JPH06228613A - Production of granular hydrogen storage alloy - Google Patents

Production of granular hydrogen storage alloy

Info

Publication number
JPH06228613A
JPH06228613A JP5014207A JP1420793A JPH06228613A JP H06228613 A JPH06228613 A JP H06228613A JP 5014207 A JP5014207 A JP 5014207A JP 1420793 A JP1420793 A JP 1420793A JP H06228613 A JPH06228613 A JP H06228613A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage alloy
crucible
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5014207A
Other languages
Japanese (ja)
Inventor
Takasumi Shimizu
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5014207A priority Critical patent/JPH06228613A/en
Publication of JPH06228613A publication Critical patent/JPH06228613A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To produce a granular hydrogen storage alloy having a fine structure by melting a hydrogen storage alloy in a magnesia crucible, centrifugally spraying the molten alloy on a graphite disk at a specified temp. and rapidly solidifying the sprayed alloy. CONSTITUTION:A hydrogen storage alloy is melted in an MgO crucible to produce the molten high-purity hydrogen storage alloy free from the impurities generated by the reaction with the crucible material. The molten alloy is heated to a temp. higher than its melting temp. by 50 to 200 deg.C, centrifugally sprayed on a disk rotating at a high speed in an inert gas such as Ar and He or in the atmosphere obtained by mixing 5-20% gaseous hydrogen in the inert gas and rapidly solidified. The solidified material is pulverized to <=100mum diameter, and a hydrogen storage alloy powder having an excellent characteristic as the cell electrode material is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は粒状水素吸蔵合金の製
造法に関するものである。さらに詳しくは、電池用電極
材料等として有用な微細組織を有する粒状水素吸蔵合金
の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a granular hydrogen storage alloy. More specifically, it relates to a method for producing a granular hydrogen storage alloy having a fine structure, which is useful as an electrode material for batteries and the like.

【0002】[0002]

【従来の技術とその課題】従来より、水素を可逆的に吸
蔵・放出する水素吸蔵合金が知られており、電気、電
子、化学工業等の諸分野においてその応用のための検討
が進められている。この水素吸蔵合金については、その
粉末を電子・電気機器の小型電源としての電池に用いる
ことが提案され、注目を集めている。水素吸蔵合金の粉
末から電池電極を製造し、電池の容量増加を図り、新し
い高容量小型電源として活用しようとするものである。
その使用態様はアルカリ二次電池の電極(負極)であ
る。
2. Description of the Related Art Hydrogen storage alloys capable of reversibly storing and releasing hydrogen have been known, and their applications have been studied in various fields such as electric, electronic and chemical industries. There is. With regard to this hydrogen storage alloy, it has been proposed to use the powder for a battery as a small power source for electronic and electric devices, and has been attracting attention. It is intended to manufacture battery electrodes from powder of hydrogen storage alloy to increase the capacity of the battery and utilize it as a new high-capacity small power source.
The usage mode is an electrode (negative electrode) of an alkaline secondary battery.

【0003】そして、この水素吸蔵合金を用いて電池電
極を製造するためには、水素吸蔵合金を所定の粒度に揃
えるための粉砕が必要であることから、従来は、水素吸
蔵合金のインゴットへ水素を吸収させ、放出させること
により粉砕することや、ボールミル、カッターミル等に
よって機械的に粉砕する方法が採用されてきている。し
かしながら、水素吸蔵合金に水素を吸脱着する粉砕方法
では粉砕後の水素引抜きが不完全だと水素吸蔵合金粉末
が発火する危険性がある他、合金組成の僅かな偏在によ
り粉砕される粒径が部位により異なり、分級時の歩留り
が悪くなるという問題点がある。また、機械的な粉砕法
では粉砕された粉末の粒度分布が非常に広くなりやす
く、分級した際の歩留りが悪い他、直径1μm以下の微
粉末が生成し易く、電極を作製した場合に電池特性に悪
影響を及ぼす恐れがある。さらに、いずれの方法におい
ても出発原料は鋳造したインゴットであり、鋳造時の偏
析を減らすため均質化熱処理を施すもののミクロ偏析は
容易には消滅しにくく、これに起因する局部電池の形成
による腐食の進行、粒界偏析による粒界強度の低さに起
因する微粉化が進行して電池特性の経時劣化が進行する
という欠点がある。
In order to manufacture a battery electrode using this hydrogen storage alloy, it is necessary to pulverize the hydrogen storage alloy so as to have a predetermined particle size. The method of crushing by absorbing and releasing is used, and the method of mechanically crushing by a ball mill, a cutter mill or the like has been adopted. However, in the crushing method of adsorbing and desorbing hydrogen in the hydrogen storage alloy, there is a risk that the hydrogen storage alloy powder may ignite if the hydrogen abstraction after the crushing is incomplete, and the particle size to be crushed due to slight uneven distribution of the alloy composition. There is a problem that the yield at the time of classification becomes poor depending on the part. In addition, the mechanical pulverization method has a very wide particle size distribution of the pulverized powder, which results in poor yield when classified, and easily produces fine powder with a diameter of 1 μm or less. May be adversely affected. Further, in any method, the starting material is a cast ingot, and although microsegregation is not easily eliminated although homogenization heat treatment is performed to reduce segregation during casting, corrosion due to formation of local cells due to this However, there is a drawback in that pulverization progresses due to progress of the grain boundary segregation and low grain boundary strength, and deterioration of battery characteristics with time progresses.

【0004】そこでこのような問題を解決するための方
法として、高速回転体の走行面に水素吸蔵合金の溶湯を
供給し、この回転体の運動力によって水素吸蔵合金を微
細分散させ、急速凝固させる方法が提案されている(特
開昭平3−116655号公報)。この方法は、均一微
細粉末を形成する方法として有利なものであるが、一
方、このすでに提案されている方法の場合には、水素吸
蔵合金の水素吸蔵特性が失われる場合や、電池容量の増
加が期待できないもの、さらには経時劣化が大きなもの
等の不都合の著しい合金粉末が生成するという欠点があ
った。
Therefore, as a method for solving such a problem, a molten metal of a hydrogen storage alloy is supplied to the running surface of a high-speed rotating body, and the hydrogen storage alloy is finely dispersed and rapidly solidified by the kinetic force of the rotating body. A method has been proposed (Japanese Patent Laid-Open No. 3-116655). This method is advantageous as a method for forming a uniform fine powder, but on the other hand, in the case of this already proposed method, the hydrogen storage characteristics of the hydrogen storage alloy are lost or the battery capacity is increased. However, there is a drawback in that alloy powders that are extremely inconvenient, such as those that cannot be expected, and those that are greatly deteriorated with time, are generated.

【0005】そこで、この発明は、この高速回転体によ
る粉末形成方法の特徴を生かしつつ、従来技術では実現
することのできなかった優れた特性を有し、微細均一組
織を有する、新しい粒状水素吸蔵合金の製造方法を提供
することを目的としている。
Therefore, the present invention makes use of the characteristics of the powder forming method using the high-speed rotating body, and has a new granular hydrogen storage having excellent characteristics which cannot be realized by the conventional technique and having a fine uniform structure. It is an object to provide a method for producing an alloy.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、水素を可逆的に吸蔵・放出する
合金をMgOるつぼにおいて溶解し、この合金の融点の
50℃以上で200℃以下の温度において高速回転して
いる黒鉛または黒鉛と炭素繊維複合材からなる円板上に
溶湯を注ぎ、遠心噴霧して急冷凝固することを特徴とす
る粒状水素吸蔵合金の製造法を提供する。
In order to solve the above-mentioned problems, the present invention melts an alloy capable of reversibly occluding and releasing hydrogen in a MgO crucible, and melts it at a temperature of 50 ° C or higher to 200 ° C. Provided is a method for producing a granular hydrogen storage alloy, which comprises pouring a molten metal on a graphite or a disk made of a graphite and carbon fiber composite material which is rotating at a high speed at the following temperature, centrifugally spraying and rapidly solidifying.

【0007】またこの発明は、前記の急冷凝固により得
られる粒子をさらに機械的に粉砕し、もしくは水素化・
脱水素処理して粉砕し、粒径100μm以下の粒子とす
ることを特徴とする水素吸蔵合金の製造法をも提供す
る。すなわち、この発明においては、高速回転している
円板上に水素吸蔵合金の溶湯を注ぎ、遠心噴霧させ、急
冷凝固させることをその構成としているが、その際に、
水素吸蔵合金の溶解をMgOるつぼにおいて溶解するこ
とと、回転円板上への注湯を、合金の融点より50℃以
上で200℃以下の特定の温度範囲にあるように温度制
御し、しかも、黒鉛または黒鉛と炭素繊維との複合材と
いう特定の材料によって形成された円板を使用すること
を必須としている。
Further, according to the present invention, the particles obtained by the above-mentioned rapid solidification are further mechanically pulverized, or hydrogenated.
Also provided is a method for producing a hydrogen storage alloy, which comprises dehydrogenation treatment and pulverization to obtain particles having a particle size of 100 μm or less. That is, in the present invention, the molten metal of the hydrogen storage alloy is poured onto a disc that is rotating at high speed, centrifugally sprayed, and rapidly solidified, but at that time,
Melting the hydrogen-absorbing alloy in a MgO crucible, and pouring the molten metal on the rotating disk so that the temperature is controlled to be within a specific temperature range of 50 ° C. or higher and 200 ° C. or lower than the melting point of the alloy It is essential to use a disk made of a specific material such as graphite or a composite material of graphite and carbon fiber.

【0008】るつぼにMgOを用いることは、水素吸蔵
合金の組成を所定のものとするために必須であり、この
るつぼとして、カーボンるつぼや、Al2 3 等の他種
酸化物、あるいは銅等の金属を用いる場合には、水素吸
蔵合金成分との反応や酸化が生じ、所定の組成の水素吸
蔵合金が得られないことになる。CaOの高純度品から
なるるつぼも有用であって、このCaOるつぼを用いる
方法を、発明者はすでに提案している。水素吸蔵合金
は、Ti,Zr,Mnなどの活性元素を多く含有し、る
つぼ材質との反応性が問題となり、特に、酸素は容易に
合金中に侵入し、水素吸蔵合金の吸蔵特性を劣化させる
ことになる。酸化物として安定なCaOるつぼはこの劣
化を抑止する上で有効である。
The use of MgO for the crucible is indispensable for making the composition of the hydrogen storage alloy to be a predetermined one. As this crucible, there are a carbon crucible, other oxides such as Al 2 O 3 and copper. When such a metal is used, reaction with a hydrogen storage alloy component or oxidation occurs, and a hydrogen storage alloy having a predetermined composition cannot be obtained. A crucible made of a highly pure CaO is also useful, and the inventor has already proposed a method of using this CaO crucible. The hydrogen storage alloy contains many active elements such as Ti, Zr and Mn, and its reactivity with the crucible material becomes a problem. Especially, oxygen easily penetrates into the alloy and deteriorates the storage characteristics of the hydrogen storage alloy. It will be. A CaO crucible that is stable as an oxide is effective in suppressing this deterioration.

【0009】だが、CaOるつぼは高価であって、吸湿
性があり、かつ粉塵が有害である等の弱点もあった。ま
た、従来一般的にはAl2 3 るつぼが使用されてきた
が、Al2 3 るつぼはヒートショックに弱いという欠
点がある。これらに対して、この発明のMgOるつぼは
不純物による別管を排除して汚染のない高純度、高特性
粉末の製造を可能とするものである。
However, CaO crucibles are also expensive, they are hygroscopic, and they have the disadvantages that dust is harmful. Further, conventionally, an Al 2 O 3 crucible has been generally used, but the Al 2 O 3 crucible has a drawback that it is weak against heat shock. On the other hand, the MgO crucible of the present invention eliminates a separate tube due to impurities and enables the production of high-purity, high-characteristic powder without contamination.

【0010】水素吸蔵合金の溶解後の回転円板上への注
湯については、前記の通りの温度範囲にあるものとする
が、合金の融点より50℃未満、もしくは200℃を超
えた温度とする場合には、円板体による分散によって生
成される合金微粒子の粒径が均一になりにくく、しか
も、微細組織の均一性が失われるという問題が生じる。
そして、高速回転の円板体は、そのぬれ性および強度、
さらには溶湯との反応を抑制する等の点から、前記の通
り、黒鉛もしくは黒鉛と炭素繊維複合体によって製造さ
れたものとする。
Regarding the pouring of the hydrogen-absorbing alloy onto the rotating disk after melting, it is assumed that the temperature is within the above-mentioned temperature range, but the temperature is lower than 50 ° C. or higher than 200 ° C. from the melting point of the alloy. In such a case, there arises a problem that the particle diameter of the alloy fine particles generated by the dispersion by the disc body is hard to be uniform and the uniformity of the fine structure is lost.
And, the disc body of high speed rotation has its wettability and strength,
Further, from the viewpoint of suppressing the reaction with the molten metal, as described above, it is assumed to be manufactured from graphite or a graphite and carbon fiber composite.

【0011】水素吸蔵合金のこの高速回転円板体への注
湯による噴霧分散は、アルゴン、ヘルウム等の不活性ガ
ス雰囲気において、もしくはこれら不活性ガスに水素を
5〜20%程度含有された雰囲気とするのが好ましい。
円板体は所要の水素吸蔵合金の粒径によってその回転速
度を変えることができる。たとえば、水素吸蔵合金の注
湯落下速度を3kg/分程度とする場合には、10000
rpm で300μm〜1mm程度の粒径のものを、また20
000rpm で90μm〜150μm程度のものを製造す
ることができる。もちろんこの場合、円板の大きさによ
っても変ってくる。
The hydrogen storage alloy is spray-dispersed into the high-speed rotating disk body by pouring the molten metal in an atmosphere of an inert gas such as argon or helium, or in an atmosphere containing about 5 to 20% of hydrogen in the inert gas. Is preferred.
The rotation speed of the disk can be changed according to the required particle size of the hydrogen storage alloy. For example, if the pouring speed of the hydrogen storage alloy is about 3 kg / min, 10,000
If the particle size is about 300 μm to 1 mm at rpm,
It is possible to manufacture a product having a size of 90 μm to 150 μm at 000 rpm. Of course, in this case, it also depends on the size of the disc.

【0012】噴霧分散させた粉末は、回転円板体の周辺
部に配置した壁体あるいは捕集容器部において冷却回収
する。この場合の冷却は、水冷、冷媒冷却等によって行
ない、常温近郊にまで急速に冷却する。粒径100μm
以下にするためには、この発明の方法においては、前記
の噴霧分散により得られた水素吸蔵合金粉末をさらに機
械的に、あるいは水素化・脱水変化によって粉砕するこ
とができる。真空、加熱等の条件が適宜に採用される。
The spray-dispersed powder is cooled and recovered in the wall body or the collecting container portion arranged around the rotating disk body. In this case, cooling is performed by water cooling, refrigerant cooling, or the like, and is rapidly cooled to the vicinity of room temperature. Particle size 100μm
In order to make the following, in the method of the present invention, the hydrogen storage alloy powder obtained by the above-mentioned spray dispersion can be pulverized further mechanically or by hydrogenation / dehydration change. Conditions such as vacuum and heating are appropriately adopted.

【0013】このような、この発明の製造方法において
は、各種の組成の水素吸蔵合金をその対象とすることが
できる。一般的には、少なくとも希土類元素およびその
混合物、Ni,Ti,Co,Mn,Alで構成されるも
の、少なくともTi,Zr,Ni,V,Co,Mn等に
よって構成されるものなどが例示される。
In such a manufacturing method of the present invention, hydrogen storage alloys having various compositions can be used. Generally, at least rare earth elements and mixtures thereof, those composed of Ni, Ti, Co, Mn, Al, those composed of at least Ti, Zr, Ni, V, Co, Mn, etc. are exemplified. .

【0014】[0014]

【作用】以上のこの発明の方法によって、不純物による
悪影響もなく、微細均一粒径の水素吸蔵合金と、その微
細組織の均一性が実現され、しかもこの発明による水素
吸蔵合金の場合には、その組成が安定で、水素吸蔵特性
はもちろんのこと、電池電極として使用する場合には、
高容量を実現し、経時的劣化も抑制されることになる。
According to the method of the present invention described above, the hydrogen storage alloy having a fine and uniform grain size and the homogeneity of its fine structure can be realized without adverse effects of impurities, and in the case of the hydrogen storage alloy according to the present invention, The composition is stable, not only hydrogen storage characteristics, but when used as a battery electrode,
A high capacity is realized and deterioration over time is suppressed.

【0015】以下、実施例を示し、さらに詳しくこの発
明の方法について説明する。
Examples will be shown below to describe the method of the present invention in more detail.

【0016】[0016]

【実施例】実施例1 Mm(La+Ceその他の希土類の混合物)、ペレット
状Ni、電解Mn、Alショット、電解Coを原料とし
て、組成式MmNi3.4 Co0.8 Mn0.5 Al 0.3 の配
合になるように、全量で3kgを秤量して、内径110m
m、深さ250mmのMgOるつぼに装入した。真空引き
後、Arガスを0.8 気圧導入して、高周波で溶解を行な
った。全ての原料が解け落ちた後、るつぼを傾動して溶
湯をタンディシュ上に注ぎ、タンダィシュ中心部の3mm
径の孔より、15000rpm で回転している黒鉛ディス
ク(90mm径)の中心部に落下させ、遠心力で飛散させ
粉末を得た(平均粒径120μm)。注湯温度は、合金
融点より80℃高い温度とした。このようにして均一微
粒子粉末を得たのでこれを使用して、水素吸蔵特性及び
半電池状態での放電容量を求めた。
【Example】Example 1 Mm (La + Ce and other rare earth mixtures), pellets
Ni, electrolytic Mn, Al shot, electrolytic Co as raw materials
The composition formula MmNi3.4Co0.8Mn0.5Al 0.3Distribution of
Weigh 3 kg in total so that the inner diameter is 110 m
It was placed in a MgO crucible having a depth of 250 mm and a depth of 250 mm. Evacuation
After that, introduce Ar gas at 0.8 atm and dissolve at high frequency.
It was. After all the ingredients have melted down, tilt the crucible to melt
Pour hot water onto the tundish, 3 mm in the center of tundish
Graphite disk rotating at 15000 rpm through the diameter hole
(90mm diameter) drop it on the center and scatter it by centrifugal force.
A powder was obtained (average particle size 120 μm). Pouring temperature is alloy
The temperature was 80 ° C. higher than the melting point. In this way uniform
Since the particle powder was obtained, it was used to detect the hydrogen storage characteristics and
The discharge capacity in the half-battery state was determined.

【0017】その結果を表1に示した。優れた性能の水
素吸蔵合金を得た。
The results are shown in Table 1. A hydrogen storage alloy with excellent performance was obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、水素吸蔵特性は、内径約5mm、長さ
150mmのステンレス製パイプに、合金約6gを充填
し、活性化処理後、水素圧力を変化させ、その時の吸蔵
量を求めて得た。また放電容量は、合金1gに対して、
Ni粉末3g、ポリエチレン樹脂0.1 gの割で混合して
ペースト状にし、Ni網に塗り込んで電極とした。充電
は、0.1A×5.5hr 行い、放電は、0.05Aで、0.7 Vカ
ットで容量を測定した。
The hydrogen storage characteristics were obtained by filling a stainless steel pipe having an inner diameter of about 5 mm and a length of 150 mm with about 6 g of the alloy, activating and then changing the hydrogen pressure, and determining the storage amount at that time. . The discharge capacity is
3 g of Ni powder and 0.1 g of polyethylene resin were mixed to form a paste, which was applied to a Ni net to form an electrode. Charging was performed at 0.1 A × 5.5 hr, discharging was at 0.05 A, and the capacity was measured at 0.7 V cut.

【0020】実施例2 スポンジZr,スポンジTi,ペレット状Ni,Vメタ
ル,電解Mn,電解Feを原料として、組成式Zr0.5
Ti0.5 (V0.5 Ni1.1 ,Mn0.2 Fe0.2) 1.8 にな
るように配合し、全量で2kgを秤り取り、MgOるつぼ
に装入し溶解した。溶解中の雰囲気はHeガス0.8 気圧
とした。注湯温度は、合金融点より約100℃高い温度
とした。ディスクは、直径110mmの黒鉛炭素繊維複合
材料を用いた。ディスクの回転数は30,000rpm である。
均一微粒子粉末(平均粒径50μm) を得た。実施例1
と同様に優れた水素吸蔵特性及び放電容量が得られた。
[0020]Example 2 Sponge Zr, Ti sponge, Ni pellet, V meta
Composition of Zr, electrolytic Mn and electrolytic Fe as raw materials0.5
Ti0.5(V0.5Ni1.1, Mn0.2Fe0.2) 1.8In
Mix as follows, weigh 2 kg in total, and place in a MgO crucible.
It was charged and melted. The atmosphere during melting is He gas 0.8 atm.
And The pouring temperature is about 100 ° C higher than the melting point of the alloy.
And The disk is a graphite carbon fiber composite with a diameter of 110 mm.
Material was used. The rotation speed of the disk is 30,000 rpm.
A uniform fine particle powder (average particle size 50 μm) was obtained. Example 1
Excellent hydrogen storage characteristics and discharge capacity were obtained as well.

【0021】比較例1〜4 実施例1と同じ組成の合金をMgOるつぼ中で溶解し、
ディスク材等としてTi,Ti−6Al−4V合金、N
i,SUS304を用いて、N2 ガス雰囲気中で噴霧
し、粉末を得た。いずれの材質とも、溶湯との反応が顕
著であり、中心部が大きくえぐられていた。また、一部
では、ディスクが破壊したものもみられた。表1に示し
た通り、粉末には水素吸蔵特性はなかった。
Comparative Examples 1 to 4 An alloy having the same composition as in Example 1 was melted in a MgO crucible,
Ti, Ti-6Al-4V alloy, N as disk material
i, SUS304 was used to spray in an N 2 gas atmosphere to obtain a powder. The reaction with the molten metal was remarkable in all materials, and the central part was largely scooped. In addition, some discs were destroyed. As shown in Table 1, the powder did not have hydrogen storage characteristics.

【0022】比較例5 実施例1の合金を黒鉛、およびAl2 3 のるつぼの各
々で溶解し、実施例1と同じように噴霧して粉末を得
た。水素吸蔵特性、電池容量ともに、実施例1のものに
はるかに劣っている。実施例3 合金組成がZr0.5 Ti0.5 (V0.5 Ni1.1 Mn0.2
Fe0.2 1.8 の合金について表2に示した各種のるつ
ぼを用いて溶解して実施例1と同様にして粉末とした。
Comparative Example 5 The alloy of Example 1 was melted in each of the graphite and the Al 2 O 3 crucible and sprayed in the same manner as in Example 1 to obtain a powder. Both the hydrogen storage characteristics and the battery capacity are far inferior to those of Example 1. Example 3 The alloy composition was Zr 0.5 Ti 0.5 (V 0.5 Ni 1.1 Mn 0.2
The Fe 0.2 ) 1.8 alloy was melted using various crucibles shown in Table 2 and powdered in the same manner as in Example 1.

【0023】この合金について、炭素、窒素および酸素
の含有量を評価し、表2の結果を得た。Al2 3 るつ
ぼの場合には急速加熱により割れが発生した。この発明
のMgOるつぼにより、不純物(C,N,O)の汚染の
ない溶解ができ、高純度、高特性粉末が製造できること
が確認された。
With respect to this alloy, the contents of carbon, nitrogen and oxygen were evaluated, and the results shown in Table 2 were obtained. In the case of the Al 2 O 3 crucible, cracking occurred due to rapid heating. It has been confirmed that the MgO crucible of the present invention can dissolve impurities (C, N, O) without contamination and can produce high-purity, high-characteristic powder.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】この発明により、以上詳しく説明した通
り、不純物による悪影響もなく、水素吸蔵合金の微細粉
末の取得と、その電池材料への応用における容量増大等
の特性向上が可能となる。
As described in detail above, according to the present invention, it is possible to obtain fine powder of a hydrogen storage alloy and to improve the characteristics such as the capacity increase in the application to the battery material without adverse effects of impurities.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素を可逆的に吸蔵・放出する合金をM
gOるつぼにおいて溶解し、この合金の融点の50℃以
上で200℃以下の温度において高速回転している黒鉛
または黒鉛と炭素繊維複合材からなる円板上に溶湯を注
ぎ、遠心噴霧して急冷凝固することを特徴とする粒状水
素吸蔵合金の製造法。
1. An alloy which absorbs and releases hydrogen reversibly is M
Melt in a gO crucible and pour the molten metal onto a disk made of graphite or graphite and carbon fiber composite material that is rotating at a high speed at a melting point of this alloy of 50 ° C or higher and 200 ° C or lower, centrifugally spray and solidify rapidly. A method for producing a granular hydrogen storage alloy, comprising:
【請求項2】 遠心噴霧による急冷凝固時の雰囲気を不
活性ガスもしくは不活性ガスと水素との混合とする請求
項1の製造法。
2. The method according to claim 1, wherein the atmosphere during the rapid solidification by centrifugal spraying is an inert gas or a mixture of an inert gas and hydrogen.
【請求項3】 請求項1の急冷凝固により得られる粒状
をさらに機械的に粉砕し、もしくは水素化・脱水素処理
して粉砕し、粒径100μm以下の粒子とすることを特
徴とする粒状水素吸蔵合金の製造法。
3. Granules obtained by the rapid solidification according to claim 1, which are further mechanically pulverized or hydrotreated and dehydrogenated to be pulverized to obtain particles having a particle diameter of 100 μm or less. Manufacturing method of storage alloy.
JP5014207A 1993-01-29 1993-01-29 Production of granular hydrogen storage alloy Pending JPH06228613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5014207A JPH06228613A (en) 1993-01-29 1993-01-29 Production of granular hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5014207A JPH06228613A (en) 1993-01-29 1993-01-29 Production of granular hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH06228613A true JPH06228613A (en) 1994-08-16

Family

ID=11854664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5014207A Pending JPH06228613A (en) 1993-01-29 1993-01-29 Production of granular hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH06228613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756343A1 (en) * 1995-07-27 1997-01-29 VARTA Batterie Aktiengesellschaft Alloys for use as active material for the negative electrode of an alkaline,rechargeable, nickel metal-hybride battery and its method of preparation
WO1997009144A1 (en) * 1995-09-07 1997-03-13 Shanghai Shen-Jian Metallurgical & Machinery-Electrical Technology Engineering Corp. A method and an equipment for producing rapid condensation hydrogen storage alloy powder
JP2005520351A (en) * 2001-02-28 2005-07-07 マグネクエンチ・インコーポレーテッド Bond magnet manufactured using atomized permanent magnet powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756343A1 (en) * 1995-07-27 1997-01-29 VARTA Batterie Aktiengesellschaft Alloys for use as active material for the negative electrode of an alkaline,rechargeable, nickel metal-hybride battery and its method of preparation
WO1997009144A1 (en) * 1995-09-07 1997-03-13 Shanghai Shen-Jian Metallurgical & Machinery-Electrical Technology Engineering Corp. A method and an equipment for producing rapid condensation hydrogen storage alloy powder
US6174345B1 (en) 1995-09-07 2001-01-16 Yu Chen Method and an equipment for producing rapid condensation hydrogen storage alloy powder
JP2005520351A (en) * 2001-02-28 2005-07-07 マグネクエンチ・インコーポレーテッド Bond magnet manufactured using atomized permanent magnet powder

Similar Documents

Publication Publication Date Title
US5680896A (en) Method for production of rare earth metal-nickel hydrogen occlusive alloy ingot
JP4069710B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2004504699A (en) Nickel metal hydride battery, electrochemical hydrogen storage alloy for fuel cell and method for producing the same
US3385696A (en) Process for producing nickel-magnesium product by powder metallurgy
JPH09180716A (en) Manufacture of hydrogen storage alloy
JPH06228613A (en) Production of granular hydrogen storage alloy
JP2003197188A (en) Negative active material for lithium ion secondary battery and its manufacturing method
JPH05331506A (en) Production of granular hydrogen storage alloy
JPH05303966A (en) Hydrogen storage alloy electrode
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP4235721B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and method for producing hydrogen storage alloy
JP3713181B2 (en) Nickel-hydrogen battery using amorphous Mg-Ni hydrogen storage alloy as negative electrode active material
EP1002603A1 (en) Hydrogen-absorbing alloy powder and method for its production
JP2912427B2 (en) Method for producing hydrogen storage alloy powder and cathode for Ni-hydrogen battery
JPH06336627A (en) Production of hydrogen occluding alloy
JPS63291363A (en) Hydrogen absorption alloy
JP3024402B2 (en) Manufacturing method of hydrogen storage alloy
JPH06306413A (en) Production of hydrogen storage alloy powder
JP2985553B2 (en) Hydrogen storage alloy powder and method for producing the same
JPH04126361A (en) Manufacture of hydrogen absorbing alloy powder for storage battery and hydrogen absorbing electrode
JP4504507B2 (en) Hydrogen storage alloy and method for producing the same
JPH04358008A (en) Ingot for hydrogen storage alloy powder and production of the powder
JPH11297319A (en) Hydrogen storage electrode material, and alkaline storage battery
JPH08120365A (en) Hydrogen storage alloy and its production
JPH08337803A (en) Hydrogen occlusion alloy powder and its production