JPH06228022A - Production of 1,1,1,2-tetrafluoroethane - Google Patents

Production of 1,1,1,2-tetrafluoroethane

Info

Publication number
JPH06228022A
JPH06228022A JP1411493A JP1411493A JPH06228022A JP H06228022 A JPH06228022 A JP H06228022A JP 1411493 A JP1411493 A JP 1411493A JP 1411493 A JP1411493 A JP 1411493A JP H06228022 A JPH06228022 A JP H06228022A
Authority
JP
Japan
Prior art keywords
catalyst
fluorination
ratio
reaction
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1411493A
Other languages
Japanese (ja)
Other versions
JP3374426B2 (en
Inventor
Katsuyuki Tsuji
勝行 辻
Seiichi Tomota
清一 友田
Masatoshi Hotta
雅敏 堀田
Tetsuo Nakajo
哲夫 中條
Hidetoshi Nakayama
秀俊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP01411493A priority Critical patent/JP3374426B2/en
Publication of JPH06228022A publication Critical patent/JPH06228022A/en
Application granted granted Critical
Publication of JP3374426B2 publication Critical patent/JP3374426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX

Abstract

PURPOSE:To obtain in high efficiency the subject compound, HFC-134a, as an alternative CFC, which does not deplete the ozone layer. CONSTITUTION:Fluorination of HCFC-133a, which is hard to proceed using conventional fluorinating catalysts, is conducted using a new highly active and selective fluorinating catalyst containing, as essential components, zinc, chromium, oxygen and fluorine elements, 5-50% in the fluorination rate expressed by the formula {Y/(2X+3)}Xl00% (Y is the atom ratio Zn/Cr; X is the atom ratio F/Cr), and 0.01-0.6 in the atomic ratio Zn/Cr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオゾン層を破壊しない代
替フロンである1,1,1,2−テトラフルオロエタン
(以下、HFCー134aと略)の製造に際し、1−ク
ロロ−2,2,2−トリフルオロエタン(以下、HCF
C−133aと略)とフッ化水素(以下、HFと略)と
を新規なフッ素化触媒の存在下で反応させることによ
り、高い収率で目的化合物HFC−134aを得る方法
に関する。
The present invention relates to the production of 1,1,1,2-tetrafluoroethane (hereinafter, abbreviated as HFC-134a), which is an alternative CFC which does not destroy the ozone layer, by using 1-chloro-2,2. , 2-trifluoroethane (hereinafter referred to as HCF
C-133a) and hydrogen fluoride (hereinafter abbreviated as HF) are reacted in the presence of a novel fluorination catalyst to obtain a target compound HFC-134a in high yield.

【0002】[0002]

【従来の技術】炭素数1〜4のハロゲン化炭化水素をH
Fによってフッ素化する方法には、大別して気相法と液
相法がある。近年、塩素や臭素を分子中に含むフロン、
ハロンによるオゾン層破壊の問題がクローズアップさ
れ、それらの代替物質(以下、代替フロンと略)として
分子内に水素を含むハロゲン化炭化水素(一般にHCF
Cと略)や塩素、臭素を分子内に含まないフッ化炭化水
素(一般にHFCと略)が提案され、すでに量産されて
いるものもある。これらの代替フロンの製法としては、
特に気相法が有力である。気相法においては触媒の選択
が重要であり、これまでにも種々の触媒が提案されてい
る。
2. Description of the Related Art Halogenated hydrocarbons having 1 to 4 carbon atoms are converted into H
The method of fluorinating with F is roughly classified into a gas phase method and a liquid phase method. Recently, CFCs containing chlorine and bromine in the molecule,
The problem of ozone depletion due to halon has been highlighted, and halogenated hydrocarbons containing hydrogen in the molecule (generally HCF
Fluorinated hydrocarbons (generally abbreviated as HFC) that do not contain chlorine and bromine in the molecule have been proposed, and some have already been mass-produced. As a manufacturing method of these alternative CFCs,
The vapor phase method is particularly effective. In the gas phase method, selection of a catalyst is important, and various catalysts have been proposed so far.

【0003】まず、従来の塩素を分子中に含むフロンを
製造する際に用いられてきた公知のフッ素化触媒として
は、硫酸と工業 昭和46年2月号48ページに記載さ
れているように、クロムの酸化物およびフッ化物、アル
ミニウムや鉄などのハロゲン化物が代表的である。その
他にも米国特許(US)2005707には、不活性担
体に担持されたCu、Ag、Na、Cd、Ca、Zn、
Hg、V、Sb、Mn、Fe、Ni、Co、Pt等のハ
ロゲン化物が提案されている。また、前記のような触媒
を改良して、酸化クロムにMg、Ca、Sr、Ba、希
土類元素、Th、Ti、Zr、Fe、Co、Ni、C
u、Zn、Cd、Al、In、Sn、Pb、Biなどの
第2成分を添加して寿命や耐久性を向上させた酸化クロ
ムを主体とする多元系触媒(特公昭49−43922参
照)や、ゾルゲル法により寿命や選択性を向上させた無
定形Cr23 触媒(特開昭57−119836参照)
などがこれまでに開示されている。
First, as a known fluorination catalyst that has been used in the production of conventional fluorocarbons containing chlorine in the molecule, as described in sulfuric acid and Kogyo, February, 1972, p. 48, Typical examples are chromium oxides and fluorides, and halides such as aluminum and iron. In addition, U.S. Pat. No. 2005707 discloses Cu, Ag, Na, Cd, Ca, Zn supported on an inert carrier.
Halides such as Hg, V, Sb, Mn, Fe, Ni, Co and Pt have been proposed. In addition, by improving the catalyst as described above, chromium oxide is added to Mg, Ca, Sr, Ba, rare earth elements, Th, Ti, Zr, Fe, Co, Ni, C.
A multi-component catalyst containing chromium oxide as a main component (see Japanese Patent Publication No. 49-43922), in which a second component such as u, Zn, Cd, Al, In, Sn, Pb, or Bi is added to improve life and durability. , Amorphous Cr 2 O 3 catalyst with improved life and selectivity by the sol-gel method (see Japanese Patent Laid-Open No. 57-119836)
Etc. have been disclosed so far.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、代替フ
ロンとして提案されている分子中に水素を含有するHC
FCやHFCをハロゲン化炭化水素とHFとの反応によ
り製造する際には、従来の塩化フッ化炭化水素(CFC
と略)の製造に較べ、反応が進行しにくい場合が多い。
特に、HCFC−133aのフッ素化によるHFC−1
34aの合成反応は熱力学的に不利な吸熱反応であり、
平衡が存在する。したがって、一般にはHCFC−13
3aに対し化学量論以上のHFを共存させて有意な平衡
転化率を与える条件で反応を行う。
However, HC containing hydrogen in the molecule proposed as an alternative CFC.
When FC or HFC is produced by reacting a halogenated hydrocarbon with HF, conventional chlorofluorocarbon (CFC) is used.
In most cases, the reaction is difficult to proceed compared to the production of
In particular, HFC-1 by fluorination of HCFC-133a
The synthetic reaction of 34a is a thermodynamically disadvantageous endothermic reaction,
Equilibrium exists. Therefore, in general, HCFC-13
The reaction is performed under the condition that HF of stoichiometry or higher is coexistent with 3a to give a significant equilibrium conversion rate.

【0005】一例を挙げると、特開昭55−27138
では、HFとHCFC−133aのモル比(以下、モル
比と略)を3以上、好ましくは5〜12の範囲で反応さ
せることを主張している。しかし、モル比を5以上と高
くした条件においてさえも、従来の触媒を使用した場合
には反応速度が小さく、平衡転化率に近い適当な反応率
を確保するために、空間速度を下げる、反応温度を上げ
る等の処置が必要であった。すなわち、前述の特開昭5
5−27138の実施例9〜12(第3表)ではCrF
3 ・3H2 Oを空気で処理した化合物を触媒とした場
合、モル比8で、空間速度(以下、SVと略)は550
hr-1と低いにもかかわらず、適当な転化率を得るため
には400℃以上の温度を必要としている。その際の選
択率も97%とあまり高くない。
[0005] For example, Japanese Patent Laid-Open No. 55-27138
Argues that the reaction is carried out in a molar ratio of HF and HCFC-133a (hereinafter, abbreviated as molar ratio) of 3 or more, preferably in the range of 5 to 12. However, even when the molar ratio is as high as 5 or more, the reaction rate is small when the conventional catalyst is used, and the space velocity is decreased in order to secure an appropriate reaction rate close to the equilibrium conversion rate. It was necessary to take measures such as raising the temperature. That is, the above-mentioned JP-A-5
In Examples 9-12 (Table 3) of 5-27138, CrF
When a compound obtained by treating 3.3H 2 O with air is used as a catalyst, the space velocity (hereinafter, abbreviated as SV) is 550 at a molar ratio of 8.
Despite being as low as hr −1 , a temperature of 400 ° C. or higher is required to obtain an appropriate conversion rate. The selectivity at that time is not so high as 97%.

【0006】特開平1−268651ではCrを含まな
い触媒で高度の活性、選択性を維持できると主張してい
るが、例1のCoCl2 /Al23 をフッ素化処理し
て得られる触媒ではモル比10、SV120hr-1と低
SVにもかかわらず、反応温度は410℃とさらに高
い。選択率は悪く94%以下である。このようにSVを
下げることは単位触媒当りの生産量の減少につながり好
ましくない。また、反応温度の上昇は熱的エネルギーロ
スばかりでなく、選択率の低下を招き、さらに、本発明
者らの知見によれば触媒寿命を短くする。
Japanese Unexamined Patent Publication No. 1-268651 claims that a catalyst containing no Cr can maintain a high level of activity and selectivity, but a catalyst obtained by fluorinating CoCl 2 / Al 2 O 3 of Example 1 In spite of the low SV with a molar ratio of 10 and SV of 120 hr -1 , the reaction temperature is 410 ° C, which is higher. The selectivity is bad and is 94% or less. Reducing the SV in this way is not preferable because it leads to a decrease in the production amount per unit catalyst. Further, an increase in the reaction temperature causes not only a loss of thermal energy but also a decrease in the selectivity. Further, according to the findings of the present inventors, the catalyst life is shortened.

【0007】分子中に水素を含むハロゲン化炭化水素の
フッ素化反応は水素を含まない原料のフッ素化反応に較
べて、触媒寿命が極端に短い(特開平1−262946
参照)ことから、HCFC−133aのフッ素化反応に
おいてこの影響は深刻である。触媒の延命をはかるため
に原料ガスに酸素を加える方法(特開昭55−2713
9や特開平1−272535参照)等も提案されている
が、本発明者の検討では延命効果があまり認められず、
副生物が増加するといった欠点が認められた。従って、
生産量の拡大だけでなく、触媒寿命を延ばすという観点
からも、従来のフッ素化触媒以上に高い活性、さらに、
高い選択性を有する触媒が強く求められている。
The fluorination reaction of a halogenated hydrocarbon containing hydrogen in the molecule has an extremely short catalyst life as compared with the fluorination reaction of a raw material containing no hydrogen (JP-A-1-262946).
Therefore, this effect is serious in the fluorination reaction of HCFC-133a. A method of adding oxygen to the raw material gas to prolong the life of the catalyst (Japanese Patent Laid-Open No. 55-2713).
9 and Japanese Unexamined Patent Publication No. 1-272535) have been proposed, but in the study by the present inventor, the life prolonging effect was not recognized so much.
Disadvantages such as increased by-products were recognized. Therefore,
From the viewpoint of not only expanding the production volume but also extending the life of the catalyst, it has higher activity than conventional fluorination catalysts.
There is a strong demand for catalysts with high selectivity.

【0008】最近、EP449614の明細書中で、含
水素ハロゲン化炭化水素であるトリクロロエチレン、H
CFC−133aのフッ素化反応にクロミアおよび亜鉛
またはニッケル促進クロミアが好ましい触媒として記載
されているが、触媒の組成やZnまたはNiの促進効果
については全く不明である。これまでに開示された特許
中にもZnとCrまたはNiとCrを含有する酸化物や
フッ化物を触媒としてHFによりハロゲン化炭化水素を
フッ素化する例はある。例えば、前述した特公昭49−
43922の第1表ではCF2 ClCFCl2 (以下、
CFC−113と略)のフッ素化反応においてZnを含
むCr23 触媒(Znの添加量はZnOとCr23
の重量比で10対90)がZnを添加しないCr23
触媒に較べてCFC−113転化率、115選択率が若
干向上し、Niを含むCr23触媒(Niの添加量は
NiOとCr23 の重量比で10対90)ではCFC
−113転化率の向上は小さいもののフッ素化能力の指
標となる115選択率はかなり増加している。
Recently, in the specification of EP 449614, hydrogen-containing halogenated hydrocarbons, trichlorethylene, H
Chromia and zinc- or nickel-promoted chromia are described as preferred catalysts for the fluorination reaction of CFC-133a, but the composition of the catalyst and the promoting effect of Zn or Ni are completely unknown. In the patents disclosed so far, there is an example of fluorinating a halogenated hydrocarbon with HF using an oxide or a fluoride containing Zn and Cr or Ni and Cr as a catalyst. For example, the above-mentioned Japanese Patent Publication Sho-49-
In Table 1 of 43922, CF 2 ClCFCl 2 (hereinafter,
Cr 2 O 3 catalyst containing Zn in the fluorination reaction of CFC-113 (the addition amount of Zn is ZnO and Cr 2 O 3
10:90 by weight ratio of Cr 2 O 3 without addition of Zn
The CFC-113 conversion rate and 115 selectivity were slightly improved as compared with the catalyst, and the CFC was increased in the Cr 2 O 3 catalyst containing Ni (the addition amount of Ni was 10:90 by weight ratio of NiO and Cr 2 O 3 ).
Although the improvement in -113 conversion was small, the 115 selectivity, which is an index of the fluorination ability, increased considerably.

【0009】しかし、活性促進効果は他の実施例に示さ
れたMg、Al、Srなどと比較すると小さい範囲に留
まっている。また、特公昭54−34712では小量づ
つのZn、Cr、NiおよびFeの化合物をフッ化アル
ミニウムに添加した触媒によるCFC−113のフッ素
化反応が開示されていて、この特許の表1では、フッ化
アルミニウムにCrおよびNiの化合物を添加した触媒
にさらにZnの化合物を添加すると、CFC−113の
転化率はかなり低下するものの対称性化合物(CFC−
114)の選択率が大きく向上することを示している。
However, the activity accelerating effect remains in a small range as compared with Mg, Al, Sr and the like shown in other examples. Further, Japanese Patent Publication No. 54-34712 discloses a fluorination reaction of CFC-113 with a catalyst in which small amounts of compounds of Zn, Cr, Ni and Fe are added to aluminum fluoride, and in Table 1 of this patent, When a Zn compound is further added to a catalyst obtained by adding Cr and Ni compounds to aluminum fluoride, the conversion rate of CFC-113 is considerably reduced, but the symmetric compound (CFC-
It is shown that the selectivity of 114) is greatly improved.

【0010】また、EP502605では、活性促進量
(activeーpromoting amount)のZnを添加したCr系
触媒が高い活性を与えることが開示されている。しか
し、Znの添加量が明確に規定されておらず、OやFの
含量については言及されていない。本発明者らの検討に
よれば、単にZnをCr系触媒に添加するだけでは高活
性は得られず、特定のフッ素化率、Zn/Cr比(Cr
原子に対するZnの原子比)においてのみ活性を高める
ことが明らかになった。すなわち、本発明で規定するよ
うなZn、Cr、O、Fの元素が特定の組成比で共存す
ると、活性が飛躍的に増大し、さらには、選択率も向上
する。本発明は上記の発明に基づいてなされたものでオ
ゾン層を破壊しない代替フロンであるHFC−134a
を効率よく製造する方法の提供を目的とする。
Further, EP502605 discloses that a Cr-based catalyst added with an active-promoting amount of Zn provides high activity. However, the amount of Zn added is not clearly defined, and the contents of O and F are not mentioned. According to the study by the present inventors, high activity cannot be obtained by simply adding Zn to a Cr-based catalyst, and a specific fluorination ratio and Zn / Cr ratio (Cr
It was revealed that the activity is enhanced only in the atomic ratio of Zn to atoms. That is, when the elements of Zn, Cr, O, and F as specified in the present invention coexist at a specific composition ratio, the activity is dramatically increased and the selectivity is also improved. The present invention has been made based on the above invention and is an alternative CFC that does not destroy the ozone layer, HFC-134a.
It aims at providing the method of manufacturing efficiently.

【0011】[0011]

【課題を解決するための手段】本発明においては、HC
FC−133aとHFとの反応により、HFC−134
aを製造する方法において、Zn、Cr、O、Fの元素
を必須成分として含み、該構成成分の組成比が特定の範
囲内にあるフッ素化触媒を用いることを解決の手段とし
た。すなわち、{Y/(2X+3)}×100%式で表
されるフッ素化率の値が、5〜50%、好ましくは7〜
40%の範囲にあり、Crに対するZnの原子比が0.
01〜0.6、特に好ましくは0.03〜0.5という
特定の組成比である。但し、式中Xは該触媒に含まれる
クロムに対する亜鉛の原子比を、Yはクロムに対するフ
ッ素の原子比をそれぞれ表す。
In the present invention, HC
By the reaction of FC-133a and HF, HFC-134
In the method for producing a, the solution was to use a fluorination catalyst containing elements of Zn, Cr, O, and F as essential components and having a composition ratio of the constituent components within a specific range. That is, the value of the fluorination rate represented by the formula {Y / (2X + 3)} × 100% is 5 to 50%, preferably 7 to
In the range of 40%, the atomic ratio of Zn to Cr is 0.
It is a specific composition ratio of 01 to 0.6, particularly preferably 0.03 to 0.5. However, in the formula, X represents the atomic ratio of zinc to chromium contained in the catalyst, and Y represents the atomic ratio of fluorine to chromium.

【0012】本発明で用いるフッ素化触媒に含まれるZ
n、Crの実質的な原子価はそれぞれ2価、3価であ
る。従って、上記式は、Znおよび/またはCrに結合
し得るFの最大量(を100%とする)に対する触媒中
のZnおよび/またはCrに結合しているFの量との比
を表し、触媒中のFの割合、ひいてはOの割合を与え
る。
Z contained in the fluorination catalyst used in the present invention
The substantial atomic valences of n and Cr are divalent and trivalent, respectively. Therefore, the above formula represents the ratio of the amount of F bound to Zn and / or Cr to the maximum amount of F (which is 100%) that can bind to Zn and / or Cr, and The ratio of F in the inside, and thus the ratio of O are given.

【0013】触媒の構成成分としてアルカリ金属が大量
に(重量で%オーダー)含まれることはあまり好ましく
ないが、その他(Zn、Cr、O、Fは除く)の元素は
%オーダー以上含み得る。ただし、Zn、Cr以外の金
属のフッ化物をCrとの原子比で%オーダー以上含有さ
せる場合には、Zn、Cr以外の金属に結合しているF
の量が大きくなるため、これを除外してフッ素化率を計
算することが必要である。すなわち、触媒全体ではなく
金属成分としてZnとCrを含む化合物(以下、Zn/
Cr化合物と略)のフッ素化率の範囲を議論しなければ
ならない。一例をあげると、前記Zn/Cr化合物をH
F気流中でも安定な触媒担体である活性炭やフッ化アル
ミニウム、フッ化カルシウムなどに担持することも可能
であるが、担体としてフッ化物を用いる場合には、フッ
素含量としてフッ化物担体に由来するフッ素の量を差し
引いて、フッ素化率を求めなければならない。
It is not so preferable that a large amount of alkali metal is contained as a constituent component of the catalyst (% order by weight), but other elements (excluding Zn, Cr, O and F) may be contained in the% order or more. However, when a fluoride of a metal other than Zn and Cr is contained in the atomic ratio of Cr to the order of% or more, F bonded to a metal other than Zn and Cr is used.
It is necessary to exclude this and calculate the fluorination rate because it will be large. That is, a compound containing Zn and Cr as a metal component (hereinafter Zn /
The range of the fluorination ratio of Cr compounds (abbreviated as Cr compound) must be discussed. As an example, the Zn / Cr compound is
It is also possible to support on activated carbon, aluminum fluoride, calcium fluoride, etc., which are stable catalyst carriers even in an F gas flow. However, when a fluoride is used as the carrier, fluorine derived from the fluoride carrier is used as the fluorine content. The fluorination rate must be determined by subtracting the amount.

【0014】本発明で用いる触媒もしくはZn/Cr化
合物は、 ZnおよびCrを含有する酸化物や水酸化物を触媒前
駆体として、これをHFやF2 、分子中にフッ素を有す
るハロゲン化炭化水素等によってフッ素化し、Oあるい
はOHを部分的にフッ素に置き換える方法、 ZnおよびCrを含有するフッ化物を触媒前駆体とし
て、これを空気、水などの酸素含有ガスで酸化してFを
部分的にOあるいはOHに置き換える方法、 Znおよび/またはCrに結合しているハロゲン(F
を除く)、硝酸、硫酸、炭酸、酢酸、蟻酸などのOある
いはOH以外の基(ここでいう基には電気的に中性の原
子団だけでなく、正または負の電荷をもった原子団も含
み、特に、陰イオンの場合が多い)およびOおよび/ま
たはOHを含有する化合物を触媒前駆体として、これを
HFやF2 、分子中にフッ素を有するハロゲン化炭化水
素等によってフッ素化し、Oおよび/またはOH以外の
基をフッ素に置換する方法等で調製することが出来る。
The catalyst or Zn / Cr compound used in the present invention is a halogenated hydrocarbon having HF or F 2 and fluorine in the molecule, which is obtained by using an oxide or hydroxide containing Zn and Cr as a catalyst precursor. Fluorination with O, etc., and partially replacing O or OH with fluorine. Fluoride containing Zn and Cr is used as a catalyst precursor, and this is partially oxidized with oxygen-containing gas such as air and water. Method of replacing with O or OH, halogen bonded to Zn and / or Cr (F
Groups other than O or OH such as nitric acid, sulfuric acid, carbonic acid, acetic acid, and formic acid (the groups referred to here are not only electrically neutral atomic groups but also atomic groups having a positive or negative charge). (In particular, it is often an anion) and a compound containing O and / or OH as a catalyst precursor, which is fluorinated with HF, F 2 , or a halogenated hydrocarbon having fluorine in the molecule, It can be prepared by a method of substituting fluorine for a group other than O and / or OH.

【0015】従って、本発明のZn、Cr、O、Fを必
須成分とする触媒において、Znおよび/またはCrに
結合している基は実質的にF、O、OHの3種である。
OHの分子量中に占めるHの割合は小さいため、Zn/
Cr化合物を構成するZn、Cr、F以外の成分は計算
上はゼロと考えてよい。上記の方法で得られた触媒をさ
らにフッ素化あるいは酸化することによりフッ素含量を
コントロールすることもできる。好ましい方法は、水酸
化物や酸化物を触媒前駆体として、これをフッ素化する
方法であり、比較的温和な条件下で水酸基や酸素をフッ
素に置換することができ、フッ素含量のコントロールが
容易である。
Therefore, in the catalyst of the present invention containing Zn, Cr, O and F as essential components, the groups bonded to Zn and / or Cr are substantially three kinds of groups F, O and OH.
Since the proportion of H in the molecular weight of OH is small, Zn /
The components other than Zn, Cr, and F constituting the Cr compound may be considered to be zero in calculation. The fluorine content can be controlled by further fluorinating or oxidizing the catalyst obtained by the above method. A preferred method is a method of fluorinating a hydroxide or an oxide as a catalyst precursor, which can replace a hydroxyl group or oxygen with fluorine under relatively mild conditions, and the fluorine content can be easily controlled. Is.

【0016】触媒前駆体の調製方法としては従来知られ
ている混練法、含浸法、共沈法等のいかなる方法も用い
ることができ、また、触媒前駆体を調製するための原料
としては工業規模で入手可能ならば、いかなる化合物を
用いてもよい。上記の方法のうち、含浸法や共沈法がZ
nとCrを均一に分布させ得るため好ましい。なかで
も、共沈法は触媒のバルク組成まで均一に調整すること
が可能であるためさらに好ましい。従って、好ましい触
媒前駆体の調製方法の例としては、ZnおよびCrの化
合物が溶解した液に沈澱剤を加えて沈澱をつくり、濾
別、洗浄、乾燥、焼成する方法(共沈法の例)、Cr2
3 や水酸化クロムにZn化合物の溶液を含浸し、乾
燥、焼成する方法(含浸法の例)等があげられる。さら
に好ましい調製方法の例としては、共沈法においてZn
およびCrの化合物が溶解した液と沈澱剤とを反応液の
pHが6〜12、特に好ましくは6.5〜10の範囲内
に在るようにコントロールしながら、双方同時に、ある
いは交互に滴下して調製したスラリーを濾別、洗浄、乾
燥、焼成する方法があげられる。
As the method for preparing the catalyst precursor, any of conventionally known methods such as kneading method, impregnation method and coprecipitation method can be used, and as a raw material for preparing the catalyst precursor, industrial scale is used. Any compound may be used as long as it is available at. Of the above methods, the impregnation method and coprecipitation method are Z
It is preferable because n and Cr can be uniformly distributed. Among them, the coprecipitation method is more preferable because it is possible to uniformly adjust the bulk composition of the catalyst. Therefore, as an example of a preferable method for preparing a catalyst precursor, a method in which a precipitation agent is added to a liquid in which a compound of Zn and Cr is dissolved to form a precipitate, which is filtered, washed, dried, and calcined (example of coprecipitation method) , Cr 2
Examples thereof include a method of impregnating O 3 or chromium hydroxide with a solution of a Zn compound, followed by drying and firing (an example of the impregnation method). As an example of a more preferable preparation method, Zn in the coprecipitation method is used.
While controlling the pH of the reaction solution to be in the range of 6 to 12, particularly preferably 6.5 to 10, the solution in which the Cr compound is dissolved and the precipitant are added dropwise at the same time or alternately. Examples of the method include filtering, washing, drying and firing the prepared slurry.

【0017】触媒形状として成形物が望ましい場合には
焼成前、または焼成後に打錠成形を行ったり、乾燥前に
押し出し成形を実施することにより成形物とすることが
できる。また、担持タイプの触媒が所望ならば、例え
ば、ZnおよびCrの化合物が溶解した液を活性炭、フ
ッ化アルミニウム、アルミナなどに含浸し、乾燥、焼成
後、HFによりフッ素化すれば調製することができる。
アルミナを担体として用いても、350℃程度の温度で
フッ素化するとアルミナは実質的にフッ化アルミニウム
に転化する。
When a molded product is desired as the catalyst shape, it can be molded by tableting before or after firing, or by extrusion molding before drying. If a supported type catalyst is desired, it can be prepared, for example, by impregnating a solution in which a compound of Zn and Cr is dissolved into activated carbon, aluminum fluoride, alumina, etc., drying and firing, and then fluorinating with HF. it can.
Even if alumina is used as a carrier, alumina is substantially converted to aluminum fluoride when fluorinated at a temperature of about 350 ° C.

【0018】以上述べた方法およびその他公知のいかな
る方法で触媒調製を行ってもよいが、触媒の構成成分で
あるZn、Cr、O、Fの組成比は前述した特定の範囲
になければならない。すなわち、FとOの割合を与える
フッ素化率の値が5〜50%、好ましくは7〜40%の
範囲にあり、Crに対するZnの原子比が0.01〜
0.6、好ましくは0.03〜0.5、特に好ましくは
0.05〜0.5という特定の範囲である。フッ素化率
またはZn/Cr比が上記の範囲から外れると必須成分
であるZn、Cr、O、Fの含量が適正範囲から外れる
ため、良好な触媒活性および選択性が得られない。
The catalyst may be prepared by the above-mentioned method or any other known method, but the composition ratio of Zn, Cr, O and F, which are the constituent components of the catalyst, must be within the above-specified range. That is, the value of the fluorination ratio giving the ratio of F and O is in the range of 5 to 50%, preferably 7 to 40%, and the atomic ratio of Zn to Cr is 0.01 to.
The specific range is 0.6, preferably 0.03 to 0.5, particularly preferably 0.05 to 0.5. If the fluorination rate or the Zn / Cr ratio deviates from the above range, the contents of the essential components Zn, Cr, O, and F deviate from the appropriate ranges, so that good catalytic activity and selectivity cannot be obtained.

【0019】Zn/Cr比の調整は、混練法ならば混合
する粉の割合、含浸法や共沈法ならばZnおよび/また
はCr化合物の溶液濃度や溶液組成をコントロールする
ことにより容易に達成される。一方、FおよびOの含量
は触媒前駆体の物性に応じて処理条件を選択することに
よって達成される。すなわち、触媒前駆体が金属酸化物
や水酸化物、酸素および酸素以外のフッ素に置換され得
る基を含有する化合物の場合には該化合物のフッ素化さ
れ易さに応じたフッ素化条件を選び、金属フッ化物を酸
化する際は該フッ化物の酸化され易さに応じた酸化条件
を選ぶことが大切である。
The Zn / Cr ratio can be easily adjusted by controlling the ratio of the powder to be mixed in the kneading method and the solution concentration and the composition of the Zn and / or Cr compound in the impregnation method or the coprecipitation method. It On the other hand, the contents of F and O are achieved by selecting the processing conditions according to the physical properties of the catalyst precursor. That is, in the case where the catalyst precursor is a compound containing a metal oxide or hydroxide, a group that can be substituted with oxygen and fluorine other than oxygen, select fluorination conditions depending on the fluorination easiness of the compound, When oxidizing a metal fluoride, it is important to select an oxidation condition according to the easiness of oxidation of the fluoride.

【0020】フッ素化率を適正な値にすることが容易
に、かつ、温和な条件下で行えることから、好ましい触
媒調製方法の例としては、共沈法で得られた乾燥品(水
酸化物と考えられる)を不活性あるいは実質的に還元性
の雰囲気で焼成し、さらに、300〜450℃で、好ま
しくは加圧下(2〜10kg/cm2 )でHFによりフ
ッ素化する方法があげられる。共沈法においてZnおよ
びCrの化合物が溶解した液と沈澱剤とを反応液のpH
が6〜12、特に好ましくは6.5〜10の範囲内に在
るようにコントロールしながら、双方同時に、あるいは
交互に滴下して調製したスラリーを濾別、洗浄、乾燥
し、前述の方法で焼成、フッ素化する方法を用いれば、
さらに容易にフッ素化率の適正化が計れるため、特に好
ましい方法である。触媒のZn/Cr比やフッ素化率は
化学分析により求めたZn、Cr、O、Fの含有量から
計算することができる。
Since the fluorination ratio can be easily adjusted to an appropriate value under mild conditions, an example of a preferable catalyst preparation method is a dried product (hydroxide) obtained by the coprecipitation method. It is considered that) is calcined in an inert or substantially reducing atmosphere, and further fluorinated with HF at 300 to 450 ° C., preferably under pressure ( 2 to 10 kg / cm 2 ). In the coprecipitation method, the solution of Zn and Cr compounds and the precipitant were mixed to adjust the pH of the reaction solution.
Is controlled to fall within the range of 6 to 12, particularly preferably 6.5 to 10, while the slurry prepared by dropping both at the same time or alternately is filtered, washed, and dried. If you use the method of baking and fluorinating,
This is a particularly preferred method because the fluorination ratio can be more easily optimized. The Zn / Cr ratio and fluorination rate of the catalyst can be calculated from the contents of Zn, Cr, O and F obtained by chemical analysis.

【0021】本発明のZn、Cr、O、Fの元素を必須
成分として含み、構成元素の組成比が特定の範囲内にあ
るフッ素化触媒はハロゲン化炭化水素をHFによりフッ
素化する際に適用できる。なかでも、従来のフッ素化触
媒では極めて反応速度が小さいHCFC−133aのフ
ッ素化反応には特に効果的である。すなわち、従来のフ
ッ素化触媒を用いた場合に較べてHCFC−133aの
転化率が高く、さらに、HFC−134aへの選択率も
高いため、高収率で目的化合物HFC−134aが得ら
れる。そればかりか低い反応温度で所定の収量が得ら
れ、結果としてより長い触媒寿命が達成される等の効果
をももたらす。HCFC−133aのフッ素化反応は固
定床、流動床、移動床等の反応方法をとり得るが、固定
床が一般的である。反応条件は特開昭53−10540
4や特開昭55−27138で唱われている公知の条件
範囲で行い得る。すなわち、モル比:3〜20、温度:
300〜400℃、圧力:大気圧〜20kg/cm2
(ゲージ圧)、SV:100〜10000hr-1であ
る。ただし、本発明によるフッ素化触媒を用いれば、従
来のフッ素化触媒に較べて活性が高いため、好ましい温
度、SVはそれぞれ300〜350℃、750〜500
0hr-1の範囲になる。
The fluorination catalyst of the present invention containing Zn, Cr, O and F elements as essential components and having a composition ratio of constituent elements within a specific range is applied when fluorinating a halogenated hydrocarbon with HF. it can. Among them, the conventional fluorination catalyst is particularly effective for the fluorination reaction of HCFC-133a, which has a very low reaction rate. That is, since the conversion rate of HCFC-133a is high and the selectivity to HFC-134a is high as compared with the case of using a conventional fluorination catalyst, the target compound HFC-134a can be obtained in high yield. Not only that, a certain yield can be obtained at a low reaction temperature, and as a result, a longer catalyst life can be achieved. The fluorination reaction of HCFC-133a can be carried out by a reaction method such as a fixed bed, a fluidized bed or a moving bed, but a fixed bed is generally used. The reaction conditions are JP-A-53-10540.
No. 4 and JP-A-55-27138. That is, molar ratio: 3 to 20, temperature:
300 to 400 ° C, pressure: atmospheric pressure to 20 kg / cm 2
(Gauge pressure), SV: 100 to 10,000 hr −1 . However, since the activity of the fluorination catalyst according to the present invention is higher than that of the conventional fluorination catalyst, the preferable temperature and SV are 300 to 350 ° C. and 750 to 500, respectively.
It will be in the range of 0 hr -1 .

【0022】[0022]

【実施例】以下、実施例および比較例を示して、本発明
を具体的に説明するが、かかる説明によって本発明が限
定されないことは勿論である。尚、説明中Zn/Cr
比、F/Cr比、Al/Cr比、F/Al比、Mg/C
r比は化学分析から求めた触媒に含まれる各元素の原子
比を表し、反応例中のモル比とはHCFC−133aに
対するHFのモル比を表す。SVは標準状態に換算した
値であり、圧力はゲージ圧である。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited by such description. In the explanation, Zn / Cr
Ratio, F / Cr ratio, Al / Cr ratio, F / Al ratio, Mg / C
The r ratio represents the atomic ratio of each element contained in the catalyst obtained from the chemical analysis, and the molar ratio in the reaction example represents the molar ratio of HF to HCFC-133a. SV is a value converted into a standard state, and pressure is a gauge pressure.

【0023】調製例1 純水1lを入れた10lの容器に、Cr(NO33
9H2 O1257gとZn(NO32 ・6H2 O18
7gを純水3lに溶かした溶液と28重量%のアンモニ
ア水1.1lとを撹拌しながら、反応液のpHが8.5
〜9.5の範囲内になるようにコントロールして約2時
間かけて滴下した。得られた水酸化物のスラリーを濾別
し、純水でよく洗浄した後、120℃で乾燥した。得ら
れた固体を粉砕、黒鉛と混合し、打錠成形機によってペ
レット化した。このペレットをN2 気流下400℃で4
時間焼成し触媒前駆体とした。
Preparation Example 1 Cr (NO 3 ) 3 · was added to a 10-liter container containing 1 liter of pure water.
9H 2 O1257g and Zn (NO 3) 2 · 6H 2 O18
While stirring a solution prepared by dissolving 7 g in 3 l of pure water and 1.1 l of 28% by weight ammonia water, the pH of the reaction solution was 8.5.
It was added dropwise over about 2 hours while controlling so as to fall within the range of ˜9.5. The obtained hydroxide slurry was filtered, washed well with pure water, and then dried at 120 ° C. The obtained solid was ground, mixed with graphite, and pelletized by a tablet molding machine. The pellets were heated at 400 ° C. under N 2 flow for 4 times.
It was calcined for a period of time to obtain a catalyst precursor.

【0024】触媒前駆体60mlをインコネル製反応管
に充填し、常圧においてN2 希釈したHF気流下400
℃で、続いてN2 希釈しない100%のHF気流下40
0℃でフッ素化処理を行った。処理後のペレットの組成
を以下に示す。 Zn:11.8重量% Cr:52.5重量% O:23.2重量% F: 9.5重量% これらの値からZn/Cr比は0.18、フッ素化率は
15%であった。
60 ml of the catalyst precursor was filled in a reaction tube made of Inconel, and it was diluted with N 2 at normal pressure under an HF gas flow of 400.
40 ° C., followed by 100% HF flow without dilution with N 2
Fluorination treatment was performed at 0 ° C. The composition of the pellets after the treatment is shown below. Zn: 11.8 wt% Cr: 52.5 wt% O: 23.2 wt% F: 9.5 wt% From these values, the Zn / Cr ratio was 0.18 and the fluorination ratio was 15%. .

【0025】比較調製例1 調製例1と同様に調製した触媒前駆体60mlをインコ
ネル製反応管に充填し、常圧においてN2 希釈したHF
気流下300℃で、続いてN2 希釈しない100%のH
F気流下300℃でフッ素化処理を行った。処理後のペ
レットの組成を以下に示す。 Zn:12.8重量% Cr:55.2重量% O:27.7重量% F: 2.0重量% これらの値からZn/Cr比は0.18、フッ素化率は
3%であった。
Comparative Preparative Example 1 Inconel reaction tube was filled with 60 ml of the catalyst precursor prepared in the same manner as in Preparative Example 1, and HF was diluted with N 2 at atmospheric pressure.
100% H at 300 ° C under a stream of air, followed by N 2 dilution
The fluorination treatment was performed at 300 ° C. in an F gas stream. The composition of the pellets after the treatment is shown below. Zn: 12.8 wt% Cr: 55.2 wt% O: 27.7 wt% F: 2.0 wt% From these values, the Zn / Cr ratio was 0.18 and the fluorination ratio was 3%. .

【0026】比較調製例2 調製例1と同様に調製した触媒前駆体60mlをインコ
ネル製反応管に充填し、常圧においてN2 希釈したHF
気流下600℃で、続いてN2 希釈しない100%のH
F気流下600℃でフッ素化処理を行った。処理後のペ
レットの組成を以下に示す。 Zn:10.2重量% Cr:45.0重量% O:10.5重量% F:30.4重量% これらの値からZn/Cr比は0.18、フッ素化率は
55%であった。
Comparative Preparative Example 2 Inconel reaction tube was filled with 60 ml of the catalyst precursor prepared in the same manner as in Preparative Example 1, and HF was diluted with N 2 at atmospheric pressure.
100% H at 600 ° C under a stream of air, followed by N 2 dilution
The fluorination treatment was carried out at 600 ° C. in an F 2 stream. The composition of the pellets after the treatment is shown below. Zn: 10.2 wt% Cr: 45.0 wt% O: 10.5 wt% F: 30.4 wt% From these values, the Zn / Cr ratio was 0.18 and the fluorination ratio was 55%. .

【0027】比較調製例3 Zn(NO32 ・6H2 Oを加えないこと以外は調製
例1と同様にしてZnを含まない触媒前駆体を調製し
た。この触媒前駆体60mlをインコネル製反応管に充
填し、常圧においてN2 希釈したHF気流下400℃
で、続いてN2 希釈しない100%のHF気流下400
℃でフッ素化処理を行った。処理後のペレットの組成を
以下に示す。 Cr:59.6重量% O:20.6重量% F:
30.4重量% これらの値からZn/Cr比は0、フッ素化率は25%
であった。
Comparative Preparation Example 3 A Zn-free catalyst precursor was prepared in the same manner as in Preparation Example 1 except that Zn (NO 3 ) 2 .6H 2 O was not added. 60 ml of this catalyst precursor was filled in a reaction tube made of Inconel and 400 ° C. under an HF stream diluted with N 2 at normal pressure.
Then, 400% under 100% HF gas flow without N 2 dilution
Fluorination treatment was performed at ° C. The composition of the pellets after the treatment is shown below. Cr: 59.6 wt% O: 20.6 wt% F:
30.4% by weight From these values, the Zn / Cr ratio is 0 and the fluorination ratio is 25%.
Met.

【0028】比較調製例4 Zn(NO32 ・6H2 OのかわりにAl(NO3
3 ・9H2 O196gを加えること以外は調製例1と同
様にしてAl/Crを含む触媒前駆体を調製した。この
触媒前駆体60mlをインコネル製反応管に充填し、常
圧においてN2希釈したHF気流下400℃で、続いて
2 希釈しない100%のHF気流下400℃でフッ素
化処理を行った。処理後のペレットの組成を以下に示
す。 Al: 4.3重量% Cr:52.0重量% O:18.7重量% F:21.8重量% これらの値からAl/Cr比は0.16であった。
Comparative Preparation Example 4 Al (NO 3 ) instead of Zn (NO 3 ) 2 .6H 2 O
Except the addition of 3 · 9H 2 O196g in the same manner as in Preparation Example 1 to prepare a catalyst precursor containing Al / Cr. The catalyst precursor 60ml was packed into an Inconel reaction tube, with HF stream under 400 ° C. was N 2 diluted in normal pressure, followed by fluorination at 100% HF gas stream under 400 ° C. without N 2 dilution was carried out. The composition of the pellets after the treatment is shown below. Al: 4.3 wt% Cr: 52.0 wt% O: 18.7 wt% F: 21.8 wt% From these values, the Al / Cr ratio was 0.16.

【0029】調製例2 CrCl3 ・6H2 O111gとZnCl2 6gを純水
80mlに溶解した液に高純度アルミナ100gを浸漬
し全量を吸収させた。これを120℃で乾燥し、空気気
流下400℃で3時間焼成し、さらにH2 気流下350
℃で3時間焼成し触媒前駆体とした。触媒前駆体60m
lをインコネル製反応管に充填し、N2希釈したHF気
流下380℃で、続いてN2 希釈しない100%のHF
気流下380℃でフッ素化処理を行った。処理後の担持
触媒の組成を以下に示す。 Zn: 1.4重量% Cr:10.8重量% Al:
26.9重量% O: 6.6重量% F:53.6重量%
Preparation Example 2 100 g of high-purity alumina was immersed in a solution prepared by dissolving 111 g of CrCl 3 .6H 2 O and 6 g of ZnCl 2 in 80 ml of pure water to absorb the entire amount. This was dried at 120 ° C., calcined at 400 ° C. for 3 hours in an air stream, and further heated in an H 2 stream at 350 ° C.
It was calcined at ℃ for 3 hours to obtain a catalyst precursor. Catalyst precursor 60m
filled with l to Inconel reaction tube, with N 2 diluted HF gas stream under 380 ° C., followed by no N 2 dilution of 100% HF
The fluorination treatment was performed at 380 ° C. in an air stream. The composition of the supported catalyst after the treatment is shown below. Zn: 1.4 wt% Cr: 10.8 wt% Al:
26.9% by weight O: 6.6% by weight F: 53.6% by weight

【0030】従って、Zn/Cr比は0.10、F/C
r比は 13.6、Al/Cr比は4.8であった。ま
た、担体に用いたアルミナを触媒前駆体と同一条件でフ
ッ素化したところ、処理後のフッ化アルミニウムの組成
は以下の値だった。 Al:33.8重量% O: 4.0重量% F:
61.8重量% よって、F/Al比は2.6であり、担体のフッ化アル
ミニウムに由来するフッ素を除外したF/Cr比は0.
88(=13.6−2.6×4.8)、ZnおよびCr
を含有する化合物のフッ素化率は35%であった。
Therefore, the Zn / Cr ratio is 0.10, F / C
The r ratio was 13.6 and the Al / Cr ratio was 4.8. Further, when the alumina used as the carrier was fluorinated under the same conditions as the catalyst precursor, the composition of the treated aluminum fluoride had the following values. Al: 33.8 wt% O: 4.0 wt% F:
61.8% by weight Therefore, the F / Al ratio is 2.6, and the F / Cr ratio excluding the fluorine derived from the aluminum fluoride of the carrier is 0.
88 (= 13.6-2.6 × 4.8), Zn and Cr
The fluorination ratio of the compound containing was 35%.

【0031】比較調製例5 ZnCl2 を金属溶液に加えないこと以外は調製例2と
同様にして触媒前駆体を調製し、さらに、フッ素化処理
を行った。処理後の担持触媒の組成を以下に示す。
Cr:11.0重量% Al:27.4重量
% O : 6.4重量% F :54.7重量% これらの値からZn/Cr比は0、調製例2と同様な方
法で、担体のフッ化アルミニウムに由来するフッ素を除
外して求めたCrを含有する化合物のフッ素化率は37
%であった。
Comparative Preparation Example 5 A catalyst precursor was prepared in the same manner as in Preparation Example 2 except that ZnCl 2 was not added to the metal solution, and then fluorination treatment was performed. The composition of the supported catalyst after the treatment is shown below.
Cr: 11.0% by weight Al: 27.4% by weight O: 6.4% by weight F: 54.7% by weight From these values, the Zn / Cr ratio was 0. The fluorination ratio of the Cr-containing compound obtained by excluding the fluorine derived from aluminum fluoride is 37.
%Met.

【0032】比較調製例6ZnCl2 のかわりにMgC
2 ・6H2 O8gを金属溶液に加えること以外は調製
例2と同様にして触媒前駆体を調製し、さらに、フッ素
化処理を行った。処理後の担持触媒の組成を以下に示
す。 Mg:0.5重量% Cr:10.9重量% Al:2
7.2重量% O:7.0重量% F:53.4重量% これらの値からMg/Cr比は0.10であった。
Comparative Preparation Example 6 MgC instead of ZnCl 2
l 2 · 6H except the 2 O8g be added to the metal solution catalyst precursor was prepared in the same manner as in Preparation Example 2, further subjected to fluorination treatment. The composition of the supported catalyst after the treatment is shown below. Mg: 0.5 wt% Cr: 10.9 wt% Al: 2
7.2 wt% O: 7.0 wt% F: 53.4 wt% From these values, the Mg / Cr ratio was 0.10.

【0033】実施例1 調製例1で調製した触媒50mlをインコネル製反応管
に充填し、以下の反応条件でHFによるHCFC−13
3aのフッ素化反応を行った。反応管の出口ガスをアル
カリトラップに吹き込んで未反応のHFおよび生成した
HClを除去し、ガスクロによりガス組成を分析した。
結果を表1に示す。 温度:320℃、圧力:2kg/cm2 、モル比:8、
SV:1500hr-1
Example 1 50 ml of the catalyst prepared in Preparation Example 1 was filled in an Inconel reaction tube, and HCFC-13 was prepared by HF under the following reaction conditions.
The fluorination reaction of 3a was performed. The outlet gas of the reaction tube was blown into an alkali trap to remove unreacted HF and generated HCl, and the gas composition was analyzed by gas chromatography.
The results are shown in Table 1. Temperature: 320 ° C., pressure: 2 kg / cm 2 , molar ratio: 8,
SV: 1500 hr -1

【0034】比較例1 フッ素化率が小さい比較調製例1で調製した触媒を用い
て実施例1と同一条件でHCFC−133aのフッ素化
反応を行った。結果を表1に示す。
Comparative Example 1 HCFC-133a was subjected to a fluorination reaction under the same conditions as in Example 1 using the catalyst prepared in Comparative Preparation Example 1 having a low fluorination rate. The results are shown in Table 1.

【0035】比較例2 フッ素化率が大きい比較調製例2で調製した触媒を用い
て実施例1と同一条件でHCFC−133aのフッ素化
反応を行った。結果を表1に示す。
Comparative Example 2 HCFC-133a was fluorinated under the same conditions as in Example 1 except that the catalyst prepared in Comparative Preparation Example 2 having a high fluorination ratio was used. The results are shown in Table 1.

【0036】比較例3 Znを含まない比較調製例3で調製した触媒を用いて実
施例1と同一条件でHCFC−133aのフッ素化反応
を行った。結果を表1に示す。
Comparative Example 3 HCFC-133a was fluorinated under the same conditions as in Example 1 except that the catalyst prepared in Comparative Preparation Example 3 containing no Zn was used. The results are shown in Table 1.

【0037】比較例4 ZnのかわりにAlを添加した比較調製例4で調製した
触媒を用いて実施例1と同一条件でHCFC−133a
のフッ素化反応を行った。結果を表1に示す。
COMPARATIVE EXAMPLE 4 HCFC-133a was prepared under the same conditions as in Example 1 except that the catalyst prepared in Comparative Preparation Example 4 in which Al was added instead of Zn was used.
Was fluorinated. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表中、134a収率、134a選択率はそ
れぞれ、HFC−134aの収率、HFC−134aの
選択率を表す。
In the table, the yield of 134a and the selectivity of 134a represent the yield of HFC-134a and the selectivity of HFC-134a, respectively.

【0040】表1の結果より、Zn、Cr、O、Fの元
素組成比が特定の範囲に在る場合にのみ高い活性、選択
性が得られ、Zn以外(Al)の金属の添加では活性が
むしろ低下することがわかる。
From the results shown in Table 1, high activity and selectivity are obtained only when the elemental composition ratio of Zn, Cr, O, and F is within a specific range, and the activity is high when a metal other than Zn (Al) is added. Can be seen to decrease.

【0041】実施例2 調製例2で調製した触媒を用いて以下の条件でHCFC
−133aをHFによりフッ素化反応を行った。結果を
表2に示す。温度:330℃、圧力:常圧、モル比:
8、SV:2500hr-1
Example 2 Using the catalyst prepared in Preparation Example 2 under the following conditions, HCFC
A fluorination reaction of -133a was performed with HF. The results are shown in Table 2. Temperature: 330 ° C., pressure: normal pressure, molar ratio:
8, SV: 2500 hr -1

【0042】比較例5 Znを含まない比較調製例5で調製した触媒を用いて実
施例2と同一条件でHCFC−133aのフッ素化反応
を行った。結果を表2に示す。
Comparative Example 5 HCFC-133a was fluorinated under the same conditions as in Example 2 except that the catalyst prepared in Comparative Preparation Example 5 containing no Zn was used. The results are shown in Table 2.

【0043】比較例6 ZnのかわりにMgを添加した比較調製例6で調製した
触媒を用いて実施例2と同一条件でHCFC−133a
のフッ素化反応を行った。結果を表2に示す。
Comparative Example 6 HCFC-133a was prepared under the same conditions as in Example 2, except that the catalyst prepared in Comparative Preparation Example 6 was prepared by adding Mg in place of Zn.
Was fluorinated. The results are shown in Table 2.

【0044】[0044]

【表2】 [Table 2]

【0045】表2の結果より担持タイプの触媒において
もZn、Cr、O、Fの元素の組成比が特定範囲にある
触媒が高い活性、選択性を有することがわかる。
From the results shown in Table 2, it can be seen that also in the supported type catalyst, the catalyst having the composition ratio of the elements of Zn, Cr, O and F in the specific range has high activity and selectivity.

【0046】[0046]

【発明の効果】以上説明したように、本発明に係るフッ
素化触媒を用いてHFによるHCFC−133aのフッ
素化反応を行えば高い収率でHFC−134aを得るこ
とができ、さらに、触媒寿命を延長することも可能とな
る。
As described above, HFC-134a can be obtained in a high yield by carrying out the fluorination reaction of HCFC-133a with HF using the fluorination catalyst according to the present invention, and further, the catalyst life Can be extended.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中條 哲夫 神奈川県川崎市川崎区扇町5番1号 昭和 電工株式会社化学品研究所内 (72)発明者 中山 秀俊 神奈川県川崎市川崎区扇町5番1号 昭和 電工株式会社化学品研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Tetsuo Nakajo, Tetsuo Nakajo 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko K.K. Chemicals Research Laboratory (72) Hidetoshi Nakayama 5-1-1, Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa No. Showa Denko Chemicals Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛、クロム、酸素及びフッ素の元素を
必須成分として含み、{Y/(2X+3)}×100%
式で表されるフッ素化率が5〜50%の範囲にあり、か
つ、クロムに対する亜鉛の原子比が0.01〜0.6で
あるフッ素化触媒の存在下、気相でフッ化水素と1−ク
ロロ−2,2,2−トリフルオロエタンを反応させるこ
とを特徴とする1,1,1,2−テトラフルオロエタン
の製造方法。(式中、Xは該触媒に含まれるクロムに対
する亜鉛の原子比を、Yはクロムに対するフッ素の原子
比をそれぞれ表す。)
1. An element including zinc, chromium, oxygen and fluorine as an essential component, {Y / (2X + 3)} × 100%
In the presence of a fluorination catalyst having a fluorination ratio represented by the formula of 5 to 50% and an atomic ratio of zinc to chromium of 0.01 to 0.6, hydrogen fluoride is added in a gas phase. A method for producing 1,1,1,2-tetrafluoroethane, which comprises reacting 1-chloro-2,2,2-trifluoroethane. (In the formula, X represents the atomic ratio of zinc to chromium contained in the catalyst, and Y represents the atomic ratio of fluorine to chromium.)
【請求項2】 フッ素化率が7〜40%の範囲にあるフ
ッ素化触媒を用いる請求項1記載の方法。
2. The method according to claim 1, wherein a fluorination catalyst having a fluorination ratio in the range of 7 to 40% is used.
JP01411493A 1993-01-29 1993-01-29 Method for producing 1,1,1,2-tetrafluoroethane Expired - Lifetime JP3374426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01411493A JP3374426B2 (en) 1993-01-29 1993-01-29 Method for producing 1,1,1,2-tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01411493A JP3374426B2 (en) 1993-01-29 1993-01-29 Method for producing 1,1,1,2-tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH06228022A true JPH06228022A (en) 1994-08-16
JP3374426B2 JP3374426B2 (en) 2003-02-04

Family

ID=11852096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01411493A Expired - Lifetime JP3374426B2 (en) 1993-01-29 1993-01-29 Method for producing 1,1,1,2-tetrafluoroethane

Country Status (1)

Country Link
JP (1) JP3374426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047841A1 (en) * 1997-04-23 1998-10-29 Asahi Glass Company Ltd. Process for producing halogenated hydrocarbons
JP2014530088A (en) * 2011-09-14 2014-11-17 シノケム ランティアン カンパニー リミテッドSinochem Lantian Co., Ltd. Process for preparing 2,3,3,3-tetrafluoropropene
CN114644544A (en) * 2020-12-17 2022-06-21 陕西中化蓝天化工新材料有限公司 Preparation method of fluoroalkane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047841A1 (en) * 1997-04-23 1998-10-29 Asahi Glass Company Ltd. Process for producing halogenated hydrocarbons
JP2014530088A (en) * 2011-09-14 2014-11-17 シノケム ランティアン カンパニー リミテッドSinochem Lantian Co., Ltd. Process for preparing 2,3,3,3-tetrafluoropropene
US9115042B2 (en) 2011-09-14 2015-08-25 Sinochem Lantian Co., Ltd. Method for preparing 2,3,3,3-tetrafluoropropene
CN114644544A (en) * 2020-12-17 2022-06-21 陕西中化蓝天化工新材料有限公司 Preparation method of fluoroalkane

Also Published As

Publication number Publication date
JP3374426B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
EP0629440B1 (en) Fluorination catalyst and fluorination process
JP2557936B2 (en) Process for producing 1,1,1-trifluoro-2,2-dichloroethane by hydrofluorination in the presence of a catalyst
US6433233B1 (en) Process for the preparation of pentafluoroethane, fluorination catalysts and process for the preparation thereof
KR100351211B1 (en) Chromium-based fluorinated catalyst, preparation method of the catalyst and fluorination method using the catalyst
JP5816324B2 (en) Process for selective dehydrohalogenation of halogenated alkanes
AU626349B2 (en) Purification of saturated halocarbons
JPH10113562A (en) Catalyst for fluorination of halogenated hydrocarbon
JP4314391B2 (en) Fluorination catalyst, method for producing the same, and method for producing fluorine compounds using the catalysts
US4814522A (en) Catalytic fluoroolefin transhalogenations
WO1996017812A1 (en) Process for the manufacture of 1,1,1,3,3,3-hexafluoropropane
JP3558385B2 (en) Chromium-based fluorination catalyst and fluorination method
EP0333926B1 (en) Process for preparing vinylidene fluoride by the direct fluorination of vinylidene chloride
JP3374426B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP2996598B2 (en) Chromium-based fluorination catalyst, its production method and fluorination method
CA2069126C (en) Process for fluorinating halogenated hydrocarbon
JPH06211707A (en) Production of dilfuoromethane
US5494877A (en) Chromium-based fluorination catalyst containing gallium and production method thereof
JP3582798B2 (en) Fluorination catalyst and fluorination method
JPH02172932A (en) Fluorination of 1,1,2-trichloro-2,2-difluoroethane
EP0203807B1 (en) Catalytic fluoroolefin transhalogenations
JP2751401B2 (en) Method for producing 1,1-dichloro-1,2,2,2-tetrafluoroethane
JPH06340560A (en) Production of chlorinated hydrocarbon
KR100377125B1 (en) Chromium-based fluorination catalyst, production method thereof, and fluorination method
JPH06298682A (en) Production of 1,1,1,2-tetrafluoroethane
JP2004209431A (en) Fluorination catalyst, and method for producing fluoro-compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131129