JPH06298682A - Production of 1,1,1,2-tetrafluoroethane - Google Patents
Production of 1,1,1,2-tetrafluoroethaneInfo
- Publication number
- JPH06298682A JPH06298682A JP9015993A JP9015993A JPH06298682A JP H06298682 A JPH06298682 A JP H06298682A JP 9015993 A JP9015993 A JP 9015993A JP 9015993 A JP9015993 A JP 9015993A JP H06298682 A JPH06298682 A JP H06298682A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- catalyst
- pressure
- hcfc
- fluorination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はオゾン層を破壊しない代
替フロンである1,1,1,2−テトラフルオロエタン
(以下、HFC−134aと略)の製造に際し、1−ク
ロロ−2,2,2−トリフルオロエタン(以下、HCF
C−133aと略)とフッ化水素(以下、HFと略)と
を新規なフッ素化触媒の存在下で反応させることによ
り、高い収率で目的化合物HFC−134aを得る方法
に関する。The present invention relates to 1-chloro-2,2 in the production of 1,1,1,2-tetrafluoroethane (hereinafter, abbreviated as HFC-134a), which is an alternative CFC which does not destroy the ozone layer. , 2-trifluoroethane (hereinafter referred to as HCF
C-133a) and hydrogen fluoride (hereinafter abbreviated as HF) are reacted in the presence of a novel fluorination catalyst to obtain a target compound HFC-134a in high yield.
【0002】[0002]
【従来の技術】HCFC−133aのフッ素化によるH
FC−134aの合成反応は熱力学的に不利な吸熱反応
であり、平衡が存在する。したがって、一般にはHCF
C−133aに対し化学量論以上のHFを共存させて有
意な平衡転化率を与える条件で反応を行う。一例を挙げ
ると、特開昭55−27138では、CrF3 ・3H2
Oを空気で処理した化合物を触媒として常圧下、反応温
度400℃、HFとHCFC−133aのモル比(以
下、モル比と略)8、空間速度(以下、SVと略)55
0hr-1という反応条件でHFC−134aが収率32
%で得られている。特開平1−268651ではCoC
l2 /Al2 O3 をフッ素化処理して得られる触媒を用
いて、常圧下、反応温度410℃、モル比10、接触時
間30秒(SV120hr-1)という反応条件でHFC
−134a収率は32%である。H by fluorination of HCFC-133a
The synthesis reaction of FC-134a is a thermodynamically disadvantageous endothermic reaction, and an equilibrium exists. Therefore, in general, HCF
The reaction is carried out under the condition that HF of stoichiometry or higher is coexisted with C-133a to give a significant equilibrium conversion rate. As an example, in Japanese Patent Laid-Open No. 55-27138, CrF 3 .3H 2
O is treated with air as a catalyst under a normal pressure at a reaction temperature of 400 ° C., a molar ratio of HF and HCFC-133a (hereinafter, abbreviated as molar ratio) 8, space velocity (hereinafter, abbreviated as SV) 55
Under the reaction condition of 0 hr -1, the yield of HFC-134a is 32.
It is obtained in%. In Japanese Patent Laid-Open No. 1-268651, CoC
Using a catalyst obtained by fluorinating l 2 / Al 2 O 3 , HFC under normal pressure under a reaction condition of a reaction temperature of 410 ° C., a molar ratio of 10 and a contact time of 30 seconds (SV120 hr −1 ).
The -134a yield is 32%.
【0003】このように低いSVで反応を行うことは生
産性が悪く、また、反応温度が高いことは熱的エネルギ
ーロスばかりでなく、選択率の低下を招き、さらに、本
発明者らの知見によれば触媒寿命を短くする。従って、
触媒の高活性化、長寿命化を目指した様々な検討がこれ
までにもなされてきた。すなわち、特開平2−1729
33では、Al、Mg、Ca、Ba、Sr、Fe、N
i、CoおよびMnからなる群から選ばれる少なくとも
一種の元素およびCrを含むハロゲン化物または酸化物
からなる触媒が耐久性(寿命)に優れることを開示して
いる。また、EP502605では、Znを担持したC
r系触媒が高い活性を与えることを開示している。さら
に、特開平4−346943では、RuやPtを担持し
た部分的にフッ化されたCr2 O3 からなる触媒が寿命
が長いと主張している。When the reaction is carried out at such a low SV, the productivity is poor, and the high reaction temperature causes not only a thermal energy loss but also a decrease in the selectivity, and further, the findings of the present inventors. According to the method, the catalyst life is shortened. Therefore,
Various studies aiming at high activity and long life of the catalyst have been made so far. That is, Japanese Patent Laid-Open No. 2-1729
In 33, Al, Mg, Ca, Ba, Sr, Fe, N
It is disclosed that a catalyst composed of a halide or oxide containing at least one element selected from the group consisting of i, Co and Mn and Cr, has excellent durability (lifetime). Further, in EP502605, C supporting Zn is used.
It is disclosed that the r-based catalyst provides high activity. Further, Japanese Patent Laid-Open No. 346943/1992 asserts that a catalyst made of partially fluorinated Cr 2 O 3 supporting Ru or Pt has a long life.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、近年、
特開平4−346943明細書中に記載されている様
に、HFによるHCFC−133aのフッ素化反応を従
来のCr系あるいはAl系触媒を用いて行った場合、反
応圧力を高くすると反応速度が小さくなって生産性が低
下するという本反応固有の新たな問題があることが明ら
かになってきた。すなわち、大気圧(以下、常圧と略)
下では高い反応収率を示す触媒でも、反応圧力を上げる
(例えば10kg/cm2 G(ゲージ圧))とHFC−
134aの選択率は若干向上するものの、HCFC−1
33aの転化率が低下するために収率はかなり低下す
る。(比較の際、反応温度、モル比、標準状態に換算し
たSVは同一にしている)However, in recent years,
As described in JP-A-4-346943, when the fluorination reaction of HCFC-133a with HF is carried out using a conventional Cr-based or Al-based catalyst, the reaction rate decreases when the reaction pressure is increased. Then, it became clear that there is a new problem peculiar to this reaction that productivity decreases. That is, atmospheric pressure (hereinafter, abbreviated as normal pressure)
Even with a catalyst showing a high reaction yield below, when the reaction pressure is increased (for example, 10 kg / cm 2 G (gauge pressure)), HFC-
Although the selectivity of 134a is slightly improved, HCFC-1
The yield is considerably reduced due to the reduced conversion of 33a. (At the time of comparison, the reaction temperature, the molar ratio, and the SV converted to the standard state are the same)
【0005】実際の製造設備において反応を1kg/c
m2 G程度の常圧で行うことは低圧化のための付帯設備
を要するため、設備費の増加につながり好ましくない。
さらに、反応の選択率は加圧下の方が優れており、特
に、除去を要する高い不飽和化合物の副生量を抑えるこ
とができることから、反応圧力を上げても反応速度が低
下しない、さらに好ましくは、反応圧力を上げると反応
速度が増加する触媒の開発が求められている。上記課題
を解決すべく鋭意検討した結果、金属成分としてCdと
Crを組み合わせることにより反応速度に対する圧力の
マイナス効果を改善することができることが判明した。
本発明は上記の発明に基づいてなされたものでHFC−
134aを生産性よく製造する方法の提供を目的とす
る。1 kg / c reaction in an actual manufacturing facility
Performing at a normal pressure of about m 2 G is not preferable because it requires ancillary equipment for lowering the pressure, resulting in an increase in equipment cost.
Furthermore, the selectivity of the reaction is better under pressure, and in particular, the reaction rate does not decrease even when the reaction pressure is increased, because the by-product amount of a high unsaturated compound that needs to be removed can be suppressed, and more preferable. Are required to develop a catalyst whose reaction rate increases with increasing reaction pressure. As a result of intensive studies to solve the above problems, it was found that the negative effect of pressure on the reaction rate can be improved by combining Cd and Cr as metal components.
The present invention has been made based on the above-mentioned invention.
It is an object of the present invention to provide a method for producing 134a with high productivity.
【0006】[0006]
【課題を解決するための手段】本発明においては、HC
FC−133aとHFとの接触により、HFC−134
aを製造する方法において、Cd、Cr、O、Fを必須
成分として含み、Crに対するCdの原子比が0.01
〜0.6、特に好ましくは0.03〜0.5である触媒
を用いることを解決の手段とした。触媒の構成成分とし
てはアルカリ金属が大量に(重量で%オーダー)含まれ
ることはあまり好ましくないが、その他(Cd、Cr、
O、Fは除く)の元素は%オーダー以上含んでもよい。In the present invention, HC
By contacting FC-133a and HF, HFC-134
In the method for producing a, Cd, Cr, O and F are contained as essential components, and the atomic ratio of Cd to Cr is 0.01.
The solution was to use a catalyst of ˜0.6, particularly preferably 0.03 to 0.5. It is not so preferable that a large amount of alkali metal is contained as a constituent component of the catalyst (% order by weight), but other (Cd, Cr,
Elements other than O and F) may be included in the order of% or more.
【0007】本発明で用いる触媒は、CdおよびCrを
含有する化合物(酸化物や水酸化物が好ましい)を触媒
前駆体として、これをHFやF2 、分子中にフッ素を有
するハロゲン化炭化水素等によってフッ素化し、OやO
Hを部分的にフッ素に置き換えることによって調製する
ことができる。触媒前駆体の調製方法としては従来知ら
れている混練法、含浸法、共沈法等のいかなる方法も用
いることができ、また、触媒前駆体を調製するための原
料としては工業規模で入手可能ならば、いかなる化合物
を用いてもよい。上記の方法のうち、含浸法や共沈法が
CdとCrを均一に分布させ得るため好ましい。なかで
も、共沈法は触媒のバルク組成まで均一に調整すること
が可能であるためさらに好ましい。The catalyst used in the present invention is a compound containing Cd and Cr (preferably an oxide or a hydroxide) as a catalyst precursor, which is HF, F 2 , or a halogenated hydrocarbon having fluorine in the molecule. Fluorinated by such as O and O
It can be prepared by partially replacing H with fluorine. As a method for preparing the catalyst precursor, any conventionally known method such as a kneading method, an impregnation method or a coprecipitation method can be used, and a raw material for preparing the catalyst precursor can be obtained on an industrial scale. Then, any compound may be used. Among the above methods, the impregnation method and the coprecipitation method are preferable because Cd and Cr can be uniformly distributed. Among them, the coprecipitation method is more preferable because it is possible to uniformly adjust the bulk composition of the catalyst.
【0008】従って、好ましい触媒前駆体の調製方法の
例としては、CdおよびCrの化合物が溶解した液を沈
澱剤と反応させて沈澱をつくり、濾別、洗浄、乾燥、焼
成する方法(共沈法の例)、Cr2 O3 や水酸化クロム
にCd化合物の溶液を含浸し、乾燥、焼成する方法(含
浸法の例)等があげられる。さらに好ましい調製方法の
例としては、共沈法においてCdおよびCrの化合物が
溶解した液と沈澱剤とを反応液のpHが6〜12、特に
好ましくは6.5〜10の範囲内に在るようにコントロ
ールしながら、双方同時に、あるいは交互に滴下して調
製したスラリーを濾別、洗浄、乾燥し、N2 中で焼成す
る方法があげられる。触媒形状として成形物が望ましい
場合には焼成前、または焼成後に打錠成形を行ったり、
乾燥前に押し出し成形を実施することにより成形物とす
ることができる。Therefore, as an example of a preferable method for preparing the catalyst precursor, a method in which a liquid in which the Cd and Cr compounds are dissolved is reacted with a precipitant to form a precipitate, which is filtered, washed, dried and calcined (coprecipitation) Method), a method of impregnating Cr 2 O 3 or chromium hydroxide with a solution of a Cd compound, and drying and firing (example of impregnation method). As a more preferred example of the preparation method, the pH of the reaction solution of the solution in which the compounds of Cd and Cr are dissolved and the precipitating agent in the coprecipitation method is in the range of 6 to 12, particularly preferably 6.5 to 10. While controlling as described above, a method in which the slurry prepared by dropping both simultaneously or alternately is filtered, washed, dried, and fired in N 2 . If a molded article is desired as the catalyst shape, tablet molding may be performed before or after firing,
A molded product can be obtained by carrying out extrusion molding before drying.
【0009】以上述べた方法およびその他公知のいかな
る方法で触媒調製を行ってもよいが、Crに対するCd
の原子比(以下、Cd/Cr比と略)は0.01〜0.
6、好ましくは0.03〜0.5という範囲にしなけれ
ばならない。上記の範囲よりCd/Cr比が小さいと、
反応圧力の増加により反応速度が低下する割合が大き
く、また、Cd/Cr比が大き過ぎると常圧における反
応速度が低下するため好ましくない。Cd/Cr比の調
整は、混練法ならば混合する粉の割合、含浸法や共沈法
ならばCdおよび/またはCr化合物の溶液濃度や溶液
組成をコントロールすることにより容易に達成される。The catalyst may be prepared by the above-mentioned method and any other known method.
Atomic ratio (hereinafter, abbreviated as Cd / Cr ratio) is 0.01 to 0.
6, preferably 0.03 to 0.5. If the Cd / Cr ratio is smaller than the above range,
The rate of decrease in the reaction rate due to an increase in the reaction pressure is large, and if the Cd / Cr ratio is too large, the reaction rate at normal pressure decreases, which is not preferable. The adjustment of the Cd / Cr ratio can be easily achieved by controlling the ratio of the powder to be mixed in the kneading method and the solution concentration or solution composition of the Cd and / or Cr compound in the impregnation method or the coprecipitation method.
【0010】本発明のフッ素化触媒はさらにO、Fを必
須成分とする。O、Fの含量はCd/Cr比や触媒前駆
体の調製方法によって適切な範囲が変化するが、何れの
成分も触媒の全重量に対して0.3重量%以上は必要で
ある。好ましいOの含量の範囲は1〜25重量%であ
る。触媒中にOとFを含有させるには、上記のようにC
dおよびCrを含有する化合物(酸化物や水酸化物が好
ましい)をHFやF2 、分子中にフッ素を有するハロゲ
ン化炭化水素等によってフッ素化することで達成でき
る。好ましい触媒前駆体のフッ素化方法としては、30
0〜450℃で、好ましくは加圧下(2〜10kg/c
m2 G)でHFによりフッ素化する方法があげられる。The fluorination catalyst of the present invention further contains O and F as essential components. The appropriate range of the O and F contents varies depending on the Cd / Cr ratio and the method for preparing the catalyst precursor, but it is necessary that both components be 0.3% by weight or more based on the total weight of the catalyst. The preferred range of O content is 1 to 25% by weight. To include O and F in the catalyst, as described above, C
This can be achieved by fluorinating a compound containing d and Cr (preferably an oxide or hydroxide) with HF, F 2 , a halogenated hydrocarbon having fluorine in the molecule, or the like. A preferred method for fluorinating a catalyst precursor is 30
0 to 450 ° C., preferably under pressure (2 to 10 kg / c
m 2 G) is a method of fluorinating with HF.
【0011】本発明のCd、Cr、O、Fを必須成分と
して含むフッ素化触媒はハロゲン化炭化水素をHFによ
りフッ素化する際に適用できるが、HCFC−133a
のフッ素化反応を加圧下において行う際には特に効果的
である。つまり、オキシフッ化クロムのような従来のフ
ッ素化触媒を用いた場合に認められる、反応圧力を上げ
ると反応速度が低下し、HCFC−133aの転化率が
減少するという反応圧力のマイナス効果が改善できる。
さらに詳細に説明すると、本発明のCd、Cr、O、F
を必須成分として含む触媒は常圧においてはオキシフッ
化クロムのごとき従来のフッ素化触媒より活性が多少低
いものの、反応圧力を高くしても、反応速度(HCFC
−133a転化率)がほとんど低下しない。一方、オキ
シフッ化クロムのごとき従来のフッ素化触媒では、反応
圧力を高くすると反応速度(HCFC−133a転化
率)が低下していく。The fluorination catalyst of the present invention containing Cd, Cr, O and F as an essential component can be applied when fluorinating a halogenated hydrocarbon with HF, but HCFC-133a
It is particularly effective when the above fluorination reaction is carried out under pressure. That is, the negative effect of the reaction pressure, which is observed when a conventional fluorination catalyst such as chromium oxyfluoride is used, is that the reaction rate is decreased when the reaction pressure is increased and the conversion rate of HCFC-133a is decreased, which can be improved. .
More specifically, the Cd, Cr, O and F of the present invention will be described.
Although the catalyst containing as an essential component is somewhat less active than conventional fluorination catalysts such as chromium oxyfluoride at atmospheric pressure, even if the reaction pressure is increased, the reaction rate (HCFC
(-133a conversion) hardly decreases. On the other hand, in a conventional fluorination catalyst such as chromium oxyfluoride, the reaction rate (HCFC-133a conversion rate) decreases as the reaction pressure increases.
【0012】従って、2kg/cm2 G程度の反応圧力
で両者のHCFC−133a転化率が逆転し、さらに反
応圧力をあげていくと転化率の差は大きくなっていく。
すなわち本発明の触媒を用いることにより従来のフッ素
化触媒で認められた反応圧力のマイナス効果を改善する
ことができ、さらに、反応を加圧下で行うことにより副
生物の生成量も減少させることができるため、特に、加
圧下のHCFC−133aのフッ素化反応において高い
収率で目的化合物HFC−134aを得ることができ
る。Therefore, the HCFC-133a conversion rates of the two are reversed at a reaction pressure of about 2 kg / cm 2 G, and the difference between the conversion rates becomes larger as the reaction pressure is further increased.
That is, by using the catalyst of the present invention, the negative effect of the reaction pressure observed in the conventional fluorination catalyst can be improved, and further, by carrying out the reaction under pressure, the production amount of by-products can be reduced. Therefore, the target compound HFC-134a can be obtained in a high yield particularly in the fluorination reaction of HCFC-133a under pressure.
【0013】HCFC−133aのフッ素化反応は固定
床、流動床、移動床等の反応方法をとり得るが、固定床
が一般的である。反応条件は特開昭53−105404
や特開昭55−27138で唱われている公知の条件範
囲で行い得る。すなわち、モル比:3〜20、温度:3
00〜400℃、圧力:大気圧〜20kg/cm2 G、
SV:100〜10000hr-1である。本発明のフッ
素化触媒は加圧下でも反応速度が低下しないため反応圧
力は常圧以上に上げてよく、好ましい反応圧力は1.5
〜20kg/cm2 G、より好ましくは2〜20kg/
cm2 Gである。The fluorination reaction of HCFC-133a can be carried out by a reaction method such as a fixed bed, a fluidized bed or a moving bed, but a fixed bed is generally used. The reaction conditions are JP-A-53-105404.
Alternatively, it can be carried out within the known condition range as disclosed in JP-A-55-27138. That is, molar ratio: 3 to 20, temperature: 3
00 to 400 ° C., pressure: atmospheric pressure to 20 kg / cm 2 G,
SV: 100-10000 hr -1 . Since the reaction rate of the fluorination catalyst of the present invention does not decrease even under pressure, the reaction pressure may be raised to atmospheric pressure or higher, and the preferable reaction pressure is 1.5.
-20 kg / cm 2 G, more preferably 2-20 kg /
cm 2 G.
【0014】[0014]
【実施例】以下、実施例および比較例を示して、本発明
を具体的に説明するが、かかる説明によって本発明が限
定されないことは勿論である。尚、説明中Cd/Cr比
は化学分析から求めた触媒に含まれる各元素の原子比を
表し、実施例中のモル比とはHCFC−133aに対す
るHFのモル比を表す。SVは標準状態に換算した値で
あり、圧力はゲージ圧である。EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited by such description. In the description, the Cd / Cr ratio represents the atomic ratio of each element contained in the catalyst obtained from the chemical analysis, and the molar ratio in the examples represents the molar ratio of HF to HCFC-133a. SV is a value converted into a standard state, and pressure is a gauge pressure.
【0015】調製例1 純水1lを入れた10lの容器に、Cr(NO3 )3 ・
9H2 O1257gとCd(NO3 )2 ・4H2 O97
gを純水3lに溶かした溶液と28重量%のアンモニア
水1.1lとをかくはんしながら、反応液のpHが8.
5〜9.5の範囲内になるようにコントロールして約2
時間かけて滴下した。得られた水酸化物のスラリーを濾
別し、純水でよく洗浄した後、120℃で乾燥した。得
られた固体を粉砕、黒鉛と混合し、打錠成形機によって
ペレット化した。このペレットをN2 気流下400℃で
4時間焼成し触媒前駆体とした。触媒前駆体60mlを
インコネル製反応管に充填し、常圧においてN2 希釈し
たHF気流下350℃で、続いてN2 希釈しない100
%のHF気流下350℃で、さらに100%のHF気流
下で昇圧して4kg/cm2 Gでフッ素化処理を行っ
た。処理後のペレットの組成を以下に示す。 Cd:10.5重量% Cr:49.1重量% O:14.5重量% F:22.5重量% これらの値からCd/Cr比は0.1であった。Preparation Example 1 Cr (NO 3 ) 3 ··· was placed in a 10-liter container containing 1 liter of pure water.
9H 2 O1257g and Cd (NO 3) 2 · 4H 2 O97
pH of the reaction solution was 8. while stirring a solution prepared by dissolving 3 g of pure water in 3 l of pure water and 1.1 l of 28 wt% ammonia water.
Approximately 2 by controlling to be within the range of 5 to 9.5
It dripped over time. The obtained hydroxide slurry was filtered, washed well with pure water, and then dried at 120 ° C. The obtained solid was ground, mixed with graphite, and pelletized by a tablet molding machine. The pellets were calcined at 400 ° C. for 4 hours under N 2 flow to obtain a catalyst precursor. 60 ml of the catalyst precursor was filled in a reaction tube made of Inconel, and at 350 ° C. under an HF gas stream diluted with N 2 at normal pressure, and then 100 with no N 2 dilution.
Fluorination treatment was carried out at 4 kg / cm 2 G by pressurizing at 350 ° C. under 100% HF gas flow and further under 100% HF gas flow. The composition of the pellets after the treatment is shown below. Cd: 10.5 wt% Cr: 49.1 wt% O: 14.5 wt% F: 22.5 wt% From these values, the Cd / Cr ratio was 0.1.
【0016】比較調製例1 Cd(NO3 )2 ・4H2 Oを加えないこと以外は調製
例1と同様にしてCdを含まない触媒前駆体を調製し
た。この触媒前駆体60mlをインコネル製反応管に充
填し、調製例1と同様にしてフッ素化処理を行った。処
理後のペレットの組成を以下に示す。 Cr:56.9重量% O:16.3重量% F:
23.8重量%[0016] was prepared Comparative Preparation Example 1 Cd (NO 3) except that no addition of 2 · 4H 2 O does not contain Cd in the same manner as in Preparation Example 1 catalyst precursor. 60 ml of this catalyst precursor was filled in a reaction tube made of Inconel and fluorinated as in Preparation Example 1. The composition of the pellets after the treatment is shown below. Cr: 56.9 wt% O: 16.3 wt% F:
23.8% by weight
【0017】調製例2 比較調製例1で作った乾燥品200gにCd(NO3 )
2 ・4H2 O18gを純水に溶解して含浸し、再度12
0℃で乾燥した。以下の方法は調製例1と同様にしてフ
ッ素化処理まで行った。処理後のペレットの組成を以下
に示す。 Cd: 3.7重量% Cr:54.6重量% O:15.9重量% F:23.7重量%Preparation Example 2 Cd (NO 3 ) was added to 200 g of the dried product prepared in Comparative Preparation Example 1.
The 2 · 4H 2 O18g impregnated was dissolved in pure water, 12 again
It was dried at 0 ° C. The following method was performed in the same manner as in Preparation Example 1 up to the fluorination treatment. The composition of the pellets after the treatment is shown below. Cd: 3.7 wt% Cr: 54.6 wt% O: 15.9 wt% F: 23.7 wt%
【0018】実施例1 調製例1で調製した触媒50mlをインコネル製反応管
に充填し、以下の反応条件でHFによるHCFC−13
3aのフッ素化反応を行った。反応管の出口ガスをアル
カリトラップに吹き込んで未反応のHFおよび生成した
HClを除去し、ガスクロによりガス組成を分析した。
結果を表1に示す。 温度:320℃、圧力:常圧、モル比:8、SV:15
00hr-1 Example 1 50 ml of the catalyst prepared in Preparation Example 1 was filled in an Inconel reaction tube, and HCFC-13 was prepared by HF under the following reaction conditions.
The fluorination reaction of 3a was performed. The outlet gas of the reaction tube was blown into an alkali trap to remove unreacted HF and generated HCl, and the gas composition was analyzed by gas chromatography.
The results are shown in Table 1. Temperature: 320 ° C., pressure: normal pressure, molar ratio: 8, SV: 15
00 hr -1
【0019】実施例2 反応圧力を2kg/cm2 Gにする以外は実施例1と同
様にしてHCFC−133aのフッ素化反応を行った。
結果を表1に示す。Example 2 The fluorination reaction of HCFC-133a was carried out in the same manner as in Example 1 except that the reaction pressure was 2 kg / cm 2 G.
The results are shown in Table 1.
【0020】実施例3 反応圧力を4kg/cm2 Gにする以外は実施例1と同
様にしてHCFC−133aのフッ素化反応を行った。
結果を表1に示す。Example 3 The fluorination reaction of HCFC-133a was carried out in the same manner as in Example 1 except that the reaction pressure was 4 kg / cm 2 G.
The results are shown in Table 1.
【0021】実施例4 調製例2で調製した触媒を用いる以外は実施例1と同様
にしてHCFC−133aのフッ素化反応を行った。結
果を表1に示す。Example 4 The fluorination reaction of HCFC-133a was carried out in the same manner as in Example 1 except that the catalyst prepared in Preparation Example 2 was used. The results are shown in Table 1.
【0022】実施例5 反応圧力を4kg/cm2 Gにする以外は実施例3と同
様にしてHCFC−133aのフッ素化反応を行った。
結果を表1に示す。Example 5 The fluorination reaction of HCFC-133a was carried out in the same manner as in Example 3 except that the reaction pressure was 4 kg / cm 2 G.
The results are shown in Table 1.
【0023】比較例1 比較調製例1で調製した触媒を用いる以外は実施例1と
同様にしてHCFC−133aのフッ素化反応を行っ
た。結果を表1に示す。Comparative Example 1 HCFC-133a was subjected to a fluorination reaction in the same manner as in Example 1 except that the catalyst prepared in Comparative Preparation Example 1 was used. The results are shown in Table 1.
【0024】比較例2 反応圧力を2kg/cm2 Gにする以外は比較例1と同
様にしてHCFC−133aのフッ素化反応を行った。
結果を表1に示す。Comparative Example 2 HCFC-133a was fluorinated as in Comparative Example 1 except that the reaction pressure was 2 kg / cm 2 G.
The results are shown in Table 1.
【0025】比較例3 反応圧力を4kg/cm2 Gにする以外は比較例1と同
様にしてHCFC−133aのフッ素化反応を行った。
結果を表1に示す。Comparative Example 3 The fluorination reaction of HCFC-133a was carried out in the same manner as in Comparative Example 1 except that the reaction pressure was 4 kg / cm 2 G.
The results are shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】表中、134a収率 、134a選択率は
それぞれ、HFC−134aの収率、HFC−134a
の選択率を表す。In the table, 134a yield and 134a selectivity are HFC-134a yield and HFC-134a, respectively.
Represents the selectivity of.
【0028】表1の結果より、常圧においてはCdを添
加しない触媒の方が高い収率を与えるが、反応圧力が2
kg/cm2 G以上になると、結果が逆転してCdを添
加した触媒の方が収率が高くなり、さらに、反応圧力が
高くなると収率の差が大きくなっていくことがわかる。
このことはCdとCrを組み合わせることにより圧力の
マイナス効果を改善できることを示している。From the results shown in Table 1, the catalyst without addition of Cd gives higher yields under normal pressure, but the reaction pressure is 2
It can be seen that the results are reversed when the amount is more than kg / cm 2 G and the yield is higher for the catalyst to which Cd is added, and further, the difference in the yield is increased as the reaction pressure is increased.
This indicates that the negative effect of pressure can be improved by combining Cd and Cr.
【0029】[0029]
【発明の効果】以上説明したように、本発明に係るフッ
素化触媒を用いてHFによるHCFC−133aのフッ
素化反応を行えば加圧下でも高収率でHFC−134a
を得ることができる。As described above, when the fluorination reaction of HCFC-133a with HF is carried out using the fluorination catalyst according to the present invention, HFC-134a can be produced in high yield even under pressure.
Can be obtained.
フロントページの続き (72)発明者 中條 哲夫 神奈川県川崎市川崎区扇町5番1号 昭和 電工株式会社化学品研究所内Front page continuation (72) Inventor Tetsuo Nakajo 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko K.K.
Claims (1)
必須成分として含み、クロムに対するカドミウムの原子
比が0.01〜0.6であることを特徴とするフッ素化
触媒の存在下、気相でフッ化水素と1−クロロ−2,
2,2−トリフルオロエタンを接触させて、1,1,
1,2−テトラフルオロエタンを製造する方法。1. Cadmium, chromium, oxygen and fluorine are contained as essential components, and the atomic ratio of cadmium to chromium is 0.01 to 0.6. Hydrogen chloride and 1-chloro-2,
Contact 2,2-trifluoroethane to give 1,1,
A method for producing 1,2-tetrafluoroethane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9015993A JPH06298682A (en) | 1993-04-16 | 1993-04-16 | Production of 1,1,1,2-tetrafluoroethane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9015993A JPH06298682A (en) | 1993-04-16 | 1993-04-16 | Production of 1,1,1,2-tetrafluoroethane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06298682A true JPH06298682A (en) | 1994-10-25 |
Family
ID=13990717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9015993A Pending JPH06298682A (en) | 1993-04-16 | 1993-04-16 | Production of 1,1,1,2-tetrafluoroethane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06298682A (en) |
-
1993
- 1993-04-16 JP JP9015993A patent/JPH06298682A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0629440B1 (en) | Fluorination catalyst and fluorination process | |
EP0968161B1 (en) | Process for the manufacture of 1,1,1,3,3-pentafluoropropane | |
KR100351211B1 (en) | Chromium-based fluorinated catalyst, preparation method of the catalyst and fluorination method using the catalyst | |
JP3412165B2 (en) | Fluorination catalyst and method for fluorination of halogenated hydrocarbon | |
JPH0780796B2 (en) | Method for producing 1,1,1,2-tetrafluoroethane | |
EP2417086B1 (en) | Process for preparing 3,3,3-trifluoropropene | |
JPH04503215A (en) | Production of 1,1,1,2-tetrafluoroethane | |
JP6827246B2 (en) | Method for producing halogenated butene compound | |
JPH06293676A (en) | Preparation of pentafluoroethane by disproportionation of tetrafluorochloroethane | |
US5616820A (en) | Process for the manufacture of 1,1,1,2-tetrafluoro-2-chloroethane and of pentafluoroethane | |
JP3558385B2 (en) | Chromium-based fluorination catalyst and fluorination method | |
EP0516000B1 (en) | Process for fluorinating halogenated hydrocarbon | |
JP3484824B2 (en) | Method for producing 1,1,1,3,3-pentafluoropropane | |
EP0712826A1 (en) | 1,1,1-Trifluoroethane synthesis using a supported lewis acid | |
JP2996598B2 (en) | Chromium-based fluorination catalyst, its production method and fluorination method | |
JP3758749B2 (en) | Synthesis of difluoromethane | |
EP0638535B1 (en) | Process for preparing pentafluorethane | |
JP5138605B2 (en) | Method for producing pentafluoroethane | |
JPH06298682A (en) | Production of 1,1,1,2-tetrafluoroethane | |
US5494877A (en) | Chromium-based fluorination catalyst containing gallium and production method thereof | |
JP3582798B2 (en) | Fluorination catalyst and fluorination method | |
JPH11116510A (en) | Production of 1,1,1,2,2-pentafluoroethane | |
JP3374426B2 (en) | Method for producing 1,1,1,2-tetrafluoroethane | |
KR100377125B1 (en) | Chromium-based fluorination catalyst, production method thereof, and fluorination method | |
JPH06211707A (en) | Production of dilfuoromethane |