JPH0622729U - Catalytic combustion device - Google Patents

Catalytic combustion device

Info

Publication number
JPH0622729U
JPH0622729U JP5820992U JP5820992U JPH0622729U JP H0622729 U JPH0622729 U JP H0622729U JP 5820992 U JP5820992 U JP 5820992U JP 5820992 U JP5820992 U JP 5820992U JP H0622729 U JPH0622729 U JP H0622729U
Authority
JP
Japan
Prior art keywords
heat exchanger
containing gas
combustible component
gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5820992U
Other languages
Japanese (ja)
Other versions
JP2605666Y2 (en
Inventor
宏 一柳
宣雄 松尾
正行 松田
三夫 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1992058209U priority Critical patent/JP2605666Y2/en
Publication of JPH0622729U publication Critical patent/JPH0622729U/en
Application granted granted Critical
Publication of JP2605666Y2 publication Critical patent/JP2605666Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 助燃運転や希釈運転を必要とすることなく発
熱量変動範囲の大きい産業廃ガス等の可燃成分含有ガス
の燃焼処理可能な触媒燃焼装置を提供するのが目的であ
る。 【構成】 触媒燃焼装置の熱交換器を複数個に分割して
可燃成分含有ガス1流路と燃焼排ガス3流路とをそれぞ
れ直列に接続し、各熱交換器可燃成分含有ガス流路のそ
れぞれに流量調節可能なバイパス流路16を設ける。 【効果】 発熱量最小の場合に可燃成分含有ガス流路に
直列の全熱交換器を使い、発熱量最大の場合に可燃成分
含有ガス流路最下流の熱交換器のみに可燃成分含有ガス
を供給することによって助燃運転も希釈運転も不要にす
る熱交換器を選定できる。
(57) [Summary] (Correction) [Purpose] To provide a catalytic combustion device that can process combustion of gas containing combustible components such as industrial waste gas whose fluctuating calorific value is large without requiring auxiliary combustion operation or dilution operation. The purpose is. [Composition] A heat exchanger of a catalytic combustion device is divided into a plurality of parts, and a combustible component-containing gas 1 flow path and a combustion exhaust gas 3 flow path are respectively connected in series, and each heat exchanger combustible component-containing gas flow path is connected. A bypass flow path 16 whose flow rate can be adjusted is provided. [Effect] When the calorific value is minimum, a total heat exchanger in series with the combustible component-containing gas flow path is used, and when the calorific value is maximum, the combustible-component-containing gas is supplied only to the most downstream heat exchanger. It is possible to select a heat exchanger that requires neither auxiliary combustion operation nor dilution operation by supplying it.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、触媒燃焼装置に係り、特に可燃成分を含む産業廃ガス中の臭気成分 や有害成分の燃焼除去に好適な触媒燃焼装置に関する。 The present invention relates to a catalytic combustion device, and more particularly to a catalytic combustion device suitable for burning and removing odorous components and harmful components in industrial waste gas containing combustible components.

【0002】[0002]

【従来の技術】[Prior art]

化学工業などの反応工程において排出される廃ガスや、樹脂、合板、半導体な どの製造工程(焼成、乾燥、洗浄)で発生する廃ガス、あるいは塗装の焼付乾燥 工程から発生する廃ガスの中には、微量の臭気成分や有害成分が含まれている。 化学工業においては、原料中の分解ガスや未収率分として、一酸化炭素や炭化水 素および酢酸などの有機酸類、アルデヒド類などが代表的なものとして含まれる 。また樹脂などの製造工程や塗装工程からは溶剤として使われるトルエンやアセ トン、アルコール系炭化水素などが廃ガス中に含まれる。これらの成分を含む産 業廃ガスは、そのまま排出すると悪臭を発生すると共に、人体に対して有害なの で、公害防止の観点から排気前の脱臭無公害化設備が用いられる。この廃ガス脱 臭無公害化設備の代表的なものには、洗浄によるもの、吸着によるものおよび燃 焼(焼却)によるものなどがある。しかし洗浄や吸着によるものは、その後の吸 着剤の再生や廃水の処理などが必要なため、一般に燃焼による産業廃ガス処理方 式が広く採用されている。産業廃ガスの燃焼処理方式は、直接燃焼方式と触媒燃 焼方式に大別される。触媒燃焼方式は、白金、パラジウムなどの貴金属あるいは コバルト、ニッケルなどの遷移金属等の酸化作用のある金属を触媒成分として活 性アルミナなどに担持した燃焼触媒を用い、産業廃ガスの接触酸化処理をするも のである。これは直接燃焼方式に比べ低温で燃焼処理ができるので、補助燃料低 減によるランニングコストの低減や二次公害となるNOxの発生がほとんどない などのメリットがあり、近年広く使用されるようになってきた。しかし、産業廃 ガスを触媒で安定燃焼させるためには、産業廃ガスを触媒通過前に予熱し、触媒 燃焼反応開始温度以上に維持する必要がある。この触媒燃焼反応開始温度は、産 業廃ガス中に含まれる処理成分によって異なる。水素や一酸化炭素などでは10 0〜200℃、プロパンなどの炭化水素が含まれる場合は250〜350℃程度 である。この産業廃ガスの予熱には、産業廃ガス処理成分の燃焼による燃焼排ガ スの温度上昇を利用し、熱交換器により燃焼排ガスから廃熱を回収して産業廃ガ スを予熱する方式が一般的である。 Of the waste gas emitted in the reaction process of the chemical industry, the waste gas generated in the manufacturing process (baking, drying, cleaning) such as resin, plywood, and semiconductor, or the waste gas generated in the baking and drying process of coating. Contains a trace amount of odorous components and harmful components. In the chemical industry, decomposition gases and unrecovered components in raw materials typically include organic acids such as carbon monoxide and hydrocarbons and acetic acid, and aldehydes. In addition, the waste gas contains toluene, acetone, and alcoholic hydrocarbons that are used as solvents in the resin manufacturing process and painting process. Industrial waste gas containing these components produces a foul odor when discharged as it is and is harmful to the human body. Therefore, from the viewpoint of pollution prevention, deodorization and pollution-free equipment before exhaust is used. Typical waste gas deodorizing and pollution-free equipment includes cleaning equipment, adsorption equipment, and combustion (incineration) equipment. However, cleaning or adsorption requires subsequent regeneration of the adsorbent or treatment of wastewater, so the industrial waste gas treatment method by combustion is generally widely adopted. The combustion treatment method of industrial waste gas is roughly classified into a direct combustion method and a catalytic combustion method. The catalytic combustion method uses a combustion catalyst in which a noble metal such as platinum or palladium or a transition metal such as cobalt or nickel, which has an oxidizing action, is supported as a catalyst component on activated alumina or the like, and catalytic oxidation treatment of industrial waste gas is performed. It is. Compared with the direct combustion method, this can be burned at a lower temperature, so it has advantages such as lower running costs due to lower auxiliary fuel, and almost no generation of NOx that causes secondary pollution. It has become widely used in recent years. Came. However, in order to stably burn the industrial waste gas with the catalyst, it is necessary to preheat the industrial waste gas before passing through the catalyst and maintain it at the catalyst combustion reaction initiation temperature or higher. This catalytic combustion reaction start temperature differs depending on the treatment components contained in the industrial waste gas. The temperature is about 100 to 200 ° C. for hydrogen and carbon monoxide, and about 250 to 350 ° C. for hydrocarbons such as propane. To preheat the industrial waste gas, the method of preheating the industrial waste gas by utilizing the temperature rise of the combustion exhaust gas due to the combustion of the industrial waste gas treatment components and recovering the waste heat from the combustion exhaust gas by the heat exchanger is used. It is common.

【0003】 図3は従来技術による産業廃ガス処理用触媒燃焼装置の一例を示す系統図であ る。産業廃ガス等の可燃成分含有ガス1の流路2には、その可燃成分含有ガスの 燃焼排ガス3によって可燃成分含有ガス1の予熱を行う熱交換器5を通して起動 炉6が接続されている。起動炉6は、可燃成分含有ガス1の発熱量が手頃な場合 には、予熱された可燃成分含有ガス1とブロワ7を使って供給される燃焼空気8 とでできる燃料ガス9の流路10を通って触媒燃焼炉11と繋がる。触媒燃焼炉 11の中には流路断面全域に配された燃焼触媒12が存在する。触媒燃焼炉11 には燃焼排ガスを熱源として利用する熱交換器5が接続され、その先は燃焼排ガ ス流路13を経て煙突14に繋がっている。煙突14から排気される前にボイラ 等の廃熱回収装置が設置される場合もある。熱交換器5の可燃成分含有ガス流路 に対するバイパス流路16は、図示してあるけれども設けられていない例も設け られている例もある。FIG. 3 is a system diagram showing an example of a conventional catalytic combustion apparatus for treating industrial waste gas. A start-up furnace 6 is connected to a flow path 2 of a combustible component-containing gas 1 such as industrial waste gas through a heat exchanger 5 that preheats the combustible component-containing gas 1 by a combustion exhaust gas 3 of the combustible component-containing gas. When the calorific value of the combustible component-containing gas 1 is reasonable, the start-up furnace 6 includes a flow path 10 for the fuel gas 9 formed by the preheated combustible component-containing gas 1 and the combustion air 8 supplied by using the blower 7. Through to the catalytic combustion furnace 11. In the catalytic combustion furnace 11, there is a combustion catalyst 12 arranged in the entire cross section of the flow path. A heat exchanger 5 that uses combustion exhaust gas as a heat source is connected to the catalytic combustion furnace 11, and the end of the heat exchanger 5 is connected to a chimney 14 through a combustion exhaust gas flow path 13. A waste heat recovery device such as a boiler may be installed before being discharged from the chimney 14. The bypass flow passage 16 for the combustible-component-containing gas flow passage of the heat exchanger 5 is shown in some drawings but is not provided in some cases.

【0004】 装置に供給される悪臭成分、有害成分を含む産業廃ガス等の可燃成分含有ガス 1は熱交換器5に供給される。燃焼触媒12の入口部Aに検出点を有する触媒入 口温度調節計17は、触媒入口部Aの温度が触媒燃焼の反応開始温度以上の一定 値(通常350℃)に保たれるよう可燃成分含有ガス調節弁19、20および燃 焼空気調節弁21に制御指令を発する。触媒燃焼の反応開始温度以上に予熱され た悪臭成分、有害成分を含む燃料ガス9が燃焼触媒12を通過する時燃焼して燃 焼排ガス3になるが、この時悪臭成分、有害成分も燃焼して除去される。可燃成 分含有ガス1の発熱量が小さい場合には、図4の従来方式による可燃成分含有ガ スの発熱量(70〜160Kcal/m3N)に対する触媒入口部温度と触媒出 口部温度の関係例に示すように、熱交換器5による予熱だけでは触媒入口部Aの 温度が所定の一定温度(通常350℃)に達しない(助燃なしの特性)。この場 合には、起動時に燃焼触媒12を予熱するための補助燃料22を助燃バーナ23 により燃焼させる起動炉6の助燃運転を行わせ、触媒入口温度調節計17の指令 に基づいて補助燃料調節弁24と燃焼空気調節弁21とを調節する。この時、可 燃成分含有ガス1の熱交換器5の入口調節弁19は全開、バイパス流路16の入 口調節弁20は全閉である。このようにして触媒入口部Aの温度が所定の一定温 度(通常350℃)を保てるようバックアップ予熱を行っている。また可燃成分 含有ガス1の発熱量が大きい場合には、起動炉6による助燃運転を行わなくても 、バイパス流路16がない図4の2点鎖線の特性の場合は燃焼排ガス3による熱 交換器での予熱により触媒出口部Bの温度が燃焼触媒12の耐熱限界温度800 ℃(一般には700℃の場合もある)を越えてしまうこともある(図4の希釈な しの特性)。この場合には、触媒出口温度調節計25の指令によって制御される 希釈空気調節弁26を介して、希釈空気ブロワ27により希釈空気28が触媒燃 焼炉11に供給される。こうして燃料ガス9を希釈して見掛けの発熱量を下げ触 媒出口部Bの温度を800℃以下に制御する。図4から判るように、バイパス流 路16を設けず、起動炉6による助燃運転も希釈運転もしないで触媒入口部Aの 温度が350℃以上、触媒出口部Bの温度が800℃以下の運用ができる可燃成 分含有ガスの発熱量の範囲は、高高20Kcal/m3N程度しかない。A combustible component-containing gas 1 such as an industrial waste gas containing a malodorous component and a harmful component, which is supplied to the apparatus, is supplied to a heat exchanger 5. The catalyst inlet temperature controller 17, which has a detection point at the inlet A of the combustion catalyst 12, uses a combustible component so that the temperature of the catalyst inlet A is maintained at a constant value (usually 350 ° C.) above the reaction start temperature of catalytic combustion. A control command is issued to the contained gas control valves 19 and 20 and the combustion air control valve 21. When the fuel gas 9 containing odorous and harmful components preheated above the reaction start temperature of catalytic combustion passes through the combustion catalyst 12, it burns to form burned exhaust gas 3. At this time, the odorous and harmful components also burn. Be removed. When the calorific value of the combustible component-containing gas 1 is small, the catalyst inlet temperature and the catalyst outlet temperature with respect to the calorific value (70 to 160 Kcal / m 3 N) of the gas containing a combustible component according to the conventional method in FIG. As shown in the relational example, the temperature of the catalyst inlet portion A does not reach a predetermined constant temperature (usually 350 ° C.) only by preheating by the heat exchanger 5 (characteristic without auxiliary combustion). In this case, the auxiliary fuel 22 for preheating the combustion catalyst 12 at the time of startup is burned by the auxiliary burner 23 to perform the auxiliary combustion operation, and the auxiliary fuel adjustment is performed based on the command from the catalyst inlet temperature controller 17. The valve 24 and the combustion air control valve 21 are adjusted. At this time, the inlet control valve 19 of the heat exchanger 5 for the combustible component-containing gas 1 is fully opened, and the inlet control valve 20 of the bypass passage 16 is fully closed. In this way, backup preheating is performed so that the temperature of the catalyst inlet portion A can be maintained at a predetermined constant temperature (usually 350 ° C). Further, when the calorific value of the combustible component-containing gas 1 is large, even if the auxiliary combustion operation by the start-up furnace 6 is not performed, in the case of the characteristic of the two-dot chain line in FIG. The temperature at the catalyst outlet B may exceed the heat-resistant limit temperature of the combustion catalyst 12 of 800 ° C. (generally 700 ° C. in some cases) due to preheating in the reactor (characteristic without dilution in FIG. 4). In this case, the dilution air blower 27 supplies the dilution air 28 to the catalytic combustion furnace 11 via the dilution air control valve 26 controlled by the command from the catalyst outlet temperature controller 25. In this way, the fuel gas 9 is diluted to reduce the apparent calorific value, and the temperature of the catalyst outlet B is controlled to 800 ° C. or lower. As can be seen from FIG. 4, the operation in which the temperature of the catalyst inlet portion A is 350 ° C. or more and the temperature of the catalyst outlet portion B is 800 ° C. or less without providing the bypass passage 16 and performing neither the auxiliary combustion operation nor the dilution operation by the starter furnace 6. The range of calorific value of the combustible component-containing gas that can be achieved is only as high as 20 Kcal / m 3 N.

【0005】 希釈運転に伴う触媒燃焼炉11の大型化等の問題を解決するべく、バイパス流 路16を設け、熱交換器5に供給する可燃成分含有ガス1の流量制御をする方式 が考えられた。起動炉6による助燃運転とバイパス流路16による制御とを使用 した場合、触媒出入口部温度の可燃成分含有ガスの発熱量に対する特性は図4の 実線のものとなる。この方式では、可燃成分含有ガスの発熱量の増加に伴って触 媒出口部温度、即ち燃焼排ガス3の温度が高くなった場合、触媒入口部Aの温度 を350℃一定に保つべく触媒入口温度調節計17から指令信号が発せられる。 これにより熱交換器5の可燃成分含有ガス1の入口調節弁19は閉方向に、バイ パス流路16の入口調節弁20は閉方向に動作して熱交換器5を通る可燃成分含 有ガス流量を絞り込む。図4に示す如く、可燃成分含有ガスの発熱量の大きい側 ではこの様にして触媒入口部Aの温度が350℃一定に制御され希釈空気28は 必要なくなる。可燃成分含有ガスの発熱量の小さい側では熱交換器5の伝熱面積 が不充分で前述した起動炉6による助燃運転を必要とする。この問題を解決すべ く、可燃成分含有ガスの発熱量が小さい場合に対して燃焼排ガス3による可燃成 分含有ガス1の予熱を充分行える程大きな伝熱面積を有する熱交換器5を設置す ると、安価でメンテナンスの容易なプレート式熱交換器では熱交換器5の伝熱性 能を向上した伝熱材料耐熱温度制約が厳しくなる。このため可燃成分含有ガスの 発熱量が大きく、燃焼排ガス3の温度が高い時には、熱交換器5に供給する冷却 材、即ち可燃成分含有ガス1は絞り込み必要量迄絞り込めなくなることもある。 この場合には希釈空気28を供給する必要がある。燃焼触媒12の耐熱限界温度 が700℃の場合には、希釈運転の必要な範囲と量とがもっと厳しいものとなる 。In order to solve the problem such as the size increase of the catalytic combustion furnace 11 associated with the dilution operation, a method of providing a bypass flow path 16 and controlling the flow rate of the combustible component-containing gas 1 supplied to the heat exchanger 5 is considered. It was When the auxiliary combustion operation by the start-up furnace 6 and the control by the bypass flow path 16 are used, the characteristic of the temperature of the catalyst inlet / outlet portion with respect to the heat generation amount of the gas containing the combustible component becomes the solid line in FIG. In this method, when the catalyst outlet temperature, that is, the temperature of the combustion exhaust gas 3 rises as the calorific value of the combustible component-containing gas increases, the catalyst inlet temperature should be kept at 350 ° C to keep the temperature of the catalyst inlet A constant at 350 ° C. A command signal is issued from the controller 17. As a result, the inlet control valve 19 of the combustible component-containing gas 1 of the heat exchanger 5 operates in the closing direction, and the inlet control valve 20 of the bypass passage 16 operates in the closing direction, so that the combustible-component-containing gas passing through the heat exchanger 5 flows. Narrow the flow rate. As shown in FIG. 4, the temperature of the catalyst inlet portion A is controlled to be constant at 350 ° C. on the side where the heat generation amount of the combustible component-containing gas is large, and the dilution air 28 is not necessary. On the side where the calorific value of the combustible component-containing gas is small, the heat transfer area of the heat exchanger 5 is insufficient, and the above-described auxiliary combustion operation by the startup furnace 6 is required. In order to solve this problem, a heat exchanger 5 having a heat transfer area large enough to preheat the combustible component-containing gas 1 by the flue gas 3 when the calorific value of the combustible component-containing gas is small is installed. In a plate heat exchanger that is inexpensive and easy to maintain, the heat resistance of the heat transfer material, which improves the heat transfer performance of the heat exchanger 5, is subject to severe temperature restrictions. Therefore, when the amount of heat generated by the combustible component-containing gas is large and the temperature of the combustion exhaust gas 3 is high, the coolant supplied to the heat exchanger 5, that is, the combustible component-containing gas 1 may not be able to be throttled to the required amount. In this case, it is necessary to supply the dilution air 28. If the heat-resistant limit temperature of the combustion catalyst 12 is 700 ° C, the required range and amount of the dilution operation will be more severe.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

前述の如く、助燃運転が必要なために補助燃料の消費が増大して運転コストが 嵩むことになる。これを解決するべく、可燃成分含有ガスの発熱量最小の場合に 対して充分な伝熱面積を有する熱交換器を使用すると、可燃成分含有ガスの発熱 量最大の場合に伝熱材料の耐熱温度制約故に熱交換器を通す可燃成分含有ガス流 量の絞り込みが思うようにできず、そのために希釈運転を余儀なくされると云う 問題が存在した。希釈運転が必要な場合には、希釈運転設備(図3の25〜27 )が必要であり、また希釈空気の分だけ触媒燃焼炉11の流量が増えるので、そ の分触媒燃焼炉11、熱交換器5の燃焼排ガス流路、燃焼排ガス流路13、煙突 14等が大型化し、燃焼触媒の充填量も増大して設備コストが増大する。また希 釈空気等のユーティリティや動力費等の運転コストも増えることになる。 As described above, since the auxiliary combustion operation is required, the consumption of the auxiliary fuel increases and the operating cost increases. In order to solve this, if a heat exchanger with a sufficient heat transfer area is used for the case where the calorific value of the combustible component-containing gas is the minimum, the heat-resistant temperature of the heat transfer material is increased when the calorific value of the combustible component-containing gas is the maximum. Due to the restriction, the flow rate of the gas containing combustible components passing through the heat exchanger could not be narrowed down as desired, and there was a problem that the diluting operation was forced. When the dilution operation is required, the equipment for the dilution operation (25 to 27 in Fig. 3) is required, and the flow rate of the catalytic combustion furnace 11 increases by the amount of the diluted air. The combustion exhaust gas flow path, the combustion exhaust gas flow path 13, the chimney 14, etc. of the exchanger 5 become large in size, and the amount of the combustion catalyst filled also increases, resulting in an increase in equipment cost. In addition, operating costs such as utilities such as diluted air and power costs will increase.

【0007】 本考案の目的は、補助燃料によるバックアップ予熱や空気等による可燃成分含 有ガスの余計な希釈をすることなく発熱量変動範囲の大きな産業廃ガス等の可燃 成分含有ガスを燃焼処理できる触媒燃焼装置を提供することにある。An object of the present invention is to perform combustion treatment of combustible component-containing gas such as industrial waste gas having a large calorific value variation range without back-up preheating with auxiliary fuel and unnecessary dilution of combustible component-containing gas with air or the like. It is to provide a catalytic combustion device.

【0008】[0008]

【課題を解決するための手段】 前記の目的を達成するための本考案は、触媒燃焼装置の熱交換器を複数個に分 割し、それぞれの熱交換器の可燃成分含有ガス流路と燃焼排ガス流路とをそれぞ れ直列に接続、各熱交換器の可燃成分含有ガス流路のそれぞれに流量調節可能な バイパス流路を設けることを特徴とする。Means for Solving the Problems The present invention for achieving the above-mentioned object is to divide a heat exchanger of a catalytic combustion device into a plurality of parts, and to combustible component-containing gas passages and combustion of each heat exchanger. It is characterized in that the exhaust gas passages are connected in series, respectively, and that each of the combustible-component-containing gas passages of each heat exchanger is provided with a bypass passage whose flow rate can be adjusted.

【0009】[0009]

【作用】[Action]

2個以上の熱交換器において、その燃焼排ガス流路を直列接続して触媒燃焼炉 からの燃焼排ガスを導入し、本触媒燃焼装置の廃熱を回収する。またその可燃成 分含有ガス流路を直列に接続し、可燃成分含有ガスの発熱量最小の場合に可燃成 分含有ガス全量を全熱交換器に通して必要な温度にまで予熱し、起動炉による助 燃運転の必要性を排除する。可燃成分含有ガスの発熱量が増大するにつれて、各 熱交換器に設けられたバイパス流路を使って可燃成分含有ガス上流側の熱交換器 から順次バイパス流量を増加させその熱交換器を通る可燃成分含有ガス流量を減 らしてやれば、可燃成分含有ガス全体の予熱温度を触媒入口部温度で350℃一 定になるように制御することができる。可燃成分含有ガスの発熱量最大の場合に は、可燃成分含有ガス流路の最下流の熱交換器のみに可燃成分含有ガスの全部ま たは一部を通すことにより、希釈運転なしに触媒入口部温度を350℃一定に制 御できるような熱交換器とすることが可能になる。 In two or more heat exchangers, the combustion exhaust gas passages are connected in series to introduce the combustion exhaust gas from the catalytic combustion furnace, and the waste heat of this catalytic combustion device is recovered. The combustible component-containing gas flow path is connected in series, and when the calorific value of the combustible component-containing gas is minimum, all the combustible component-containing gas is passed through the total heat exchanger to preheat it to the required temperature, and the starter furnace Eliminate the need for combustion assisted operation by As the calorific value of the combustible component-containing gas increases, the bypass flow path provided in each heat exchanger is used to sequentially increase the bypass flow rate from the heat exchanger on the upstream side of the combustible component-containing gas to increase the combustibility of the combustible component-containing gas. By reducing the flow rate of the component-containing gas, it is possible to control the preheating temperature of the entire combustible-component-containing gas so that the catalyst inlet temperature is 350 ° C. When the calorific value of the combustible component-containing gas is maximum, by passing all or part of the combustible component-containing gas only through the heat exchanger at the most downstream side of the combustible-component-containing gas flow path, the catalyst inlet without dilution operation It is possible to use a heat exchanger that can control the part temperature at 350 ° C.

【0010】[0010]

【実施例】【Example】

以下、本考案による産業廃ガス処理用触媒燃焼装置の実施例を、図1に示す系 統図により説明する。産業廃ガス等の可燃成分含有ガス1の第1流路2には、そ の可燃成分含有ガスの燃焼排ガス3にによって可燃成分含有ガス1の予熱を行う 第1の熱交換器4と、第1の熱交換器4の可燃成分含有ガス流路に直列に接続さ れた同じく燃焼排ガス3によって可燃成分含有ガス1を予熱する第2の熱交換器 5とを介して起動炉6が接続される。起動炉6は、予熱された可燃成分含有ガス 1とブロワ7により供給される燃焼空気8とでできる燃料ガス9の流路10を介 して触媒燃焼炉11と繋がる。触媒燃焼炉11の中には流路断面全域に配された 燃焼触媒12が存在する。触媒燃焼炉11には燃焼排ガス3を熱源として利用す る第2の熱交換器5が接続され、その先は直列に接続された熱交換器4を介して 燃焼排ガス流路13を通り煙突14に繋がっている。可燃成分含有ガス第1流路 2の第1の熱交換器4の上流側には、第1の熱交換器4の可燃成分含有ガス流路 に対するバイパスの働きをする、第2の熱交換器5に繋がる可燃成分含有ガス第 2流路15が接続される。さらに第2の熱交換器5の可燃成分含有ガス流路に対 するバイパス流路16も設けられる。 An embodiment of the catalytic combustion apparatus for treating industrial waste gas according to the present invention will be described below with reference to the system diagram shown in FIG. In the first flow path 2 of the combustible component-containing gas 1 such as industrial waste gas, the first heat exchanger 4 for preheating the combustible component-containing gas 1 by the combustion exhaust gas 3 of the combustible component-containing gas, A starter furnace 6 is connected via a second heat exchanger 5 which preheats the combustible component-containing gas 1 by the same combustion exhaust gas 3 which is connected in series to the combustible component-containing gas flow path of the heat exchanger 4 of 1. It The start-up furnace 6 is connected to a catalytic combustion furnace 11 through a flow path 10 of a fuel gas 9 formed of a preheated combustible component-containing gas 1 and a combustion air 8 supplied by a blower 7. In the catalytic combustion furnace 11, there is a combustion catalyst 12 arranged in the entire cross section of the flow path. A second heat exchanger 5 that uses the combustion exhaust gas 3 as a heat source is connected to the catalytic combustion furnace 11, and the tip of the second heat exchanger 5 passes through the combustion exhaust gas flow path 13 through the heat exchanger 4 that is connected in series and the chimney 14 Connected to. On the upstream side of the first heat exchanger 4 of the first combustible component-containing gas flow path 2, there is provided a second heat exchanger that acts as a bypass for the combustible component-containing gas flow path of the first heat exchanger 4. The combustible component-containing gas second flow path 15 connected to No. 5 is connected. Further, a bypass passage 16 for the combustible component-containing gas passage of the second heat exchanger 5 is also provided.

【0011】 装置に供給される悪臭成分、有害成分を含む産業廃ガス等の可燃成分含有ガス 1は2台の熱交換器4、5で構成される熱交換器に供給される。燃焼触媒12の 入口部Aに検出点を有する触媒入口温度調節計17は、触媒入口部Aの温度が触 媒燃焼反応開始温度以上の一定値(通常350℃)に保たれるよう可燃成分含有 ガス調節弁18、19、20に制御指令を発する。従って可燃成分含有ガス1は 、可燃成分含有ガス第1流路2、可燃成分含有ガス調節弁18を通って第1の熱 交換器4に入り予熱されて第2の熱交換器5に至る径路と、可燃成分含有ガス第 2流路15、可燃成分含有ガス調節弁19を通って直接第2の熱交換器5に至る 径路と、バイパス流路16、可燃成分含有ガス調節弁20を経由して熱交換器に は入らない径路との3つの流路を経て、燃焼排ガス3により全体として所定の温 度になるように予熱されて起動炉6に供給される。起動炉6では可燃成分含有ガ ス1が燃焼空気調節弁21により流量調節を行った燃焼空気8を混合されて燃焼 ガス9となり、燃料ガス流路10を経て触媒燃焼炉11に送られる。通常の運転 時には必要でない起動炉6は、起動時に燃焼触媒12を予熱するために補助燃料 22を助燃バーナ23により燃焼させるためのものである。触媒入口部Aで所定 温度(通常350℃)を保持する燃料ガス9は燃焼触媒12を通過する時、燃焼 触媒12の酸化作用により悪臭成分、有害成分をも燃焼させて燃焼排ガス3とな る。燃焼排ガス3は第2の熱交換器5、第1の熱交換器4を通る間に廃熱回収が 行われ、燃焼排ガス流路13、煙突14を経て大気中に放出される。A combustible component-containing gas 1 such as an industrial waste gas containing a malodorous component and a harmful component supplied to the apparatus is supplied to a heat exchanger composed of two heat exchangers 4 and 5. The catalyst inlet temperature controller 17 having a detection point at the inlet A of the combustion catalyst 12 contains a combustible component so that the temperature of the catalyst inlet A is maintained at a constant value (usually 350 ° C.) higher than the catalyst combustion reaction start temperature. A control command is issued to the gas control valves 18, 19, 20. Therefore, the combustible component-containing gas 1 passes through the combustible component-containing gas first flow path 2 and the combustible component-containing gas control valve 18, enters the first heat exchanger 4, and is preheated to the second heat exchanger 5. And a path leading directly to the second heat exchanger 5 through the combustible component-containing gas second flow path 15 and the combustible component-containing gas control valve 19, the bypass flow path 16, and the combustible component-containing gas control valve 20. Through a flow path that does not enter the heat exchanger, the flue gas 3 is preheated to a predetermined temperature and supplied to the start-up furnace 6. In the start-up furnace 6, the combustible component-containing gas 1 is mixed with the combustion air 8 whose flow rate is adjusted by the combustion air control valve 21 to form the combustion gas 9, which is sent to the catalytic combustion furnace 11 via the fuel gas passage 10. The start-up furnace 6, which is not required during normal operation, is for burning the auxiliary fuel 22 by the auxiliary burner 23 in order to preheat the combustion catalyst 12 during startup. When the fuel gas 9 having a predetermined temperature (usually 350 ° C.) at the catalyst inlet portion A passes through the combustion catalyst 12, the oxidative action of the combustion catalyst 12 also burns off malodorous components and harmful components to form combustion exhaust gas 3. . The flue gas 3 is subjected to waste heat recovery while passing through the second heat exchanger 5 and the first heat exchanger 4, and is discharged into the atmosphere through the flue gas flow path 13 and the chimney 14.

【0012】 第2の熱交換器5の伝熱面積は、処理する可燃成分含有ガス1の想定される最 大発熱量の場合の流量温度条件により決定される。第1の熱交換器4の伝熱面積 は、第2の熱交換器5の伝熱面積が決定された上で、処理する可燃成分含有ガス 1の想定される最小発熱量の場合の流量温度条件により決定される。また、経済 的理由等から熱交換器の数をもっと増したい場合には、第1の熱交換器を分割し ても差支えない。したがって可燃成分含有ガス1が最小発熱量の場合には、可燃 成分含有ガス調節弁19および20は全閉とし、可燃成分含有ガス1の全量が可 燃成分含有ガス第1流路2、可燃成分含有ガス調節弁18を通って第1の熱交換 器4に供給される。ここで可燃成分含有ガス1は燃焼排ガス3により予熱され、 さらに第2の熱交換器5に送られて燃焼排ガス3により触媒入口部Aで所定温度 を保持するに必要な温度に迄予熱される。即ち、可燃成分含有ガス1が最小発熱 量の場合には、第2の熱交換器5に第1の熱交換器4が付加された形で、伝熱面 積の大きな熱交換器として使用される。可燃成分含有ガス1の発熱量が最小発熱 量より大きくなると、燃焼排ガス3の温度が高くなり、熱交換器伝熱性能が向上 する。この状態では前述の可燃成分含有ガス流路状態における第1の熱交換器4 の出口可燃成分含有ガス温度が高くなり過ぎて触媒入口部Aの温度を所定の一定 温度に維持できなくなる。このため可燃成分含有ガス発熱量が増大するにつれて 第1の熱交換器4の入口調節弁18を徐除に閉め、第2の熱交換器5の入口調節 弁19を除除に開いて第1の熱交換器4への可燃成分含有ガス供給量を絞る。こ れによって第2の熱交換器5の入口調節弁19を通って直接第2の熱交換器5に 供給される可燃成分含有ガス流量が増え、交換熱量を調節して触媒入口部Aの温 度を所定一定温度に制御する。可燃成分含有ガス1の発熱量が増大して第1の熱 交換器4の入口調節弁18が全閉、第2の熱交換器5の入口調節弁19が全開と なった段階で、更に可燃成分含有ガス1の発熱量が増大すると、バイパス流路1 6の入口調節弁20が除除に開きバイパス流路16に可燃成分含有ガスが流れる 。これによって第2の熱交換器5の交換熱量を調節すると同時に第2の熱交換器 5の可燃成分含有ガス出口において予熱可燃成分含有ガスとバイパス流路16か らのバイパス可燃成分含有ガスとを混合し、予熱温度を調節して触媒入口部Aの 温度を所定一定温度に制御する。したがってこの方法により可燃成分含有ガス1 の発熱量の大きな変動幅全域に亘り、助燃運転や希釈運転を必要としないで熱交 換器4、5による燃焼排ガス3との熱交換のみで触媒入口部Aの温度を所定一定 温度に制御することが可能になる。The heat transfer area of the second heat exchanger 5 is determined by the flow rate temperature condition in the case of the assumed maximum calorific value of the combustible component-containing gas 1 to be treated. The heat transfer area of the first heat exchanger 4 is the flow rate temperature in the case where the heat transfer area of the second heat exchanger 5 is determined and the minimum calorific value of the combustible component-containing gas 1 to be processed is assumed. Determined by the conditions. Also, if it is desired to increase the number of heat exchangers for economic reasons, the first heat exchanger may be split. Therefore, when the combustible component-containing gas 1 has the minimum calorific value, the combustible component-containing gas control valves 19 and 20 are fully closed, and the total amount of the combustible component-containing gas 1 is the combustible component-containing gas first flow path 2 and the combustible component-containing gas. It is supplied to the first heat exchanger 4 through the contained gas control valve 18. Here, the combustible component-containing gas 1 is preheated by the combustion exhaust gas 3 and is further sent to the second heat exchanger 5 and is preheated by the combustion exhaust gas 3 to a temperature required to maintain a predetermined temperature at the catalyst inlet portion A. . That is, when the combustible component-containing gas 1 has the minimum calorific value, it is used as a heat exchanger having a large heat transfer area in a form in which the first heat exchanger 4 is added to the second heat exchanger 5. It When the calorific value of the combustible component-containing gas 1 becomes larger than the minimum calorific value, the temperature of the combustion exhaust gas 3 rises, and the heat transfer performance of the heat exchanger improves. In this state, the temperature of the combustible component-containing gas at the outlet of the first heat exchanger 4 in the above-described flow path of the combustible component-containing gas becomes too high, and the temperature at the catalyst inlet A cannot be maintained at a predetermined constant temperature. Therefore, as the calorific value of the gas containing the combustible component increases, the inlet control valve 18 of the first heat exchanger 4 is gradually closed, and the inlet control valve 19 of the second heat exchanger 5 is opened to be removed first. The supply amount of the combustible component-containing gas to the heat exchanger 4 is reduced. As a result, the flow rate of the combustible component-containing gas directly supplied to the second heat exchanger 5 through the inlet control valve 19 of the second heat exchanger 5 is increased, and the exchange heat amount is adjusted to control the temperature of the catalyst inlet portion A. The temperature is controlled to a predetermined constant temperature. When the calorific value of the combustible component-containing gas 1 increases and the inlet control valve 18 of the first heat exchanger 4 is fully closed, and the inlet control valve 19 of the second heat exchanger 5 is fully open, further combustible When the calorific value of the component-containing gas 1 increases, the inlet control valve 20 of the bypass flow passage 16 is opened to remove the combustible component-containing gas in the bypass flow passage 16. Thereby, the amount of heat exchanged by the second heat exchanger 5 is adjusted, and at the same time, the preheated combustible component-containing gas and the bypass combustible component-containing gas from the bypass passage 16 are discharged at the combustible component-containing gas outlet of the second heat exchanger 5. After mixing, the preheating temperature is adjusted to control the temperature of the catalyst inlet portion A to a predetermined constant temperature. Therefore, according to this method, over the large fluctuation range of the calorific value of the combustible component-containing gas 1, only the heat exchange with the combustion exhaust gas 3 by the heat exchangers 4, 5 does not require auxiliary combustion operation or dilution operation, and the catalyst inlet part It becomes possible to control the temperature of A to a predetermined constant temperature.

【0013】 図2に本実施例による可燃成分含有ガスの発熱量(70〜160Kcal/m3 N)に対する触媒入口部温度と触媒出口部温度の関係例を示すが、触媒入口部 温度は可燃成分含有ガスの発熱量全域に亘って一定に制御されていて、触媒出口 部温度も燃焼触媒の耐熱限界温度(800℃)以下に保たれている。FIG. 2 shows an example of the relationship between the catalyst inlet temperature and the catalyst outlet temperature with respect to the heat generation amount (70 to 160 Kcal / m 3 N) of the combustible component-containing gas according to the present embodiment. It is controlled to be constant over the entire calorific value of the contained gas, and the temperature at the catalyst outlet is also kept below the heat-resistant limit temperature (800 ° C) of the combustion catalyst.

【0014】 本考案によれば、熱交換器における燃焼排ガスとの熱交換で可燃成分含有ガス の予熱が充分にでき、触媒入口部温度を所定の一定温度に維持できるので、助燃 運転や希釈運転が不要になる。これによりユーティリティや動力費等の低減がで き、希釈設備が不要になる上、希釈空気が不要になることにより触媒燃焼炉等の 設備のコンパクト化、燃焼触媒量の低減等設備の低コスト化が図れることになる 。また第2の熱交換器5の伝熱面積は最大発熱量を有する場合の可燃成分含有ガ ス1をベースに決定されるので熱交換器の耐熱限界温度以下で使用することが可 能である。したがって第1の熱交換器4も、第2の熱交換器5で熱交換を行って 温度の低下した燃焼排ガス3を通しているので、可燃成分含有ガスを流していな い時でさえも熱交換器の耐熱限界温度を超えることはなく、安価でメンテナンス の容易なプレート式熱交換器の使用が可能である。According to the present invention, the combustible component-containing gas can be sufficiently preheated by heat exchange with the combustion exhaust gas in the heat exchanger, and the catalyst inlet temperature can be maintained at a predetermined constant temperature. Becomes unnecessary. As a result, utilities and power costs can be reduced, dilution equipment is not required, and dilution air is not required, so equipment such as catalytic combustion furnaces can be made compact, and the cost of equipment can be reduced by reducing the amount of combustion catalyst. Will be achieved. Further, the heat transfer area of the second heat exchanger 5 is determined based on the gas 1 containing the combustible component when it has the maximum calorific value, so it can be used below the heat resistance limit temperature of the heat exchanger. . Therefore, since the first heat exchanger 4 also carries out heat exchange with the second heat exchanger 5 and passes through the combustion exhaust gas 3 whose temperature has decreased, even when the gas containing the combustible component is not flowing, the heat exchanger 4 It does not exceed the heat-resistant limit temperature of, and it is possible to use a plate heat exchanger that is inexpensive and easy to maintain.

【0015】[0015]

【考案の効果】[Effect of device]

触媒燃焼装置の熱交換器を複数個に分割して産業廃ガス等の可燃成分含有ガス の流路に直列に接続し、おのおのの熱交換器に流量制御可能なバイパス流路を備 えることにより、可燃成分含有ガスの発熱量最小の場合に全熱交換器を使って補 助燃料によるバックアップ予熱なしで触媒入口部温度を産業廃ガス成分中の最高 触媒燃焼反応開始温度350℃に予熱可能であり、可燃成分含有ガスの発熱量最 大の場合に可燃成分含有ガス流路の最下流に接続された熱交換器のみに可燃成分 含有ガスの全部または一部を通すことによって希釈運転なしで触媒入口部温度の 350℃一定制御可能な予熱を可能にする。その結果発熱量変動範囲の大きな産 業廃ガス等の可燃成分含有ガスを助燃運転も希釈運転もなしで燃焼処理できる触 媒燃焼装置を提供することができた。 By dividing the heat exchanger of the catalytic combustion device into a plurality of parts and connecting them in series to the flow path of combustible component-containing gas such as industrial waste gas, each heat exchanger is equipped with a bypass flow path that can control the flow rate. When the calorific value of the combustible component-containing gas is minimum, the catalyst inlet temperature can be preheated to the maximum catalyst combustion reaction start temperature of 350 ° C in the industrial waste gas component without back-up preheating with auxiliary fuel using the total heat exchanger. Yes, when the calorific value of the combustible component-containing gas is the maximum, the catalyst is supplied without dilution operation by passing all or part of the combustible component-containing gas only through the heat exchanger connected to the most downstream of the combustible component-containing gas flow path. Enables preheating with constant control of the inlet temperature of 350 ° C. As a result, we were able to provide a catalyst combustor that can combust combustible component-containing gas, such as industrial waste gas, which has a large fluctuation range of calorific value, without auxiliary combustion or dilution operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】本考案の実施例による可燃成分含有ガス発熱量
に対する触媒出入口部の温度特性曲線である。
FIG. 2 is a temperature characteristic curve of a catalyst inlet / outlet portion with respect to a calorific value of a gas containing a combustible component according to an embodiment of the present invention.

【図3】従来の技術における実施例を示す系統図であ
る。
FIG. 3 is a system diagram showing an example of a conventional technique.

【図4】従来の技術における可燃成分含有ガス発熱量に
対する触媒出入口部の温度特性説明図である。
FIG. 4 is an explanatory diagram of temperature characteristics of a catalyst inlet / outlet portion with respect to a calorific value of a gas containing a combustible component in a conventional technique.

【符号の説明】[Explanation of symbols]

1 可燃成分含有ガス 2 可燃成分含有ガス第1流路 3 燃焼排ガス 4 第1の熱交換器 5 第2の熱交換器 11 触媒燃焼炉 12 燃焼触媒 13 燃焼排ガス流路 15 可燃成分含有ガス第2流路 16 バイパス流路 18 可燃成分含有ガス調節弁 19 可燃成分含有ガス調節弁 20 可燃成分含有ガス調節弁 1 Combustible component-containing gas 2 Combustible component-containing gas First flow path 3 Combustion exhaust gas 4 First heat exchanger 5 Second heat exchanger 11 Catalytic combustion furnace 12 Combustion catalyst 13 Combustion exhaust gas flow path 15 Second combustible component containing gas Second Flow path 16 Bypass flow path 18 Combustible component-containing gas control valve 19 Combustible component-containing gas control valve 20 Combustible component-containing gas control valve

───────────────────────────────────────────────────── フロントページの続き (72)考案者 今村 三夫 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Creator Mitsuo Imamura 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Factory

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 可燃成分を含むガスを燃焼触媒の存在下
で燃焼処理する触媒燃焼炉と、該触媒燃焼炉から排出さ
れる燃焼排ガスによって前記触媒燃焼炉へ供給する可燃
成分含有ガスを予熱する熱交換器とを備える触媒燃焼装
置において、前記熱交換器を複数に分割し、該各分割熱
交換器の前記燃焼排ガスの流路と前記可燃成分含有ガス
流路のそれぞれを直列に接続し、さらに前記各分割熱交
換器の前記可燃成分含有ガス流路のそれぞれに流量調節
可能なバイパス流路を設けたことを特徴とする触媒燃焼
装置。
1. A catalytic combustion furnace in which a gas containing a combustible component is burnt in the presence of a combustion catalyst, and a combustion exhaust gas discharged from the catalytic combustion furnace preheats a gas containing a combustible component supplied to the catalytic combustion furnace. In a catalytic combustion device comprising a heat exchanger, the heat exchanger is divided into a plurality, each of the combustion exhaust gas flow path and the combustible component-containing gas flow path of each split heat exchanger is connected in series, Furthermore, a bypass flow passage whose flow rate can be adjusted is provided in each of the combustible component-containing gas flow passages of each of the split heat exchangers.
JP1992058209U 1992-08-19 1992-08-19 Catalytic combustion device Expired - Fee Related JP2605666Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992058209U JP2605666Y2 (en) 1992-08-19 1992-08-19 Catalytic combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992058209U JP2605666Y2 (en) 1992-08-19 1992-08-19 Catalytic combustion device

Publications (2)

Publication Number Publication Date
JPH0622729U true JPH0622729U (en) 1994-03-25
JP2605666Y2 JP2605666Y2 (en) 2000-07-31

Family

ID=13077662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992058209U Expired - Fee Related JP2605666Y2 (en) 1992-08-19 1992-08-19 Catalytic combustion device

Country Status (1)

Country Link
JP (1) JP2605666Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264611A (en) * 2008-04-22 2009-11-12 Tsukishima Kankyo Engineering Ltd Voc-containing gas processing device and method
JP2013015243A (en) * 2011-07-01 2013-01-24 Shinryo Corp Exhaust treatment system
JPWO2013145867A1 (en) * 2012-03-29 2015-12-10 株式会社村田製作所 Exhaust gas treatment method and exhaust gas treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264611A (en) * 2008-04-22 2009-11-12 Tsukishima Kankyo Engineering Ltd Voc-containing gas processing device and method
JP2013015243A (en) * 2011-07-01 2013-01-24 Shinryo Corp Exhaust treatment system
JPWO2013145867A1 (en) * 2012-03-29 2015-12-10 株式会社村田製作所 Exhaust gas treatment method and exhaust gas treatment apparatus

Also Published As

Publication number Publication date
JP2605666Y2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US4054418A (en) Catalytic abatement system
JP3924150B2 (en) Gas combustion treatment method and apparatus
CN105115309A (en) Device for achieving ultralow nitrogen oxide emission of heating furnace and process thereof
CN109668157B (en) Waste gas catalytic incineration treatment system and regulation control method thereof
JPH10267248A (en) Catalyst type exhaust gas processor
US6660239B2 (en) Method and system for treating volatile organic compounds using a catalytic oxidizer without a burner
JPH0622729U (en) Catalytic combustion device
CN110252139B (en) SCR denitration system, heating device and denitration method
KR100331034B1 (en) Configuration and operating method of RCO system for waste gas purification
US5582802A (en) Catalytic sulfur trioxide flue gas conditioning
CN216977555U (en) Self-combustion type flue gas purification system
CN204923923U (en) Realize device of ultralow nitrogen oxide of heating furnace emission
CN112495160B (en) Device and method for tail gas nitrogen oxide removal process of sulfur recovery device
KR200199659Y1 (en) Improvement of boiler exhaust gas purifier
JPS6186928A (en) Treatment of exhaust gas containing organic solvent
CN212390382U (en) Waste gas back flame burning purifier
JPH07229615A (en) Method and device for treating waste gas
JPH10156142A (en) Catalyst purifying device
JP3598882B2 (en) Two-stream waste incinerator and its operation method
JP2001090931A (en) Deodorizing device
JP4121645B2 (en) Method and apparatus for recovering heat from waste
JPH0243475Y2 (en)
JP3276283B2 (en) Waste heat power generation system in incinerator
JPH09280531A (en) Refuse burning equipment
JPH0668369B2 (en) Carbon black manufacturing equipment Tail gas combustion method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees