
JPS62189138A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
Gupta et al. Acrylic precursors for carbon fibers
US4554119A (en) Process for heat treating shaped articles of poly {[benzo(1,2-d:4,5-d&#39;)bisthiazole-2,6-diyl]-1,4-phenylene}, its cis isomer or mixtures thereof
KR101683089B1 (en) Gelatinized pre-oriented filaments and preparation method thereof and ultra-high molecular weight polyethylene fibers and preparation method thereof
WO1988003184A1 (en) Process for preparing polyethylene articles of high tensile strength and modulus and low creep and articles thus obtained
CN113278268B (en) High-toughness polyester composite material and preparation method thereof
WO1986005739A1 (en) High strength polymeric fibers
WO1991000935A1 (en) Porous fiber and production thereof
US4816335A (en) High-quality polyarylene-thioether fibers and method for production thereof
KR950013728B1 (en) Molecularly oriented, silane-cross linked ultra-high-molecular-weight polyethylene molded articla and process for preparation thereof
Kim et al. Effects of annealing on structure and properties of TLCP/PEN/PET ternary blend fibers
AU616557B2 (en) Process for the preparation of fibers of stereoregular polystyrene
US2842532A (en) Process of reducing the viscosity of polymers
KR101922638B1 (en) Quad-polymer precursors for preparing carbon fibers and methods for making and using same
JPH0622888B2 (en) Method for producing molded polyphosphazene
JPH0263056B2 (en)
Uddin et al. Effects of Take-up Speed of Melt Spinning on the Structure and Mechanical Propertiesof Maximally Laser Drawn PA9-T Fibers
Suzuki et al. Application of zone‐drawing and zone‐annealing method to poly (p‐phenylene sulfide) fibers
JPH089667B2 (en) Process for producing polyethylene products of high tensile strength and modulus and low creep and products thus obtained
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JP2011106060A (en) Polyarylene sulfide fiber
CN114702638B (en) Polypropylene carbonate chain-extended copolymer and preparation method thereof
KR930011936B1 (en) Process for manufacturing aromatic polyamide staple
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
RU2073073C1 (en) Method of manufacturing heat resistant fibers
JPH06257013A (en) Polycarbonate multifilament