JPH06227244A - Car cabin cooling/warming device of heat pump type - Google Patents

Car cabin cooling/warming device of heat pump type

Info

Publication number
JPH06227244A
JPH06227244A JP1478393A JP1478393A JPH06227244A JP H06227244 A JPH06227244 A JP H06227244A JP 1478393 A JP1478393 A JP 1478393A JP 1478393 A JP1478393 A JP 1478393A JP H06227244 A JPH06227244 A JP H06227244A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
compressor
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1478393A
Other languages
Japanese (ja)
Inventor
Takayoshi Matsuoka
孝佳 松岡
Naohito Yamada
尚人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1478393A priority Critical patent/JPH06227244A/en
Publication of JPH06227244A publication Critical patent/JPH06227244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To provide a cooling/warming device which can be applied to an electric automobile, etc., without modification of design to a great extent irrespective of the weather conditions outside a car cabin, provide compatibly the window clearness and the warming capacity, reducing the power consumption. presenting controllability in compliance with the heat accumulation ability, and can exert stable control at all times. CONSTITUTION:A car cooling/warming device is equipped with a compressor 31, extra-cabin heat exchanger 38, intra-cabin heat exchanger 33 for heat radiation, expansion means 36, intra-cabin heat exchanger 35 for heat absorption, and a refrigerant flow path switching means 32. The arrangement further includes a compressor control means 43 to vary under control the work amount of the compressor 31 in accordance with a target value decided on the basis of the thermal environment conditions of the car, a heat accumulation means 104 to radiate the accumulated heat from an external heat source to the refrigerant between the heat exchanger 33 and compressor 31, and a heat accumulation adjusting means 102 for adjustment of the introduced refrigerant amount to the heat accumulation means. Further this heat pump type cooling/warming device for car consists of an incremental/decremental element sensing means 107 for the heat radiative condition from the heat accumulation means to the refrigerant, a heat radiative condition judging means 43 to the refrigerant from the heat accumulation means in compliance with the element, and a control means 43 which varies under control the heat accumulation adjusting means in accordance with the heat accumulative condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、コンプレッサの駆動
により冷媒を車室外熱交換器および車室内熱交換器に循
環させる蒸気圧縮サイクルを備えた車両用ヒートポンプ
式冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner for a vehicle provided with a vapor compression cycle in which a compressor is driven to circulate a refrigerant through a heat exchanger outside a vehicle and a heat exchanger inside a vehicle.

【0002】[0002]

【従来の技術】従来の車両用ヒートポンプ式冷暖房装置
としては、特開平2−290475号公報や実開平2−
130808号公報などに開示されているように、四方
弁で冷媒の流れを暖房運転時と冷媒運転時とで逆転さ
せ、暖房運転時には、車室外熱交換器を吸熱器として使
用すると共に、車室内熱交換器を放熱器として使用し、
冷房運転時には、車室外熱交換器を放熱器として使用す
ると共に、車室内熱交換器を吸熱器として使用するよう
にしたものが知られている。
2. Description of the Related Art As a conventional heat pump type air conditioner for a vehicle, there is disclosed in Japanese Unexamined Patent Publication No. 2-290475 and Japanese Utility Model Publication No.
As disclosed in Japanese Laid-Open Patent Publication No. 130808, a four-way valve reverses the flow of refrigerant between heating operation and refrigerant operation. During heating operation, the outside heat exchanger is used as a heat absorber and the inside of the vehicle compartment is also used. Use the heat exchanger as a radiator,
It is known that the vehicle exterior heat exchanger is used as a radiator and the vehicle interior heat exchanger is used as a heat absorber during cooling operation.

【0003】具体的には、上記特開平2−290475
号公報に開示された冷暖房装置を、図18に図示して説
明する。つまり、暖房運転時には、四方弁2が実線示の
ように切り換えられ、冷媒がコンプレッサ1→四方弁2
→第1車室内熱交換器3→加熱用熱交換器4→第2車室
内熱交換器5→膨張弁6→車室外熱交換器7→四方弁2
→レシーバ8→コンプレッサ1と循環し、第1車室内熱
交換器3がコンプレッサ1から吐出された高温なる冷媒
の熱をブロアファン9で導入された空気に放熱して車室
内暖房用の温風を作り、加熱用熱交換器4がエンジン1
0からの廃熱を冷媒に吸熱し、この冷媒の熱を第2車室
内熱交換器5がブロアファン11で導入された空気に放
熱して車室内暖房用の温風を作り、車室外熱交換器7が
ファン12で導入された外気の熱を冷媒に吸熱する。冷
房運転時には、四方弁2が点線示のように切り換えら
れ、冷媒がコンプレッサ1→四方弁2→車室外熱交換器
7→膨張弁6→第2車室内熱交換器5→第1車室内熱交
換器3→四方弁2→レシーバ8→コンプレッサ1と循環
し、車室外熱交換器7がコンプレッサ1から吐出さたれ
高温なる冷媒の熱を外気に放熱し、第1,第2車室内熱
交換器3,5がブロアファン9,11で導入された空気
の熱を冷媒に放熱して車室内冷房用の冷風を作る。
Specifically, the above-mentioned Japanese Patent Laid-Open No. 2-290475.
The cooling and heating device disclosed in the publication will be described with reference to FIG. That is, during heating operation, the four-way valve 2 is switched as shown by the solid line, and the refrigerant is compressed from the compressor 1 to the four-way valve 2.
→ 1st vehicle interior heat exchanger 3 → heating heat exchanger 4 → 2nd vehicle interior heat exchanger 5 → expansion valve 6 → vehicle exterior heat exchanger 7 → four-way valve 2
→ Receiver 8 → Compressor 1 circulates, and the first vehicle interior heat exchanger 3 radiates the heat of the high-temperature refrigerant discharged from the compressor 1 to the air introduced by the blower fan 9 and warm air for heating the vehicle interior. The heat exchanger 4 for heating the engine 1
The waste heat from 0 is absorbed by the refrigerant, and the heat of this refrigerant is radiated by the second vehicle interior heat exchanger 5 to the air introduced by the blower fan 11 to create warm air for heating the vehicle interior, and the heat outside the vehicle interior The exchanger 7 absorbs the heat of the outside air introduced by the fan 12 into the refrigerant. During the cooling operation, the four-way valve 2 is switched as shown by the dotted line, and the refrigerant is compressor 1 → four-way valve 2 → exterior heat exchanger 7 → expansion valve 6 → second vehicle interior heat exchanger 5 → first vehicle interior heat The heat exchanger 3 circulates through the four-way valve 2 → the receiver 8 → the compressor 1, and the heat exchanger 7 outside the vehicle interior radiates the heat of the high temperature refrigerant discharged from the compressor 1 to the outside air, and the heat exchange between the first and second vehicle interiors. The units 3 and 5 radiate the heat of the air introduced by the blower fans 9 and 11 to the refrigerant to create cold air for cooling the vehicle interior.

【0004】[0004]

【発明が解決しようとする課題】かかる従来例にあって
は、四方弁2で冷媒の流れを暖房運転時と冷媒運転時と
で逆転させ、暖房運転時には、車室外熱交換器7を吸熱
器として使用すると共に、車室内熱交換器3,5を放熱
器として使用して車室内暖房用の温風を作り、冷房運転
時には、車室外熱交換器7を放熱器として使用すると共
に、車室内熱交換器3,5を吸熱器として使用して車室
内冷房用の冷風を作るようになっているので、外気温が
低い時や走行時あるいは降雨時、さらに降雪時などのよ
うな気候条件において、暖房運転を行なうと、車室外熱
交換器7での吸熱量が減少する。そして、コンプレッサ
1の仕事量が一定であると仮定すると、車室外熱交換器
7からの吸熱量とコンプレッサ1の仕事量との合計熱量
を放熱する車室内熱交換器3,5での放熱量が減少し、
暖房能力が低下する。しかも、上記気候条件では、着霜
現象が生じ易く、デフロスト運転の回数が増加して安定
した暖房運転が得られなくなる恐れがある。
In such a conventional example, the flow of the refrigerant is reversed by the four-way valve 2 during the heating operation and during the refrigerant operation, and the exterior heat exchanger 7 is used as the heat absorber during the heating operation. In addition, the interior heat exchangers 3 and 5 are used as radiators to create warm air for heating the interior of the vehicle, and the exterior heat exchanger 7 is used as a radiator during cooling operation, and Since the heat exchangers 3 and 5 are used as heat absorbers to create cold air for cooling the vehicle interior, it can be used under climatic conditions such as when the outside temperature is low, when driving, when it rains, or when it snows. When the heating operation is performed, the heat absorption amount in the vehicle exterior heat exchanger 7 decreases. Assuming that the work amount of the compressor 1 is constant, the heat radiation amount in the vehicle interior heat exchangers 3 and 5 that radiates the total heat amount of the heat absorption amount from the vehicle exterior heat exchanger 7 and the work amount of the compressor 1. Is reduced,
Heating capacity is reduced. Moreover, under the above-mentioned climatic conditions, a frosting phenomenon is likely to occur, the number of defrosting operations increases, and stable heating operation may not be obtained.

【0005】また、冷房運転時と暖房運転時とで冷媒の
流れ方向が変わるため、車室外熱交換器7側、車室内熱
交換器3,5側のいずれの配管も高温、高圧に耐えられ
るよう管径等を変更する必要があった。
Further, since the flow direction of the refrigerant changes between the cooling operation and the heating operation, both the exterior heat exchanger 7 side and the interior heat exchanger 3, 5 side pipes can withstand high temperature and high pressure. It was necessary to change the pipe diameter.

【0006】また、車両の暖房装置に要求される窓晴れ
性を確保するには、暖房運転ではなく冷房運転を行い、
車室内熱交換器3,5で空調風を一度冷却した後、これ
をさらにリヒートする必要がある。しかし、電気自動車
のように、エンジン等からの廃熱が得られず、充分なリ
ヒート熱源が供給できない場合は、暖房能力が不足して
しまい、暖房性能が全く確保できなくなる恐れがあっ
た。また、電気ヒータ等の他の熱源を設けてリヒートす
ることも可能であるが、この場合、充分な暖房能力を確
保するためには、多大な消費電力を要するという問題が
あった。
Further, in order to secure the window transparency required for a vehicle heating system, cooling operation is performed instead of heating operation.
After the conditioned air is once cooled by the vehicle interior heat exchangers 3 and 5, it is necessary to reheat the conditioned air. However, as in the case of an electric vehicle, when waste heat from the engine or the like cannot be obtained and a sufficient reheat heat source cannot be supplied, the heating capacity becomes insufficient, and there is a risk that the heating performance cannot be ensured at all. Further, it is possible to reheat by providing another heat source such as an electric heater, but in this case, there has been a problem that a large amount of power consumption is required to secure a sufficient heating capacity.

【0007】これに対処するため、本願出願人は、特願
平3−345950号として新たな車両用ヒートポンプ
式冷暖房装置を提案している。この装置は、吸熱用車室
内熱交換器の他に放熱用車室内熱交換器を設け、三方弁
で切り換えるようにしたものである。かかる装置によれ
ば、車室外の気候条件に左右されず安定した制御で冷暖
房能力を向上することができ、大幅な設計変更を必要と
せず、電気自動車などにも適し、しかも除湿暖房を行な
うことができる。
To cope with this, the applicant of the present application has proposed a new heat pump type air conditioner for a vehicle as Japanese Patent Application No. 3-345950. This device is provided with a heat radiating passenger compartment heat exchanger in addition to the heat absorbing passenger compartment heat exchanger, and is switched by a three-way valve. According to such a device, the cooling and heating capacity can be improved by stable control without being influenced by the climatic conditions outside the vehicle compartment, no significant design change is required, and it is also suitable for electric vehicles and the like, and dehumidifying and heating is performed. You can

【0008】具体的には図19のようになっており、暖
房運転時には三方弁32が実線示のように切り換えら
れ、冷媒がコンプレッサ31→三方弁32→放熱用車室
内熱交換器33→液タンク36→膨脹弁34→吸熱用車
室内熱交換器35→コンプレッサ31と循環し、ブロア
ファンで導入された空気は吸熱用車室内熱交換器35で
の熱交換により冷やされ、冷却除湿された後、放熱用車
室内熱交換器33での熱交換により温められ、車室内暖
房用の温風が作られる。
Specifically, as shown in FIG. 19, the three-way valve 32 is switched as shown by the solid line during the heating operation, and the refrigerant is the compressor 31 → the three-way valve 32 → the heat radiation vehicle interior heat exchanger 33 → the liquid. The air circulated in the order of the tank 36, the expansion valve 34, the heat absorbing vehicle interior heat exchanger 35, and the compressor 31, and the air introduced by the blower fan was cooled and dehumidified by the heat exchange in the heat absorbing vehicle interior heat exchanger 35. After that, it is heated by heat exchange in the heat dissipation vehicle interior heat exchanger 33, and hot air for heating the vehicle interior is created.

【0009】また、冷房運転時には、三方弁32が点線
示のように切り換えられ、冷媒がコンプレッサ31→三
方弁32→車室外熱交換器38→逆止弁70→放熱用車
室内熱交換器33→液タンク36→膨脹弁34→吸熱用
車室内熱交換器35→コンプレッサ31と循環し、車室
外熱交換器38がコンプレッサ1から吐出された高温な
冷媒の熱を外気に放熱し、ブロアファンで導入された空
気が吸熱用車室内熱交換器35で熱交換されて冷やさ
れ、車室内冷房用の冷風が作られる。
Further, during the cooling operation, the three-way valve 32 is switched as shown by the dotted line, and the refrigerant is compressed by the compressor 31 → three-way valve 32 → external vehicle heat exchanger 38 → check valve 70 → radiating vehicle interior heat exchanger 33. -> Liquid tank 36-> expansion valve 34-> heat absorption vehicle interior heat exchanger 35-> compressor 31, and the vehicle exterior heat exchanger 38 radiates the heat of the high temperature refrigerant discharged from the compressor 1 to the outside air, and the blower fan The air introduced in (1) is heat-exchanged by the heat-absorbing passenger compartment heat exchanger 35 to be cooled, and cold air for cooling the passenger compartment is created.

【0010】このように、新たな冷暖房装置では、暖房
運転時に吸熱用車室内熱交換器35の冷却で除湿し、放
熱用車室内熱交換器33でリヒートするため、理論的に
はコンプレッサ入力分の熱量を暖房熱とし、電気ヒータ
等の熱源を必要とせずに除湿暖房運転ができるのであ
る。従って、コンプレッサ31の入力を増加することに
より、充分な除湿暖房運転ができる。
As described above, in the new cooling and heating apparatus, since the heat absorbing vehicle interior heat exchanger 35 is dehumidified during the heating operation and is reheated in the heat radiating vehicle interior heat exchanger 33, theoretically, the compressor input component is used. That is, the heating amount is used as the heating heat, and the dehumidifying heating operation can be performed without requiring a heat source such as an electric heater. Therefore, by increasing the input of the compressor 31, sufficient dehumidification heating operation can be performed.

【0011】しかし、コンプレッサ31の入力が大きく
増加すると、これに伴って消費電力も増大してしまうと
いう問題があった。特に、電気自動車では、消費電力の
増大が走行距離に大幅に影響するため、コンプレッサ3
1の入力を低減させる制御が要求されることになる。
However, when the input of the compressor 31 is greatly increased, the power consumption is also increased. Particularly in an electric vehicle, the increase in power consumption significantly affects the mileage, so the compressor 3
A control to reduce the input of 1 will be required.

【0012】また、コンプレッサ31の入力の増加は、
吸熱用車室内熱交換器の凍結を招く恐れがあるため、通
常の運転においては、コンプレッサ31の入力を一定範
囲とし、吸熱用車室内熱交換器35が凍結しない範囲で
除湿暖房を行う必要がある。このため、暖房能力に限界
が生じ、消費電力の低減と、除湿による窓晴れ性と、充
分な暖房能力とを共に成立させることに限界があった。
The increase in the input of the compressor 31 is
Since there is a risk of freezing the heat absorption vehicle interior heat exchanger, in normal operation, it is necessary to keep the input of the compressor 31 within a certain range and perform dehumidification heating within a range where the heat absorption vehicle interior heat exchanger 35 does not freeze. is there. Therefore, there is a limit to the heating capacity, and there is a limit to the reduction of power consumption, the clearing of the window by dehumidification, and the sufficient heating capacity.

【0013】また、暖房能力の急増を要する起動時等に
は、コンプレッサ入力の増加を抑え、窓晴れ性を維持
し、かつ暖房能力の増大を図ることが困難であった。
In addition, it is difficult to suppress an increase in the compressor input, maintain the window transparency, and increase the heating capacity at the time of startup, which requires a rapid increase in the heating capacity.

【0014】そこでこの発明は、除湿暖房を可能とし、
車室外の気候条件に左右されず安定した制御で冷暖房能
力を向上することができ、大幅な設計変更を必要とせ
ず、電気自動車等にも適し、しかも、廃熱等を蓄熱して
これを利用することにより消費電力を抑えつつコンプレ
ッサ入力量を増加して暖房能力を増大させることがで
き、消費電力の低減と窓晴れ性と充分な暖房能力とを無
理なく成立させ、さらに蓄熱能力に応じた制御を可能と
することができる車両用ヒートポンプ式冷暖房装置の提
供を目的とする。
Therefore, the present invention enables dehumidifying heating,
It is possible to improve the heating and cooling capacity with stable control regardless of the climatic conditions outside the vehicle, does not require major design changes, and is also suitable for electric vehicles, etc. Moreover, waste heat is stored and used. By doing so, it is possible to increase the compressor input amount and increase the heating capacity while suppressing the power consumption, and it is possible to achieve the reduction of power consumption, the clearness of the window, and the sufficient heating capacity without difficulty, and further to meet the heat storage capacity. An object is to provide a heat pump type air conditioner for a vehicle that can be controlled.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載の発明は、冷媒に仕事量を加えるコ
ンプレッサと、このコンプレッサの冷媒吐出側に接続さ
れ、冷媒の熱を外気に放熱する車室外熱交換器と、前記
コンプレッサの冷媒吐出側に接続され、冷媒の熱を送風
手段により導入された空気と熱交換して温い空調風を作
る放熱用車室内熱交換器と、この放熱用車室内熱交換器
の冷媒流出側に接続された膨張手段と、この膨張手段の
冷媒流出側と前記コンプレッサの冷媒吸入側とに接続さ
れ、送風手段により導入された空気の熱を前記車室外熱
交換器および前記放熱用車室内熱交換器の少なくとも一
方から前記膨張手段を通して供給された冷媒と熱交換し
て冷たい空調風を作る吸熱用車室内熱交換器と、前記コ
ンプレッサの冷媒吐出側と前記車室外熱交換器および前
記放熱用車室内熱交換器の冷媒流入側との間に設けら
れ、コンプレッサから吐出される冷媒を、冷房運転時に
少なくとも前記車室外熱交換器に導入し、暖房運転時に
前記車室外熱交換器を回避して前記放熱用車室内熱交換
器に導入する冷媒流路切換手段と、前記放熱用車室内熱
交換器の冷媒吐出側と前記コンプレッサの冷媒流入側と
に接続され、外部熱源からの熱量を蓄熱して冷媒に放熱
する蓄熱手段と、この蓄熱手段の冷媒流入側に接続され
前記蓄熱手段に導入する冷媒量を調整する蓄熱調整手段
と、前記蓄熱手段から冷媒への放熱状態の増減に関する
要素を検出する放熱要素検出手段と、この放熱要素検出
手段の検出した要素に応じて前記蓄熱手段から冷媒への
放熱状態を判断する放熱状態判断手段と、この放熱状態
判断手段の判断した放熱状態に応じて前記蓄熱調整手段
を可変制御する制御手段とを設けた構成としてある。
In order to solve the above-mentioned problems, the invention according to claim 1 is connected to a compressor for adding a work amount to a refrigerant and a refrigerant discharge side of this compressor to transfer heat of the refrigerant to the outside air. A heat exchanger outside the vehicle interior for radiating heat to the vehicle, and a heat radiating vehicle interior heat exchanger that is connected to the refrigerant discharge side of the compressor and exchanges the heat of the refrigerant with the air introduced by the air blowing means to produce warm conditioned air. Expansion means connected to the refrigerant outflow side of the heat dissipation vehicle interior heat exchanger, and a refrigerant outflow side of the expansion means and the refrigerant suction side of the compressor, the heat of the air introduced by the blower means An endothermic passenger compartment heat exchanger for exchanging heat with a refrigerant supplied through the expansion means from at least one of an exterior heat exchanger and a heat dissipation passenger compartment heat exchanger, and a refrigerant of the compressor Provided between the outlet side and the refrigerant inflow side of the vehicle exterior heat exchanger and the heat dissipation vehicle interior heat exchanger, the refrigerant discharged from the compressor is introduced into at least the vehicle exterior heat exchanger during cooling operation. A refrigerant flow path switching means for avoiding the heat exchanger outside the vehicle compartment and introducing the heat into the vehicle interior heat exchanger for heat dissipation during heating operation; and a refrigerant inflow side of the heat exchanger for heat dissipation vehicle interior and a refrigerant inflow of the compressor. A heat storage means connected to the side, which stores the amount of heat from an external heat source and radiates the heat to the refrigerant, and a heat storage adjustment means which is connected to the refrigerant inflow side of the heat storage means and adjusts the amount of the refrigerant introduced into the heat storage means, Heat dissipation element detecting means for detecting an element relating to increase / decrease in heat dissipation state from the heat storage means to the refrigerant, and heat dissipation state determining means for judging the heat dissipation state from the heat storage means to the refrigerant according to the element detected by the heat dissipation element detecting means. There the accumulation adjusting means according to the determined state of heat radiation in the radiator state determining means as a structure provided with a control means for variably controlling.

【0016】請求項2に記載の発明は、請求項1記載の
車両用ヒートポンプ式冷暖房装置であって、前記放熱要
素検出手段は、前記コンプレッサに流入する冷媒温度又
は前記蓄熱手段に導入する冷媒温度の少なくとも一方を
検出し、前記放熱状態判断手段は、前記冷媒温度がほぼ
一定状態にあるとき前記蓄熱手段から冷媒への放熱量が
低下したと判断し、前記制御手段は、前記放熱状態判断
手段が前記蓄熱手段から冷媒への放熱量が低下したと判
断したときに前記蓄熱調整手段により前記蓄熱手段への
冷媒の導入を停止する構成としてある。
A second aspect of the present invention is the vehicle heat pump type cooling and heating apparatus according to the first aspect, wherein the heat radiation element detecting means is a refrigerant temperature flowing into the compressor or a refrigerant temperature introducing into the heat storing means. The heat dissipation state determining means determines that the amount of heat released from the heat storage means to the refrigerant has decreased when the refrigerant temperature is in a substantially constant state, and the control means determines the heat dissipation state determining means. Is configured to stop the introduction of the refrigerant into the heat storage means by the heat storage adjustment means when it is determined that the amount of heat released from the heat storage means to the refrigerant has decreased.

【0017】請求項3に記載の発明は、冷媒に仕事量を
加えるコンプレッサと、このコンプレッサの冷媒吐出側
に接続され、冷媒の熱を外気に放熱する車室外熱交換器
と、前記コンプレッサの冷媒吐出側に接続され、冷媒の
熱を送風手段により導入された空気と熱交換して温い空
調風を作る放熱用車室内熱交換器と、この放熱用車室内
熱交換器の冷媒流出側に接続された膨張手段と、この膨
張手段の冷媒流出側と前記コンプレッサの冷媒吸入側と
に接続され、送風手段により導入された空気の熱を前記
車室外熱交換器および前記放熱用車室内熱交換器の少な
くとも一方から前記膨張手段を通して供給された冷媒と
熱交換して冷たい空調風を作る吸熱用車室内熱交換器
と、前記コンプレッサの冷媒吐出側と前記車室外熱交換
器および前記放熱用車室内熱交換器の冷媒流入側との間
に設けられ、コンプレッサから吐出される冷媒を、冷房
運転時に少なくとも前記車室外熱交換器に導入し、暖房
運転時に前記車室外熱交換器を回避して前記放熱用車室
内熱交換器に導入する冷媒流路切換手段と、前記放熱用
車室内熱交換器の冷媒吐出側と前記コンプレッサの冷媒
流入側とに接続され、外部熱源からの熱量を蓄熱して冷
媒に放熱する蓄熱手段と、前記吸熱用車室内熱交換器の
冷媒流入側に設けられ前記吸熱用車室内熱交換器に導入
する冷媒量を調整する吸熱調整手段と、暖房運転開始後
の所定時間内は前記吸熱用車室内熱交換器への冷媒の導
入を停止するように前記吸熱調整手段を可変制御する制
御手段とを設けた構成としてある。
According to a third aspect of the present invention, a compressor that adds work to the refrigerant, an exterior heat exchanger that is connected to the refrigerant discharge side of the compressor and radiates the heat of the refrigerant to the outside air, and the refrigerant of the compressor. A heat radiation vehicle interior heat exchanger that is connected to the discharge side and exchanges the heat of the refrigerant with the air introduced by the air blowing means to create warm air-conditioned air, and is connected to the refrigerant outflow side of this heat radiation vehicle interior heat exchanger Connected to the refrigerant outflow side of the expansion means and the refrigerant intake side of the compressor, and the heat of the air introduced by the blower means to the heat exchanger outside the vehicle interior and the heat exchanger for heat radiation inside the vehicle interior. A heat exchanger for heat absorption inside the vehicle for exchanging heat with the refrigerant supplied from at least one of the expansion means to generate cold air-conditioning air, a refrigerant discharge side of the compressor, the heat exchanger outside the vehicle and the heat radiating device. Provided between the refrigerant inflow side of the indoor heat exchanger, the refrigerant discharged from the compressor is introduced into at least the vehicle exterior heat exchanger during the cooling operation, and avoids the vehicle exterior heat exchanger during the heating operation. Refrigerant flow path switching means to be introduced into the heat dissipation vehicle interior heat exchanger, and is connected to the refrigerant discharge side of the heat dissipation vehicle interior heat exchanger and the refrigerant inflow side of the compressor, and stores the amount of heat from an external heat source. A heat storage means for radiating heat to the refrigerant, a heat absorption adjusting means provided on the refrigerant inflow side of the heat absorption vehicle interior heat exchanger for adjusting the amount of the refrigerant introduced into the heat absorption vehicle interior heat exchanger, and after heating operation is started. A control means for variably controlling the heat absorption adjusting means is provided so as to stop the introduction of the refrigerant into the heat absorption passenger compartment heat exchanger within a predetermined time.

【0018】請求項4に記載の発明は、冷媒に仕事量を
加えるコンプレッサと、このコンプレッサの冷媒吐出側
に接続され、冷媒の熱を外気に放熱する車室外熱交換器
と、前記コンプレッサの冷媒吐出側に接続され、冷媒の
熱を送風手段により導入された空気と熱交換して温い空
調風を作る放熱用車室内熱交換器と、この放熱用車室内
熱交換器の冷媒流出側に接続された膨張手段と、この膨
張手段の冷媒流出側と前記コンプレッサの冷媒吸入側と
に接続され、送風手段により導入された空気の熱を前記
車室外熱交換器および前記放熱用車室内熱交換器の少な
くとも一方から前記膨張手段を通して供給された冷媒と
熱交換して冷たい空調風を作る吸熱用車室内熱交換器
と、前記コンプレッサの冷媒吐出側と前記車室外熱交換
器および前記放熱用車室内熱交換器の冷媒流入側との間
に設けられ、コンプレッサから吐出される冷媒を、冷房
運転時に少なくとも前記車室外熱交換器に導入し、暖房
運転時に前記車室外熱交換器を回避して前記放熱用車室
内熱交換器に導入する冷媒流路切換手段と、前記放熱用
車室内熱交換器の冷媒吐出側と前記コンプレッサの冷媒
流入側とに接続され、外部熱源からの熱量を蓄熱して冷
媒に放熱する蓄熱手段と、この蓄熱手段の冷媒流入側に
接続され前記蓄熱手段に導入する冷媒量を調整する蓄熱
調整手段と、前記蓄熱手段から冷媒への放熱状態の増減
に関する要素として前記コンプレッサに流入する冷媒温
度又は前記蓄熱手段に導入する冷媒温度の少なくとも一
方を検出する放熱要素検出手段と、前記蓄熱手段への冷
媒導入後所定時間内に、前記放熱要素検出手段の検出し
た冷媒温度が所定温度に達しないときに前記蓄熱手段か
ら冷媒への放熱量が低下したと判断する放熱状態判断手
段と、前記蓄熱手段から冷媒への放熱量が低下したと前
記放熱状態判断手段が判断したときに前記蓄熱調整手段
により前記蓄熱手段への冷媒の導入を停止する制御手段
とを設けた構成としてある。
According to a fourth aspect of the present invention, a compressor that adds work to the refrigerant, a vehicle exterior heat exchanger that is connected to the refrigerant discharge side of the compressor and radiates the heat of the refrigerant to the outside air, and the refrigerant of the compressor A heat radiation vehicle interior heat exchanger that is connected to the discharge side and exchanges the heat of the refrigerant with the air introduced by the air blowing means to create warm air-conditioned air, and is connected to the refrigerant outflow side of this heat radiation vehicle interior heat exchanger Connected to the refrigerant outflow side of the expansion means and the refrigerant intake side of the compressor, and the heat of the air introduced by the blower means to the heat exchanger outside the vehicle interior and the heat exchanger for heat radiation inside the vehicle interior. A heat exchanger for heat absorption inside the vehicle for exchanging heat with the refrigerant supplied from at least one of the expansion means to generate cold air-conditioning air, a refrigerant discharge side of the compressor, the heat exchanger outside the vehicle and the heat radiating device. Provided between the refrigerant inflow side of the indoor heat exchanger, the refrigerant discharged from the compressor is introduced into at least the vehicle exterior heat exchanger during the cooling operation, and avoids the vehicle exterior heat exchanger during the heating operation. Refrigerant flow path switching means to be introduced into the heat dissipation vehicle interior heat exchanger, and is connected to the refrigerant discharge side of the heat dissipation vehicle interior heat exchanger and the refrigerant inflow side of the compressor, and stores the amount of heat from an external heat source. A heat storage means for radiating heat to the refrigerant, a heat storage adjusting means connected to the refrigerant inflow side of the heat storage means for adjusting the amount of the refrigerant introduced into the heat storage means, and an element for increasing or decreasing the heat radiation state from the heat storage means to the refrigerant. A heat dissipation element detecting means for detecting at least one of the temperature of the refrigerant flowing into the compressor and the temperature of the refrigerant introduced into the heat storage means, and the heat dissipation element within a predetermined time after the introduction of the refrigerant into the heat storage means. When the temperature of the refrigerant detected by the output means does not reach a predetermined temperature, the heat radiation state determining means determines that the heat radiation amount from the heat storage means to the refrigerant has decreased, and the heat radiation amount from the heat storage means to the refrigerant has decreased. And a control means for stopping the introduction of the refrigerant into the heat storage means by the heat storage adjustment means when the heat radiation state determination means makes a determination.

【0019】請求項5に記載の発明は、冷媒に仕事量を
加えるコンプレッサと、このコンプレッサの冷媒吐出側
に接続され、冷媒の熱を外気に放熱する車室外熱交換器
と、前記コンプレッサの冷媒吐出側に接続され、冷媒の
熱を送風手段により導入された空気と熱交換して温い空
調風を作る放熱用車室内熱交換器と、この放熱用車室内
熱交換器の冷媒流出側に接続された膨張手段と、この膨
張手段の冷媒流出側と前記コンプレッサの冷媒吸入側と
に接続され、送風手段により導入された空気の熱を前記
車室外熱交換器および前記放熱用車室内熱交換器の少な
くとも一方から前記膨張手段を通して供給された冷媒と
熱交換して冷たい空調風を作る吸熱用車室内熱交換器
と、前記コンプレッサの冷媒吐出側と前記車室外熱交換
器および前記放熱用車室内熱交換器の冷媒流入側との間
に設けられ、コンプレッサから吐出される冷媒を、冷房
運転時に少なくとも前記車室外熱交換器に導入し、暖房
運転時に前記車室外熱交換器を回避して前記放熱用車室
内熱交換器に導入する冷媒流路切換手段と、前記放熱用
車室内熱交換器の冷媒吐出側と前記コンプレッサの冷媒
流入側とに接続され、外部熱源からの熱量を蓄熱して冷
媒に放熱する蓄熱手段と、この蓄熱手段の冷媒流入側に
接続され前記蓄熱手段に導入する冷媒量を調整する蓄熱
調整手段と、前記蓄熱手段から冷媒への放熱状態の増減
に関する要素として前記コンプレッサに流入する冷媒温
度又は前記蓄熱手段に導入する冷媒温度の少なくとも一
方を検出する放熱要素検出手段と、前記放熱要素検出手
段の検出した冷媒温度が所定温度以下となったとき、又
は前記冷媒温度の時間変化が所定値以下となったときに
前記蓄熱手段から冷媒への放熱量が低下したと判断する
放熱状態判断手段と、前記蓄熱手段から冷媒への放熱量
が低下したと前記放熱状態判断手段が判断したときに前
記蓄熱調整手段により前記蓄熱手段への冷媒の導入を停
止する制御手段とを設けた構成としてある。
According to a fifth aspect of the present invention, a compressor that adds work to the refrigerant, a vehicle exterior heat exchanger that is connected to the refrigerant discharge side of the compressor and radiates the heat of the refrigerant to the outside air, and the refrigerant of the compressor A heat radiation vehicle interior heat exchanger that is connected to the discharge side and exchanges the heat of the refrigerant with the air introduced by the air blowing means to create warm air-conditioned air, and is connected to the refrigerant outflow side of this heat radiation vehicle interior heat exchanger Connected to the refrigerant outflow side of the expansion means and the refrigerant intake side of the compressor, and the heat of the air introduced by the blower means to the heat exchanger outside the vehicle interior and the heat exchanger for heat radiation inside the vehicle interior. A heat exchanger for heat absorption inside the vehicle for exchanging heat with the refrigerant supplied from at least one of the expansion means to generate cold air-conditioning air, a refrigerant discharge side of the compressor, the heat exchanger outside the vehicle and the heat radiating device. Provided between the refrigerant inflow side of the indoor heat exchanger, the refrigerant discharged from the compressor is introduced into at least the vehicle exterior heat exchanger during the cooling operation, and avoids the vehicle exterior heat exchanger during the heating operation. Refrigerant flow path switching means to be introduced into the heat dissipation vehicle interior heat exchanger, and is connected to the refrigerant discharge side of the heat dissipation vehicle interior heat exchanger and the refrigerant inflow side of the compressor, and stores the amount of heat from an external heat source. A heat storage means for radiating heat to the refrigerant, a heat storage adjusting means connected to the refrigerant inflow side of the heat storage means for adjusting the amount of the refrigerant introduced into the heat storage means, and an element for increasing or decreasing the heat radiation state from the heat storage means to the refrigerant. A heat dissipation element detecting means for detecting at least one of the temperature of the refrigerant flowing into the compressor and the temperature of the refrigerant introduced into the heat storage means, and the temperature of the refrigerant detected by the heat dissipation element detecting means is equal to or lower than a predetermined temperature. When the temperature of the refrigerant changes or the time change of the temperature of the refrigerant becomes equal to or less than a predetermined value, the heat radiation state determining means determines that the heat radiation amount from the heat storage means to the refrigerant has decreased, and the heat radiation amount from the heat storage means to the refrigerant. And a control means for stopping the introduction of the refrigerant into the heat storage means by the heat storage adjustment means when the heat dissipation state determination means determines that the heat has decreased.

【0020】[0020]

【作用】請求項1に記載の発明では、暖房運転時に、コ
ンプレッサの駆動により、冷媒がコンプレッサから流路
切り換え手段、放熱用車室内熱交換器、膨張手段、吸熱
用車室内熱交換器を順に経由してコンプレッサに循環
し、放熱用車室内熱交換器がコンプレッサから吐出され
た高温な冷媒の熱を送風手段で導入された空気に放熱し
て温風を作り、吸熱用車室内熱交換器が送風手段で導入
された空気の熱を冷媒に吸熱して冷風を作る。冷房運転
時には、コンプレッサの駆動により冷媒をコンプレッサ
から流路切り換え手段、車室外熱交換器のみ又は車室外
熱交換器と放熱用車室内熱交換器との両方、膨張手段、
吸熱用車室内熱交換器を順に経由してコンプレッサに循
環し車室外熱交換器がコンプレッサから吐出された高温
な冷媒の熱を外気に放熱し、吸熱用車室内熱交換器が送
風手段で導入された空気の熱を冷媒に吸熱して冷風を作
る。
According to the first aspect of the present invention, during the heating operation, the compressor is driven to flow the refrigerant from the compressor to the flow path switching means, the heat radiating passenger compartment heat exchanger, the expanding means and the heat absorbing passenger compartment heat exchanger in this order. The heat exchanger interior heat exchanger for heat absorption radiates the heat of the high temperature refrigerant discharged from the compressor to the air introduced by the air blower to create warm air, and the heat exchanger interior heat exchanger for heat absorption. Absorbs the heat of the air introduced by the air blowing means into the refrigerant to produce cold air. During cooling operation, the compressor drives the refrigerant to switch the flow path from the compressor to the exterior heat exchanger alone or both the exterior heat exchanger and the heat dissipation interior heat exchanger, the expansion means,
The heat from the interior heat exchanger for heat absorption is circulated to the compressor in sequence, and the heat exchanger outside the vehicle interior radiates the heat of the high-temperature refrigerant discharged from the compressor to the outside air, and the heat exchanger inside the heat absorption vehicle introduces it through the blowing means. The heat of the generated air is absorbed by the refrigerant to create cold air.

【0021】蓄熱暖房運転時は、蓄熱手段から冷媒に蓄
熱量を放熱することで、消費電力を抑えながらコンプレ
ッサ入力量を増大させることができる。
During the heat storage heating operation, the amount of heat stored is radiated from the heat storage means to the refrigerant, whereby the compressor input amount can be increased while suppressing the power consumption.

【0022】また、放熱状態判断手段の判断した放熱状
態に応じて蓄熱調整手段を可変制御するので、蓄熱手段
の蓄熱能力、すなわち、蓄熱手段から冷媒への放熱状態
に応じて蓄熱手段への冷媒導入量を調整でき、最適条件
下で的確な蓄熱暖房運転を行うことができる。
Further, since the heat storage adjusting means is variably controlled in accordance with the heat radiation state judged by the heat radiation state judging means, the heat storage capacity of the heat storage means, that is, the refrigerant to the heat storage means depending on the heat radiation state from the heat storage means to the refrigerant. The amount of introduction can be adjusted, and accurate heat storage heating operation can be performed under optimal conditions.

【0023】さらに、放熱状態判断手段の判断した放熱
状態に応じて蓄熱調整手段を可変制御するので、冷媒の
不足等による暖房能力の低下や、コンプレッサの液圧縮
が発生しない。
Further, since the heat storage adjusting means is variably controlled in accordance with the heat radiation state judged by the heat radiation state judging means, the heating capacity is not lowered and the liquid compression of the compressor does not occur due to lack of the refrigerant or the like.

【0024】このように、暖房能力と、窓晴れ性と、コ
ンプレッサの保護とを同時に成立させることができる。
In this way, the heating capacity, the window transparency, and the protection of the compressor can be simultaneously established.

【0025】請求項2に記載の発明では、放熱要素検出
手段が、コンプレッサに流入する冷媒温度又は前記蓄熱
手段に導入する冷媒温度の少なくとも一方を検出し、放
熱状態判断手段が、前記冷媒温度がほぼ一定状態にある
とき蓄熱手段から冷媒への放熱量が低下したと判断し、
前記放熱量が低下した判断されたときに制御手段が蓄熱
手段への冷媒の導入を停止するので、蓄熱手段から冷媒
への放熱量が低下したときに的確に蓄熱暖房運転を停止
することができる。
According to a second aspect of the present invention, the heat dissipation element detecting means detects at least one of the temperature of the refrigerant flowing into the compressor and the temperature of the refrigerant introduced into the heat storing means, and the heat dissipation state determining means determines that the refrigerant temperature is When it is in a substantially constant state, it is determined that the amount of heat released from the heat storage means to the refrigerant has decreased,
Since the control means stops the introduction of the refrigerant into the heat storage means when it is determined that the heat radiation amount has decreased, the heat storage heating operation can be accurately stopped when the heat radiation amount from the heat storage means to the refrigerant has decreased. .

【0026】請求項3に記載の発明では、制御手段が、
暖房運転開始後の所定時間内は吸熱用車室内熱交換器へ
の冷媒の導入を停止するように吸熱調整手段を可変制御
するので、蓄熱を有効に利用可能な状態で蓄熱暖房運転
を行うことができると共に、暖房能力の向上と窓晴れ性
の維持とをより確実に両立させることができる。
In the invention according to claim 3, the control means comprises:
Since the heat absorption adjusting means is variably controlled so as to stop the introduction of the refrigerant into the heat absorption vehicle interior heat exchanger within the predetermined time after the start of the heating operation, the heat storage heating operation should be performed in a state where the heat storage can be effectively used. In addition, it is possible to more reliably achieve both improvement of heating capacity and maintenance of window transparency.

【0027】請求項4に記載の発明では、放熱要素検出
手段が、コンプレッサに流入する冷媒温度又は前記蓄熱
手段に導入する冷媒温度の少なくとも一方を検出し、放
熱状態判断手段が、蓄熱手段への冷媒導入後所定時間内
に前記冷媒温度が所定温度に達しないときは、蓄熱手段
から冷媒への放熱量が低下したと判断し、前記放熱量が
低下したと判断されたときに制御手段が蓄熱手段への冷
媒の導入を停止するので、蓄熱手段の蓄熱量が不充分で
ある場合に、より的確に蓄熱暖房運転を停止することが
できる。
In the invention according to claim 4, the heat radiation element detection means detects at least one of the temperature of the refrigerant flowing into the compressor and the temperature of the refrigerant introduced into the heat storage means, and the heat radiation state determination means causes the heat storage means to detect the heat storage means. When the refrigerant temperature does not reach the predetermined temperature within a predetermined time after the introduction of the refrigerant, it is determined that the heat radiation amount from the heat storage means to the refrigerant has decreased, and the control means stores heat when it is determined that the heat radiation amount has decreased. Since the introduction of the refrigerant to the means is stopped, the heat storage heating operation can be stopped more accurately when the heat storage amount of the heat storage means is insufficient.

【0028】請求項5に記載の発明では、放熱要素検出
手段が、コンプレッサに流入する冷媒温度又は前記蓄熱
手段に導入する冷媒温度の少なくとも一方を検出し、放
熱状態判断手段が、冷媒温度が所定温度以下となったと
き、又は前記冷媒温度の時間変化が所定値以下となった
ときに蓄熱手段から冷媒への放熱量が低下したと判断
し、前記放熱量が低下したと判断されたときに制御手段
が蓄熱手段への冷媒の導入を停止するので、蓄熱手段か
ら冷媒への放熱量が低下したときに迅速かつ的確に蓄熱
暖房運転を停止することができる。
In the invention according to claim 5, the heat radiation element detection means detects at least one of the temperature of the refrigerant flowing into the compressor and the temperature of the refrigerant introduced into the heat storage means, and the heat radiation state judgment means determines that the refrigerant temperature is predetermined. When it is determined that the heat radiation amount from the heat storage means to the refrigerant has decreased when the temperature has become equal to or lower than the temperature, or the time change of the refrigerant temperature has become equal to or less than a predetermined value, and when it has been determined that the heat radiation amount has decreased. Since the control means stops the introduction of the refrigerant into the heat storage means, the heat storage heating operation can be stopped quickly and accurately when the amount of heat released from the heat storage means to the refrigerant decreases.

【0029】[0029]

【実施例】以下、この発明の実施例を説明する。Embodiments of the present invention will be described below.

【0030】図1は、この発明の第1実施例の車両用ヒ
ートポンプ式冷暖房装置の概略構成図を示し、図2は、
冷媒サイクルのみを示す概略構成図である。
FIG. 1 is a schematic block diagram of a vehicle heat pump type cooling and heating apparatus according to a first embodiment of the present invention, and FIG.
It is a schematic block diagram which shows only a refrigerant cycle.

【0031】これら、図1、図2に示すようにコンプレ
ッサ31は、エンジンルームのような車室外に設けら
れ、電動式コンプレッサや油圧駆動式コンプレッサのよ
うに、入力値が直接可変可能になっている。このコンプ
レッサ31の吐出側には、車室外熱交換器38と放熱用
車室内熱交換器33とが流路切換手段としての三方弁3
2を介して接続されている。
As shown in FIGS. 1 and 2, the compressor 31 is provided outside a vehicle compartment such as an engine room, and its input value can be directly changed like an electric compressor or a hydraulic drive compressor. There is. On the discharge side of the compressor 31, a vehicle exterior heat exchanger 38 and a heat radiation vehicle interior heat exchanger 33 are three-way valves 3 as flow path switching means.
It is connected via 2.

【0032】前記車室外熱交換器38は、エンジンルー
ム等の車室外に設けられ、コンプレッサ31から吐出さ
れる冷媒の熱を外気に放熱する車室外コンデンサになっ
ている。
The exterior heat exchanger 38 is provided outside the interior of the vehicle such as an engine room and serves as an exterior condenser that radiates the heat of the refrigerant discharged from the compressor 31 to the outside air.

【0033】前記放熱用車室内熱交換器33は、インス
トルメントパネルの裏側のような車室内前部に配置され
た装置本体としてのダクト39内に設けられ、コンプレ
ッサ31から吐出される冷媒の熱を送風手段としてのブ
ロアファン37によって導入された空気に放熱する放熱
タイプの車室内コンデンサになっている。
The heat radiating passenger compartment heat exchanger 33 is provided in a duct 39 as a main body of the apparatus, which is disposed in the front portion of the passenger compartment such as the back side of the instrument panel, and heats the refrigerant discharged from the compressor 31. Is a heat dissipation type vehicle interior capacitor that radiates heat to the air introduced by the blower fan 37 as a blower.

【0034】前記三方弁32は、暖房運転時には、点線
示のような流路切り換え状態となり、コンプレッサ31
の吐出側を放熱用車室内熱交換器33の冷媒流入側に接
続する一方、冷房運転時には、実線示のような流路切り
換え状態となり、コンプレッサ31の吐出側を車室外熱
交換器38及び逆止弁70を介して放熱用車室内熱交換
器33の冷媒流入側に接続している。
During heating operation, the three-way valve 32 is in a flow path switching state as shown by the dotted line, and the compressor 31
Is connected to the refrigerant inflow side of the heat radiating vehicle interior heat exchanger 33, while the cooling operation is in the flow path switching state as shown by the solid line, and the discharge side of the compressor 31 is connected to the vehicle exterior heat exchanger 38 and the reverse side. It is connected to the refrigerant inflow side of the heat-radiating vehicle interior heat exchanger 33 via a stop valve 70.

【0035】前記逆止弁70は、車室外熱交換器38側
から放熱用車室内熱交換器33側への冷媒の流れを許容
し、放熱用車室内熱交換器33側から車室外熱交換器3
8への冷媒の流れを阻止するようになっている。
The check valve 70 allows the refrigerant to flow from the vehicle interior heat exchanger 38 side to the heat radiating vehicle interior heat exchanger 33 side, and the heat radiating vehicle interior heat exchanger 33 side to the vehicle exterior heat exchange. Bowl 3
The flow of the refrigerant to 8 is blocked.

【0036】前記放熱用車室内熱交換器33の冷媒流出
側には、ダクト39内の上流側に設けられた吸熱用車室
内熱交換器35の冷媒流入側が、液タンク36及び車室
外に設けられた膨張手段として液体冷媒を断熱膨張して
霧状にする膨張弁34を介して接続されている。
On the refrigerant outflow side of the heat radiation vehicle interior heat exchanger 33, the refrigerant inflow side of the heat absorption vehicle interior heat exchanger 35 provided upstream in the duct 39 is provided outside the liquid tank 36 and the vehicle interior. As the expansion means, they are connected via an expansion valve 34 that adiabatically expands the liquid refrigerant to atomize it.

【0037】前記吸熱用車室内熱交換器35は、ブロア
ファン37によって導入された空気の熱を、車室外熱交
換器38および放熱用車室内熱交換器33の少なくとも
一方から膨張弁34を通して供給された冷媒に吸熱して
冷風を作る吸熱タイプのエバポレータになっている。前
記吸熱用車室内熱交換器35の冷媒流出側には、コンプ
レッサ31の冷媒吸入側が接続されている。
The heat absorbing vehicle interior heat exchanger 35 supplies the heat of the air introduced by the blower fan 37 from at least one of the vehicle exterior heat exchanger 38 and the heat radiating vehicle interior heat exchanger 33 through the expansion valve 34. It is an endothermic evaporator that absorbs heat of the generated refrigerant and produces cold air. The refrigerant intake side of the compressor 31 is connected to the refrigerant outflow side of the heat absorption vehicle interior heat exchanger 35.

【0038】液タンク36の冷媒流出側では冷媒が2方
向に分岐され、その一方は吸熱調整手段としての第1の
電磁弁101を介して膨脹弁34の冷媒流入側に接続
し、他方は蓄熱調整手段としての第2の電磁弁102を
介して補助膨脹弁103の冷媒流入側に接続している。
補助膨脹弁103の冷媒流出側は、蓄熱手段としての蓄
熱槽104の冷媒流入側に接続し、蓄熱槽104の冷媒
流出側は、コンプレッサ31の冷媒流入側に接続してい
る。蓄熱槽104には、液体又は固体の蓄熱体が収容さ
れ、蓄熱体は、図外のエンジンの排気熱やブレーキ廃熱
等の外部熱源によって蓄熱され、この蓄熱量を流入する
冷媒に放熱する。すなわち、第2の電磁弁102を開く
と、蓄熱槽104に冷媒が流入して、蓄熱暖房運転とな
る。また、本実施例では、膨脹弁34として機械式膨脹
弁を使用しているため第1の電磁弁101を設けたが、
冷媒の流通停止が可能な電動式膨脹弁等を使用する場合
には、特に第1の電磁弁101を設ける必要はない。
On the refrigerant outflow side of the liquid tank 36, the refrigerant is branched into two directions, one of which is connected to the refrigerant inflow side of the expansion valve 34 via the first electromagnetic valve 101 as the heat absorption adjusting means, and the other one stores heat. It is connected to the refrigerant inflow side of the auxiliary expansion valve 103 via a second electromagnetic valve 102 as an adjusting means.
The refrigerant outflow side of the auxiliary expansion valve 103 is connected to the refrigerant inflow side of the heat storage tank 104 as a heat storage means, and the refrigerant outflow side of the heat storage tank 104 is connected to the refrigerant inflow side of the compressor 31. A liquid or solid heat storage body is accommodated in the heat storage tank 104, and the heat storage body stores heat by an external heat source such as exhaust heat of an engine (not shown) or brake waste heat, and radiates this heat storage amount to the inflowing refrigerant. That is, when the second solenoid valve 102 is opened, the refrigerant flows into the heat storage tank 104, and the heat storage heating operation is performed. In addition, in the present embodiment, since the mechanical expansion valve is used as the expansion valve 34, the first solenoid valve 101 is provided.
When using an electrically driven expansion valve or the like capable of stopping the flow of the refrigerant, it is not necessary to provide the first electromagnetic valve 101.

【0039】コンプレッサ31の冷媒流入側には、放熱
状態の増減に関する要素としてのコンプレッサ吸入冷媒
温度を検出する放熱状態検出手段設としての吸入冷媒温
度センサ107が設けられている。
On the refrigerant inflow side of the compressor 31, there is provided an intake refrigerant temperature sensor 107 as a heat dissipation state detecting means for detecting the compressor intake refrigerant temperature as an element relating to increase / decrease in heat dissipation state.

【0040】なお、前記放熱用車室内熱交換器33の空
気流入側には、補助ヒータ76が設けられている。補助
ヒータ76は入力電圧によって出力を任意に設定できる
可変タイプの電熱ヒータで、入力電圧は制御装置43に
より制御される。補助ヒータ76がONされると、放熱
用車室内熱交換器33を通過する空気が加熱され、放熱
用車室内熱交換器33を流通する冷媒の温度が上昇す
る。
An auxiliary heater 76 is provided on the air inflow side of the heat dissipation vehicle interior heat exchanger 33. The auxiliary heater 76 is a variable type electric heater whose output can be arbitrarily set by the input voltage, and the input voltage is controlled by the control device 43. When the auxiliary heater 76 is turned on, the air passing through the heat dissipation vehicle interior heat exchanger 33 is heated, and the temperature of the refrigerant flowing through the heat dissipation vehicle interior heat exchanger 33 rises.

【0041】前記ダクト39内の吸熱用車室内熱交換器
35よりも上流側には、車室内空気を導入する内気導入
管40と、走行風圧を受けて外気を導入する外気導入管
41とが接続されている。この内気導入管40と外気導
入管41とが分岐する部分には、内気導入管40から導
入された内気と外気導入管から導入された外気とを任意
の比率で供給するように開閉するインテークドア42が
設けられている。インテークドア42は、制御装置43
で駆動される図外のインテークドアアクチュエータによ
り開閉する。
Inside the duct 39, on the upstream side of the heat-absorbing passenger compartment heat exchanger 35, there are an inside air introducing tube 40 for introducing the passenger compartment air and an outside air introducing tube 41 for introducing the outside air in response to the traveling wind pressure. It is connected. An intake door that opens and closes at a portion where the inside air introducing pipe 40 and the outside air introducing pipe 41 branch so as to supply the inside air introduced from the inside air introducing pipe 40 and the outside air introduced from the outside air introducing pipe at an arbitrary ratio. 42 are provided. The intake door 42 has a control device 43.
It is opened and closed by an intake door actuator (not shown) driven by.

【0042】前記内気導入管40と外気導入管41との
空気導出側(空気流の下流側)と吸熱用車室内熱交換器
35との間には、前記ブロアファン37が配置され、ブ
ロアファンモータ44で回転駆動されるようになってい
る。
The blower fan 37 is disposed between the air outlet side (downstream side of the air flow) of the inside air introducing pipe 40 and the outside air introducing pipe 41 and the heat absorbing passenger compartment heat exchanger 35. The motor 44 is rotationally driven.

【0043】前記放熱用車室内熱交換器33の上流側に
は、エアミックスドア46が設けられている。このエア
ミックスドア46は、制御装置43で駆動される図外の
エアミックスドアアクチュエータにより駆動され、吸熱
用車室内熱交換器35を通過して冷えている空気を、放
熱用車室内熱交換器33を回避して冷えたままの冷風
と、放熱用車室内熱交換器33を通過して暖められた温
風とに分ける比率(冷風と温風との風量配分)を調整す
る。エアミックスドア46の開度たるエアミックスドア
開度Xdscは、エアミックスドア46が一点鎖線示の
位置となり、冷風と温風との風量配分が冷風100%に
なる時を、エアミックスドア開度Xdsc=0%(全
閉)と設定し、エアミックスドア46が二点鎖線示の位
置となり、冷風と温風との風量配分が温風100%とな
る時を、エアミックスドア開度Xdsc=100%(全
開)と設定してある。
An air mix door 46 is provided on the upstream side of the heat radiation vehicle interior heat exchanger 33. The air mix door 46 is driven by an air mix door actuator (not shown) driven by the control device 43, and cools the air passing through the heat absorbing vehicle interior heat exchanger 35 and radiating the vehicle interior heat exchanger. A ratio (amount of airflow distribution between cold air and warm air) that is divided between cold air that is still cold by avoiding 33 and warm air that has been warmed by passing through the heat dissipation vehicle interior heat exchanger 33 is adjusted. The air mix door opening Xdsc, which is the opening of the air mix door 46, is when the air mix door 46 is in the position indicated by the alternate long and short dash line and the air flow distribution between the cool air and the warm air is 100% cold air. When Xdsc = 0% (fully closed) is set, the air mix door 46 is at the position indicated by the chain double-dashed line, and the air flow distribution between the cold air and the hot air is 100% warm air, the air mix door opening Xdsc = It is set to 100% (fully open).

【0044】前記ダクト39の放熱用車室内熱交換器3
3よりも下流側には、上記冷風と温風との混合を良くす
ることにより、温度調整された空調風を作る部屋として
のエアミックスチャンバ47が設けられている。エアミ
ックスチャンバ47には、対象乗員の上半身に向けて空
調風を吹き出すベンチレータ吹出口51(51a,51
b,51c,51d)と、対象乗員の足元に向けて空調
風を吹き出すフット吹出口52(52a)と、フロント
ウィンドウに向けて空調風を吹き出すデフロスタ吹出口
53(53a)とが連設されている。エアミックスチャ
ンバ47内には、ベンチレータドア55とフットドア5
6とデフロスタドア57とが設けられている。ベンチレ
ータドア55は、制御装置43で駆動される図外のベン
チレータドアアクチュエータにより、ベンチレータ吹出
口51を開閉する。フットドア56は、制御装置43で
駆動される図外のフットドアアクチュエータにより、フ
ット吹出口52を開閉する。デフロスタドア57は、制
御装置43で駆動される図外のデフロスタドアアクチュ
エータにより、デフロスタ吹出口53を開閉する。
Heat exchanger 3 for heat dissipation in the passenger compartment of the duct 39
An air mix chamber 47 as a room for producing temperature-controlled conditioned air by improving the mixing of the cold air and the hot air is provided on the downstream side of 3. The air mix chamber 47 has a ventilator outlet 51 (51a, 51a) for blowing out conditioned air toward the upper body of the target occupant.
b, 51c, 51d), a foot outlet 52 (52a) that blows the conditioned air toward the feet of the target occupant, and a defroster outlet 53 (53a) that blows the conditioned air toward the front window. There is. A ventilator door 55 and a foot door 5 are provided in the air mix chamber 47.
6 and a defroster door 57 are provided. The ventilator door 55 opens and closes the ventilator outlet 51 by an unillustrated ventilator door actuator driven by the control device 43. The foot door 56 opens and closes the foot outlet 52 by an unillustrated foot door actuator driven by the control device 43. The defroster door 57 opens and closes the defroster outlet 53 by a defroster door actuator (not shown) driven by the control device 43.

【0045】また、前記エアミックスチャンバ47に
は、内気導入管40に連通する循環通路71が接続され
ている。循環通路71からエアミックスチャンバ47へ
の開口部72には、循環通路71の入口側ドア74が設
けられ、循環通路71と内気導入管40との分岐部73
には、出口側ドア75が設けられている。入口側ドア7
4は、制御装置43で駆動される図外の入口側ドアアク
チュエータにより開口部72を開閉し、出口側ドア75
は、制御装置43で駆動される図外の出口側ドアアクチ
ュエータにより分岐部73を切り換える。すなわち入口
側ドア74および出口側ドア75が開放した状態(出口
側ドア75は内気導入管40を閉じる。)において、エ
アミックスチャンバ47からブロアファン37の上流側
へ空調風が循環する。
A circulation passage 71 communicating with the inside air introducing pipe 40 is connected to the air mix chamber 47. The opening 72 from the circulation passage 71 to the air mix chamber 47 is provided with an inlet side door 74 of the circulation passage 71, and a branch portion 73 between the circulation passage 71 and the inside air introduction pipe 40.
An exit side door 75 is provided in the. Entrance side door 7
4 opens and closes the opening 72 by an entrance side door actuator (not shown) driven by the control device 43, and opens the exit side door 75.
Switches the branch portion 73 by an outlet door actuator (not shown) driven by the control device 43. That is, the conditioned air circulates from the air mix chamber 47 to the upstream side of the blower fan 37 in a state where the inlet side door 74 and the outlet side door 75 are opened (the outlet side door 75 closes the inside air introduction pipe 40).

【0046】前記制御装置43は、吸熱用車室内熱交換
器吸い込み風温センサ58と、吸熱用車室内熱交換器吹
き出し風温センサ59と、ベンチレータ吹出口風温セン
サ60と、日射量センサ61と、外気温センサ62と、
室温センサ63と、空調設定パネル79に設けられた室
温設定器64(図1では便宜上、信号線で示している)
と、吹出口モードスイッチ65(同)と、ブロアファン
スイッチ66(同)と、冷媒温度センサ67と、放熱用
車室内熱交換器吹き出し風温センサ68などからの熱環
境情報により、エアミックスドア開度Xdscとコンプ
レッサ31の入力値Wcompと吸熱用車室内熱交換器35
を通過する通過風量Veva と目標吹出温度T0 などの目
標冷暖房条件を演算し、車室内の冷暖房条件が上記演算
された目標冷暖房条件を維持するように、コンプレッサ
31とブロアファンモータ44とエアミックスドアアク
チュエータとベンチレータドアアクチュエータとフット
ドアアクチュエータとデフロスタドアアクチュエータな
どを駆動する。前記熱環境情報とは、吸熱用車室内熱交
換器35の吸い込み口空気温度Tsuc と、吸熱用車室内
熱交換器35の吹き出し空気温度Tout と、放熱用車室
内熱交換器33の吹き出し空気温度Tv と、ベンチレー
タ吹出口51の吹き出し空気温度Tventと、車両の日射
量Qsun と、車室外の外気温度Tamb と、車室内の検出
室温(車室内気温度)Troomと車室内の設定温度Tptc
と放熱用車室内熱交換器33出口側の冷媒温度Tref
どである。
The control device 43 includes a heat absorption vehicle interior heat exchanger intake air temperature sensor 58, a heat absorption vehicle interior heat exchanger blowout air temperature sensor 59, a ventilator outlet air temperature sensor 60, and a solar radiation sensor 61. And an outside air temperature sensor 62,
Room temperature sensor 63 and room temperature setting device 64 provided on the air conditioning setting panel 79 (indicated by a signal line in FIG. 1 for convenience)
, Air outlet mode switch 65 (same), blower fan switch 66 (same), refrigerant temperature sensor 67, and heat environment information from the heat radiation vehicle interior heat exchanger blowout air temperature sensor 68, etc. The opening degree Xdsc, the input value W comp of the compressor 31, the heat absorption vehicle interior heat exchanger 35
The target air-conditioning and heating conditions such as the passing air flow rate V eva and the target outlet temperature T 0 are calculated, and the compressor 31, the blower fan motor 44, and the air are controlled so that the air-conditioning condition in the vehicle interior maintains the calculated target air-conditioning condition. Drives mixed door actuators, ventilator door actuators, foot door actuators, defroster door actuators, etc. The thermal environment information includes the intake air temperature T suc of the heat-absorbing passenger compartment heat exchanger 35, the blown-air temperature T out of the heat-absorbing passenger compartment heat exchanger 35, and the blowing of the heat-radiating passenger compartment heat exchanger 33. The air temperature T v , the air temperature T vent blown out from the ventilator outlet 51, the amount of solar radiation Q sun of the vehicle, the outside air temperature Tamb outside the vehicle compartment, the detected room temperature inside the vehicle compartment (air temperature inside the vehicle compartment) T room, and the vehicle Indoor set temperature T ptc
And the refrigerant temperature T ref on the outlet side of the heat dissipation vehicle interior heat exchanger 33.

【0047】一方、この車両用ヒートポンプ式冷暖房装
置の冷暖房の切換えは、前記三方弁32を制御装置43
によって設定温度で切換制御することにより行なう。前
記設定温度は、検出室温Troom及び外部温度Tamb の関
係での窓曇りを生じない境界の温度と熱環境情報に応じ
た目標空調風温度とが略一致するものとして定めてい
る。また暖房運転時の空調風制御は、前記吸熱用車室内
熱交換器35の吹き出し温度が、検出室温Troom及び外
気温度Tamb の関係での窓曇りを生じない温度Tfine
下回り、かつ前記吸熱用内熱交換器35の凍結限界温度
setoを上回る範囲となることを優先して行う。
On the other hand, when switching between cooling and heating of this vehicle heat pump type cooling and heating device, the three-way valve 32 is controlled by the control device 43.
It is performed by switching control at a set temperature. The set temperature is set such that the boundary temperature at which window fogging does not occur due to the relationship between the detected room temperature T room and the external temperature T amb and the target conditioned air temperature according to the thermal environment information are substantially the same. In the air-conditioning air control during the heating operation, the blowing temperature of the heat-absorbing passenger compartment heat exchanger 35 is lower than the temperature T fine at which window fog does not occur in the relationship between the detected room temperature T room and the outside air temperature T amb , and The temperature exceeding the freezing limit temperature T seto of the heat absorbing internal heat exchanger 35 is preferentially performed.

【0048】制御装置43は、暖房運転時に目標吹出温
度T0 に基づいてウォームアップ制御か否かを判断し、
ウォームアップ制御時には、目標吹出温度T0 と放熱用
車室内熱交換器33の吹き出し空気温度Tv とからΔθ
1 を求めると共に、吸熱用車室内熱交換器35の凍結に
基づく設定温度Tset1と吸熱用車室内熱交換器35の吹
き出し空気温度Tout とからΔθ2 を求め、このΔθ1
とΔθ2 とに基づいて、吸熱用車室内熱交換器35の凍
結を防止しつつコンプレッサ入力を増加するように、コ
ンプレッサ31と膨脹弁34とブロアファンモータ44
と補助ヒータ76とエアミックスドアアクチュエータと
ベンチレータドアアクチュエータとフットドアアクチュ
エータとデフロスタドアアクチュエータと入口側ドアア
クチュエータと出口側ドアアクチュエータなどを駆動す
る。
The control device 43 determines whether or not warm-up control is performed based on the target outlet temperature T 0 during heating operation.
At the time of warm-up control, Δθ is calculated from the target outlet temperature T 0 and the outlet air temperature T v of the heat dissipation vehicle interior heat exchanger 33.
1 is obtained, and Δθ 2 is obtained from the set temperature T set1 based on the freezing of the heat-absorbing passenger compartment heat exchanger 35 and the blown-air temperature T out of the heat-absorbing passenger compartment heat exchanger 35, and this Δθ 1
Based on Δθ 2 and Δθ 2 , the compressor 31, the expansion valve 34, and the blower fan motor 44 are arranged so as to increase the compressor input while preventing the heat absorption vehicle interior heat exchanger 35 from freezing.
It drives the auxiliary heater 76, the air mix door actuator, the ventilator door actuator, the foot door actuator, the defroster door actuator, the entrance side door actuator, the exit side door actuator and the like.

【0049】制御装置43には、インストルメントパネ
ル等に設けられた図外の蓄熱暖房選択スイッチからのO
N/OFF信号が入力され、蓄熱暖房選択スイッチから
ON信号が入力されたときは、制御装置43により第1
の電磁弁101と第2の電磁弁102が開閉制御され、
蓄熱槽104に適宜冷媒が流入する。
The control unit 43 has an O switch from a heat storage / heating selection switch (not shown) provided on the instrument panel or the like.
When the N / OFF signal is input and the ON signal is input from the heat storage heating selection switch, the control device 43 causes the first signal to be input.
The solenoid valve 101 and the second solenoid valve 102 are controlled to open and close,
The refrigerant appropriately flows into the heat storage tank 104.

【0050】さらに、制御装置43は、吸熱冷媒温度セ
ンサ107の検出したコンプレッサ吸入冷媒温度に基づ
いて、蓄熱槽104から冷媒への放熱状態を判断し、こ
の放熱状態に応じて第2の電磁弁102を開閉制御す
る。特に、放熱状態が低下しているときには、第2の電
磁弁102を閉鎖して、蓄熱暖房運転を停止する。すな
わち、制御手段43は、放熱状態判断手段と制御手段を
構成している。
Further, the control device 43 judges the heat radiation state from the heat storage tank 104 to the refrigerant on the basis of the compressor suction refrigerant temperature detected by the heat absorbing refrigerant temperature sensor 107, and the second solenoid valve according to this heat radiation state. Opening and closing control of 102. In particular, when the heat radiation state is decreasing, the second electromagnetic valve 102 is closed and the heat storage heating operation is stopped. That is, the control means 43 constitutes a heat radiation state determination means and a control means.

【0051】次に、蓄熱暖房運転を行った場合の効果に
ついて説明する。
Next, the effect of the heat storage heating operation will be described.

【0052】ここでいう蓄熱暖房運転とは、暖房運転時
に、電磁弁102を開いて蓄熱槽104に冷媒を流入
し、蓄熱槽104に蓄えられた熱量を冷媒に放熱するこ
とをいう。これにより、コンプレッサ31に流入する冷
媒の(圧力/温度)が上昇し、コンプレッサ31の冷凍
能力R及び入力量Wが急激に増加する。
The heat storage heating operation referred to here means that during the heating operation, the solenoid valve 102 is opened to allow the refrigerant to flow into the heat storage tank 104 and radiate the amount of heat stored in the heat storage tank 104 to the refrigerant. As a result, the (pressure / temperature) of the refrigerant flowing into the compressor 31 rises, and the refrigerating capacity R and the input amount W of the compressor 31 rapidly increase.

【0053】図3は、外気温度−5℃の条件下におい
て、電磁弁101を閉じ、電磁弁102を開いて、蓄熱
暖房運転を行った場合の実験結果の一例で、(a)は、
コンプレッサ吐出圧力の時間的変化を示し、(b)は、
コンプレッサ吸入冷媒温度と蓄熱槽温度と蓄熱槽入口冷
媒温度のそれぞれの時間的変化を示す。
FIG. 3 shows an example of the experimental results when the heat storage heating operation is performed by closing the solenoid valve 101 and opening the solenoid valve 102 under the condition of the outside air temperature of -5 ° C.
The change over time of the compressor discharge pressure is shown, (b) is
The respective temporal changes of the compressor intake refrigerant temperature, the heat storage tank temperature, and the heat storage tank inlet refrigerant temperature are shown.

【0054】本実験では、電磁弁101を閉じて蓄熱暖
房運転を行っているので、吸熱用車室内熱交換器35に
は冷媒が流入しない。このため、空調風は吸熱用車室内
熱交換器35で冷却されず、放熱用車室内熱交換器33
で加熱のみされた状態で車室内へ吹出される。従って、
かかる状態で長時間蓄熱暖房運転を継続すると、窓曇り
が発生してしまう恐れがあり、蓄熱暖房運転の中止・継
続の判断や、蓄熱暖房運転から通常の除湿暖房運転への
切換時期の判断を的確に行う必要がある。
In this experiment, since the electromagnetic valve 101 is closed to perform the heat storage heating operation, the refrigerant does not flow into the heat absorption vehicle interior heat exchanger 35. Therefore, the conditioned air is not cooled by the heat-absorbing vehicle interior heat exchanger 35, and the heat-radiating vehicle interior heat exchanger 33 is not cooled.
It is blown out into the passenger compartment while only being heated. Therefore,
If the heat storage heating operation is continued for a long time in such a state, window fogging may occur.Therefore, it is necessary to determine whether to stop or continue the heat storage heating operation or to determine when to switch from the heat storage heating operation to the normal dehumidification heating operation. You need to do it accurately.

【0055】(b)に示すように、蓄熱暖房運転を開始
すると、冷媒が蓄熱槽104に流入して蓄熱量を吸熱す
るので、コンプレッサ31の吸入冷媒温度が徐々に上昇
する。このとき、コンプレッサ31の吸入冷媒温度の最
高温度は、蓄熱槽104の蓄熱状態に応じて変化する。
すなわち、コンプレッサ31の吸入冷媒温度は、蓄熱量
が多いと高くなり、蓄熱量が少いとあまり高くはならな
い。
As shown in (b), when the heat storage heating operation is started, the refrigerant flows into the heat storage tank 104 to absorb the heat storage amount, so that the temperature of the refrigerant sucked into the compressor 31 gradually rises. At this time, the maximum temperature of the intake refrigerant temperature of the compressor 31 changes according to the heat storage state of the heat storage tank 104.
That is, the intake refrigerant temperature of the compressor 31 becomes high when the heat storage amount is large, and does not become so high when the heat storage amount is small.

【0056】蓄熱暖房運転を続けると、コンプレッサ吐
出冷媒の温度や圧力が上昇し、補助膨脹弁103で膨脹
した後の蓄熱槽入口冷媒の温度や圧力も上昇する。一
方、蓄熱槽104(蓄熱体)の温度は、冷媒に放熱する
にしたがって低下するので、蓄熱暖房運転を開始して所
定時間が経過すると、蓄熱槽入口冷媒温度と蓄熱槽温度
が接近し、蓄熱槽104から冷媒への放熱量が低下す
る。蓄熱槽104からの放熱量が低下すると、コンプレ
ッサ吸入冷媒温度は急激に低下し、蓄熱槽入口冷媒温度
は蓄熱槽温度と並行に低下しながら推移する。
When the heat storage heating operation is continued, the temperature and pressure of the refrigerant discharged from the compressor increase, and the temperature and pressure of the refrigerant in the heat storage tank after expansion by the auxiliary expansion valve 103 also increase. On the other hand, since the temperature of the heat storage tank 104 (heat storage body) decreases as heat is radiated to the refrigerant, when the predetermined time elapses after the heat storage heating operation is started, the heat storage tank inlet refrigerant temperature approaches the heat storage tank temperature, and the heat storage tank The amount of heat released from the tank 104 to the refrigerant decreases. When the amount of heat radiated from the heat storage tank 104 decreases, the compressor suction refrigerant temperature sharply decreases, and the heat storage tank inlet refrigerant temperature changes in parallel with the heat storage tank temperature.

【0057】また、(a)に示すように、蓄熱槽入口冷
媒温度が上昇して蓄熱槽温度と接近し、コンプレッサ吸
入冷媒温度が低下した後は、コンプレッサ31の冷媒吐
出圧力が安定する。
Further, as shown in (a), after the refrigerant temperature at the heat storage tank inlet rises to approach the heat storage tank temperature and the compressor suction refrigerant temperature decreases, the refrigerant discharge pressure of the compressor 31 becomes stable.

【0058】このように、蓄熱槽104から冷媒への放
熱量及び蓄熱槽104の蓄熱量は、コンプレッサ吸入冷
媒温度や蓄熱槽入口冷媒温度の変化に相関関係にあり、
また、コンプレッサ吸入冷媒温度が上昇して蓄熱槽入口
冷媒温度が低下した後は、コンプレッサ吐出冷媒圧力が
ほぼ一定となるという特徴が認められる。従って、かか
る特徴を利用することにより、蓄熱暖房運転の中止・継
続の判断や、蓄熱暖房運転から通常の除湿暖房運転への
切換時期の判断を的確に行うことができる。
As described above, the amount of heat radiated from the heat storage tank 104 to the refrigerant and the amount of heat stored in the heat storage tank 104 are in correlation with changes in the compressor suction refrigerant temperature and the heat storage tank inlet refrigerant temperature.
Moreover, after the compressor suction refrigerant temperature rises and the heat storage tank inlet refrigerant temperature falls, the characteristic that the compressor discharge refrigerant pressure becomes almost constant is recognized. Therefore, by utilizing such a feature, it is possible to accurately determine whether to stop or continue the heat storage heating operation or determine the timing of switching from the heat storage heating operation to the normal dehumidification heating operation.

【0059】一方、図4は、外気温度−5℃の条件下に
おいて、電磁弁101及び電磁弁102の両方を開い
て、蓄熱暖房運転を行った場合の実験結果の一例で、
(a)は、コンプレッサ吐出圧力の時間的変化を示し、
(b)は、コンプレッサ吸入冷媒温度と蓄熱槽温度と蓄
熱槽入口冷媒温度のそれぞれの時間的変化を示す。
On the other hand, FIG. 4 shows an example of an experimental result when the heat storage heating operation is performed by opening both the solenoid valve 101 and the solenoid valve 102 under the condition of the outside air temperature of -5 ° C.
(A) shows the change over time in the compressor discharge pressure,
(B) shows temporal changes in the compressor suction refrigerant temperature, the heat storage tank temperature, and the heat storage tank inlet refrigerant temperature.

【0060】本実験では、電磁弁101を開いて蓄熱暖
房運転を行っているので、吸熱用車室内熱交換器35に
冷媒が流入する。このため、空調風は一度吸熱用車室内
熱交換器35で冷却された後、放熱用室内熱交換器33
でリヒートされて車室内へ吹出される。従って、前記実
験の場合と異なり、窓晴れ性が維持される。また、蓄熱
槽104へも冷媒が流入するので、蓄熱を利用して暖房
性能を高めることもできる。
In this experiment, since the solenoid valve 101 is opened to perform the heat storage heating operation, the refrigerant flows into the heat absorption vehicle interior heat exchanger 35. Therefore, the conditioned air is once cooled by the heat-absorbing vehicle interior heat exchanger 35 and then is radiated by the heat-radiating indoor heat exchanger 33.
It is reheated and blown out into the passenger compartment. Therefore, unlike the case of the above experiment, the window transparency is maintained. Further, since the refrigerant also flows into the heat storage tank 104, it is possible to improve the heating performance by utilizing the heat storage.

【0061】(b)に示すように、蓄熱暖房運転を開始
すると、吸熱用車室内熱交換器35よりも蓄熱槽104
の方が圧力損失が大きいので、運転開始直後は、主に吸
熱用車室内熱交換器35からコンプレッサ31に冷媒が
吸入されて、コンプレッサ吸入冷媒温度が低下する。
As shown in (b), when the heat storage heating operation is started, the heat storage tank 104 rather than the heat absorbing vehicle interior heat exchanger 35 is heated.
Since the pressure loss is larger, the refrigerant is sucked into the compressor 31 mainly from the heat absorbing vehicle interior heat exchanger 35 immediately after the start of operation, and the refrigerant temperature sucked into the compressor decreases.

【0062】ところが、吸熱用車室内熱交換器35の熱
負荷は小さく、蓄熱槽104の熱負荷は大きいので、蓄
熱槽104からのコンプレッサ吸入冷媒量が増加し、コ
ンプレッサ吸入冷媒温度は、しばらくの間上昇と下降と
を繰返して、最終的に図3の場合とほぼ同じ温度まで上
昇する。その後、吸熱用車室内熱交換器35の熱負荷は
増加し、蓄熱槽104の蓄熱量は減少するので、吸熱用
車室内熱交換器35からのコンプレッサ吸入冷媒量は増
加し、蓄熱槽104からのコンプレッサ吸入冷媒量は減
少する。これにより、コンプレッサ吸入冷媒温度は徐々
に低下し、蓄熱槽104からの受熱量がほとんどなくな
ると、コンプレッサ吸入冷媒温度はほぼ一定温度に保た
れる。
However, since the heat load of the heat-absorbing passenger compartment heat exchanger 35 is small and the heat load of the heat storage tank 104 is large, the amount of refrigerant sucked into the compressor from the heat storage tank 104 increases, and the temperature of the refrigerant sucked into the compressor is maintained for a while. By repeating rising and falling for a while, the temperature finally rises to almost the same temperature as in the case of FIG. After that, the heat load of the heat absorption vehicle interior heat exchanger 35 increases and the heat storage amount of the heat storage tank 104 decreases, so that the compressor suction refrigerant amount from the heat absorption vehicle interior heat exchanger 35 increases and the heat storage tank 104 changes from the heat storage tank 104. The amount of refrigerant sucked into the compressor decreases. As a result, the compressor suction refrigerant temperature gradually decreases, and when the amount of heat received from the heat storage tank 104 becomes almost zero, the compressor suction refrigerant temperature is maintained at a substantially constant temperature.

【0063】本条件で蓄熱暖房運転を行った場合(図
4)を図3の結果と比較すると、本条件では、暖房運転
時に蓄熱槽104を利用する場合でも吸熱用車室内熱交
換器35に冷媒を流入するので窓晴れ性は確保できる
が、コンプレッサ吐出冷媒圧力が定常に達するまでの時
間が多くかかり、前記図3の場合よりもウォームアップ
性がやや劣ることがわかる。また、蓄熱槽104から冷
媒への放熱量が減少したときに、コンプレッサ吸入冷媒
温度がほぼ一定に保たれる点で図3の場合と相違するこ
とがわかる。
Comparing the case of performing the heat storage heating operation under this condition (FIG. 4) with the result of FIG. 3, under this condition, even if the heat storage tank 104 is used during the heating operation, the heat absorption vehicle interior heat exchanger 35 is used. Since the refrigerant flows in, the window transparency can be secured, but it takes a long time for the compressor discharge refrigerant pressure to reach a steady state, and it can be seen that the warm-up property is slightly inferior to that in the case of FIG. Further, it can be seen that when the amount of heat released from the heat storage tank 104 to the refrigerant decreases, the compressor suction refrigerant temperature is kept substantially constant, which is different from the case of FIG.

【0064】このように、電磁弁101を閉じ、電磁弁
102を開いて、蓄熱暖房運転を行う場合は、コンプレ
ッサ吐出圧力が早く定常に達するのでウォームアップ性
で優れているが、窓晴れ性を損なう恐れがあるため、コ
ンプレッサ吸入冷媒温度や蓄熱槽入口冷媒温度の変化に
基づき、蓄熱暖房運転の中止・継続の判断や、蓄熱暖房
運転から通常の除湿暖房運転への切換時期の判断を的確
に行う必要がある。
As described above, when the electromagnetic valve 101 is closed and the electromagnetic valve 102 is opened to perform the heat storage heating operation, the compressor discharge pressure quickly reaches a steady state, so that the warm-up property is excellent, but the window transparency is improved. Since there is a risk of loss, it is necessary to accurately determine whether to stop or continue the heat storage heating operation, or to determine when to switch from the heat storage heating operation to the normal dehumidification heating operation, based on changes in the compressor intake refrigerant temperature and the heat storage tank inlet refrigerant temperature. There is a need to do.

【0065】一方、電磁弁101及び電磁弁102の両
方を開いて、蓄熱暖房運転を行う場合は、ウォームアッ
プ性はやや劣るが、窓晴れ性を損なう恐れがない点で優
れている。
On the other hand, when both the solenoid valve 101 and the solenoid valve 102 are opened to perform the heat storage heating operation, the warm-up property is slightly inferior, but it is excellent in that the window fineness is not impaired.

【0066】次に、本実施例に係る車両用ヒートポンプ
式冷暖房装置の制御を、図5及び図6に示すフローチャ
ートに基づいて説明する。
Next, the control of the vehicle heat pump type air conditioner according to this embodiment will be described with reference to the flow charts shown in FIGS.

【0067】冷暖房装置のスイッチがONされて制御装
置が作動することにより処理を開始し、ステップS1で
この制御フローチャートで用いる定数(A〜H,P,
Q)のセットが行われる。すなわち、目標吹出温度Tof
の計算式に用いるA〜E、エアミックスドアの開度Xの
計算式に用いるF,G,H、設定室温の補正に用いる
P,Qをセットする。
The process is started by turning on the switch of the air conditioning unit and operating the control unit, and in step S1, the constants (A to H, P,
Q) is set. That is, the target outlet temperature T of
A to E used in the calculation formula, F, G, H used in the calculation formula of the air mix door opening X, and P and Q used to correct the set room temperature are set.

【0068】ステップS2では、各種センサ出力が読み
込まれる。すなわち、室温センサ63の出力である車室
内温度Troom、日射量センサ61の出力である日射量Q
sun、外気温センサ62の出力である外気温Tamb 、室
温設定器64の出力である車室内の設定室温Tptc 、フ
ァンスイッチの設定Vfan,set の読み込みを行う。
In step S2, various sensor outputs are read. That is, the vehicle interior temperature T room , which is the output of the room temperature sensor 63, and the solar radiation amount Q, which is the output of the solar radiation amount sensor 61.
sun, which is the output outside air temperature T amb of the outside air temperature sensor 62, set room temperature T ptc in the vehicle compartment, which is the output of the room temperature setting device 64, the fan switch setting V fan, the reading of the set carried out.

【0069】ステップS3では、ブロアファンの風量を
印加電圧により制御するため、乗員の設定する室温設定
値Tptc と室温Troomとの偏差(Troom−Tptc )に応
じて空調風を発生するブロアファンの印加電圧Vfan
セットする。具体的には、この偏差が大きいほど印加電
圧を増加し、室温を設定室温に早急に近付けるようにす
る。
In step S3, since the air volume of the blower fan is controlled by the applied voltage, the conditioned air is generated according to the deviation (T room −T ptc ) between the room temperature set value T ptc set by the passenger and the room temperature T room. The applied voltage V fan of the blower fan is set. Specifically, the larger the deviation is, the more the applied voltage is increased so that the room temperature approaches the set room temperature immediately.

【0070】ステップS4では、設定室温Tptc の補正
を行う。この補正は、定数P,Q及び外気温Tamb を用
い、次式により行なう。
In step S4, the set room temperature T ptc is corrected. This correction is performed using the constants P and Q and the outside air temperature T amb according to the following equation.

【0071】Tptc ′=Tptc +P×Tamb +Q 具体的には、外気温が低い場合には設定室温を上昇さ
せ、外気温が高い場合には、設定室温を低下させる。通
常、人間の体感では、周囲が暑い環境下で室温を低下さ
せると「涼しい」といった温冷感が得られ、逆に、周囲
が寒い環境下で室温を上昇させると「暖かい」といった
温冷感が得られる。このように周囲の温度に逆比例する
ような温度を設定することで温冷感が刺激されて快適と
なる。
T ptc ′ = T ptc + P × T amb + Q Specifically, the set room temperature is raised when the outside air temperature is low, and the set room temperature is lowered when the outside temperature is high. Generally, in the human experience, when the room temperature is lowered in a hot environment, a cool sensation such as “cool” is obtained, and conversely, when the room temperature is raised in a cold environment, a warm sensation such as “warm” is obtained. Is obtained. By setting a temperature that is inversely proportional to the ambient temperature in this way, the thermal sensation is stimulated and the user becomes comfortable.

【0072】ステップS5では、目標吹出温度Tofを算
出する。この算出は、定数A,B,C,D,E、外気温
amb 、室温Troom、補正設定室温T′ptc 、日射量Q
sunを用い次式によって算出する。
In step S5, the target outlet temperature T of is calculated. This calculation is performed using constants A, B, C, D and E, an outside air temperature T amb , a room temperature T room , a correction setting room temperature T ′ ptc , and an insolation Q.
It is calculated by the following formula using sun .

【0073】[0073]

【数1】 Tof=A×Tamb +B×Troom+C×T′ptc +D×Qsun +E ステップS6では、目標吹出温度Tofに基づいてエアミ
ックスドアの開度Xを算出する。この算出は定数F,
G,Hを用い次式によって行う。
## EQU1 ## T of = A × T amb + B × T room + C × T ' ptc + D × Q sun + E In step S6, the opening X of the air mix door is calculated based on the target outlet temperature T of . This calculation is a constant F,
Using G and H, the following formula is used.

【0074】X=F×Tof 2 +G×Tof+H ステップS7では、目標吹出温度Tofに基づいて吹出モ
ードを決定する。すなわち、目標吹出温度が高ければ主
として前席乗員の足元に吹き出すFOOT(フートモー
ド)、同中程度であれば前席乗員の胸部と足元に吹き出
すBI−LEVEL(バイレベルモード)、同低ければ
前席乗員の胸部に吹き出すVENT(ベントモード)を
選択する。
X = F × T of 2 + G × T of + H In step S7, the blowing mode is determined based on the target blowing temperature T of . That is, if the target outlet temperature is high, the FOOT (foot mode) mainly blows to the feet of the front seat occupant, if it is medium, the BI-LEVEL (bi-level mode) that blows to the chest and feet of the front seat occupant, and if it is the same, the front Select VENT (vent mode) that blows out to the passenger's chest.

【0075】ステップS8では、乗員によってマニュア
ルファンスイッチが押されたかどうかを判断する。マニ
ュアルファンスイッチが押されていればその操作に応じ
るためステップS9によってファン設定値Vfan ′=V
fan,set を最終的なブロアファン電圧とする。マニュア
ルファンスイッチが押されていなければ、ステップS1
0において、以前のステップS3で自動的に定めたブロ
アファン電圧をそのまま用いる。
In step S8, it is determined whether or not the occupant has pressed the manual fan switch. If the manual fan switch is pressed, the fan setting value V fan ′ = V is set in step S9 in order to respond to the operation.
Let fan, set be the final blower fan voltage. If the manual fan switch is not pressed, step S1
At 0, the blower fan voltage automatically determined in the previous step S3 is used as it is.

【0076】ステップS11では、ステップS9あるい
はステップS10で決められたブロアファン電圧をブロ
アファンモータ44へ出力する。
In step S11, the blower fan voltage determined in step S9 or step S10 is output to the blower fan motor 44.

【0077】ステップS12では、各ドアアクチュエー
タに出力し、ドアを所定位置に自動セットする。
In step S12, the output is output to each door actuator to automatically set the door at a predetermined position.

【0078】ステップS13では、コンプレッサとコン
プレッサモータを制御する。この制御については図7及
び図8を用いて後述する。
In step S13, the compressor and the compressor motor are controlled. This control will be described later with reference to FIGS. 7 and 8.

【0079】こうして、一回のループを終了するとステ
ップS2へ戻り、再度上記各ステップが繰り返される。
Thus, when one loop is completed, the process returns to step S2 and the above steps are repeated again.

【0080】そして、暖房運転時には、図1、図2の点
線示のように三方弁32が切り換えられ、冷媒がコンプ
レッサ31→三方弁32→放熱用車室内熱交換器33→
液タンク36→膨脹弁34→吸熱用車室内熱交換器35
→コンプレッサ31と循環し、放熱用車室内熱交換器3
3がコンプレッサ31から吐出された高温な冷媒の熱を
ブロアファン37で導入された空気又は車両走行時のラ
ム圧によって導入された空気に放熱して温風を作り、吸
熱用車室内熱交換器35がブロアファン37で導入され
た空気又は車両走行時のラム圧によって導入された空気
の熱を冷媒に吸熱して冷風を作る。
During the heating operation, the three-way valve 32 is switched as shown by the dotted lines in FIGS. 1 and 2, and the refrigerant is the compressor 31 → the three-way valve 32 → the heat radiation vehicle interior heat exchanger 33 →
Liquid tank 36 → expansion valve 34 → heat absorption vehicle interior heat exchanger 35
→ Circulates with the compressor 31 to dissipate heat in the passenger compartment 3
3 radiates the heat of the high-temperature refrigerant discharged from the compressor 31 to the air introduced by the blower fan 37 or the air introduced by the ram pressure when the vehicle is running to create warm air, and the heat exchanger for heat absorption in the passenger compartment 35 absorbs the heat of the air introduced by the blower fan 37 or the air introduced by the ram pressure when the vehicle is traveling, into the refrigerant to form cold air.

【0081】また、冷房運転時には、同図の実線示のよ
うに三方弁32が切り換えられ、冷媒がコンプレッサ3
1→三方弁32→車室外熱交換器38→逆止弁70→放
熱用車室内熱交換器33→液タンク36→膨脹弁34→
吸熱用車室内熱交換器35→コンプレッサ31と循環
し、車室外熱交換器38がコンプレッサ31から吐出さ
れた高温な冷媒の熱を外気に放熱し、残りの熱を放熱用
車室内熱交換器33がブロアファン37で導入された空
気又は車両走行時のラム圧によって導入された空気に放
熱して温風を作り、吸熱用車室内熱交換器35がブロア
ファン37で導入された空気又は車両走行時のラム圧に
よって導入された空気の熱を冷媒に吸熱して冷風を作
る。
During the cooling operation, the three-way valve 32 is switched as shown by the solid line in FIG.
1 → three-way valve 32 → external vehicle heat exchanger 38 → check valve 70 → radiation vehicle interior heat exchanger 33 → liquid tank 36 → expansion valve 34 →
The heat-absorbing vehicle interior heat exchanger 35 circulates from the compressor 31, and the vehicle-exterior heat exchanger 38 radiates the heat of the high-temperature refrigerant discharged from the compressor 31 to the outside air, and the remaining heat radiates the vehicle interior heat exchanger. 33 heat is radiated to the air introduced by the blower fan 37 or the air introduced by the ram pressure when the vehicle is running to create warm air, and the heat absorption vehicle interior heat exchanger 35 is the air introduced by the blower fan 37 or the vehicle The heat of the air introduced by the ram pressure during traveling is absorbed by the refrigerant to create cold air.

【0082】図7及び図8は、前記図6のステップS1
3を実行するフローチャートを示す。
7 and 8 show step S1 of FIG.
3 shows a flowchart for executing step 3.

【0083】ステップS131では各種データの読み込
みが行なわれる。ここでの読み込みは図5のステップS
2で読み込んだデータ以外のものを読み込む。すなわ
ち、風温センサ59の出力である吸熱用車室内熱交換器
35の吹き出し空気温度Tout、風温センサ58の出力
である吸熱用車室内熱交換器吸い込み空気温度Tsuc
風温センサ68の出力である放熱用車室内熱交換器33
吹き出し空気温度Tv 、コンプレッサ仕事量を表わす物
理量Vcompで、Vcompに比例してコンプレッサ吐出量が
増加し、コンプレッサ仕事量も増える(電動コンプレッ
サを使用する場合には、周波数に相当する)。
In step S131, various data are read. The reading here is step S in FIG.
Read data other than the data read in 2. That is, the air temperature T out of the heat-absorbing passenger compartment heat exchanger 35, which is the output of the air temperature sensor 59, the heat-absorbing passenger compartment heat exchanger intake air temperature T suc , which is the output of the air temperature sensor 58,
Heat radiation vehicle interior heat exchanger 33 which is the output of the air temperature sensor 68
The blowout air temperature T v and the physical quantity V comp representing the compressor work amount, the compressor discharge amount increases and the compressor work amount also increases in proportion to V comp (when the electric compressor is used, this corresponds to the frequency).

【0084】ステップS132では、ステップS131
で検出した熱環境情報である車室内熱負荷情報を用いて
目標吹出温度T0 を演算して、ステップS133に進
む。この目標吹出温度T0 は、車室内を設定温度に維持
するために必要とされる温調風の温度である。
In step S132, step S131
The target outlet temperature T 0 is calculated using the vehicle interior heat load information which is the thermal environment information detected in step S133, and the process proceeds to step S133. This target outlet temperature T 0 is the temperature of the temperature-controlled air required to maintain the vehicle interior at the set temperature.

【0085】ステップS133で、デフロスタスイッチ
がONされているか否かを判断し、デフロスタスイッチ
がONされている場合には、ステップS134に進み、
デフロスタスイッチがOFFされている場合には、ステ
ップS135に進む。
In step S133, it is determined whether the defroster switch is turned on. If the defroster switch is turned on, the process proceeds to step S134.
If the defroster switch is off, the process proceeds to step S135.

【0086】ステップS134では、吸熱用車室内熱交
換器35の目標冷却状態に対して、デフロスタスイッチ
がONされている場合の補正項を与える。δTc は冷房
運転時の目標とする吸熱用車室内熱交換器吹き出し空気
温度の補正項で、δTH は暖房運転時の上限冷却温度
(窓晴れ温度)の補正項で、デフロスタスイッチがON
されている場合には、吸熱用車室内熱交換器35での目
標冷却状態をより低く設定して除湿量を増やし、放熱用
車室内熱交換器33でのリヒート量を多くして、最終的
に目標とする吹き出し温度で車室内に空調風を吹き出
す。同様に、ステップS135では、デフロスタスイッ
チがONされていない場合の吸熱用車室内熱交換器35
の目標冷却状態に対する補正項を与える。
In step S134, a correction term for the case where the defroster switch is ON is given to the target cooling state of the heat-absorbing passenger compartment heat exchanger 35. ? T c is a correction term of the heat-absorbing inner heat exchanger blowoff air temperature to target during the cooling operation,? T H is the correction term of the upper limit cooling temperature of the heating operation (window sunny temperature), the defroster switch is ON
If it is, the target cooling state in the heat absorption vehicle interior heat exchanger 35 is set lower to increase the dehumidification amount, and the reheat amount in the heat radiation vehicle interior heat exchanger 33 is increased to finally Air-conditioning air is blown into the passenger compartment at the target blowing temperature. Similarly, in step S135, the heat absorption vehicle interior heat exchanger 35 when the defroster switch is not turned on.
A correction term for the target cooling state of is given.

【0087】ステップS136では、ステップS134
やステップS135で与えられた補正項を使って、冷房
運転した場合と暖房運転した場合の吸熱用車室内熱交換
器35での冷却状態を比較し、冷房運転した場合の冷却
状態の方が暖房運転した場合よりも低くなる時は、ステ
ップS137で三方弁32を冷房運転側に切換えて、ス
テップS138に進んで冷房運転を実行し、逆に、暖房
運転した場合の冷却状態の方が冷房運転した場合よりも
低くなる場合には、ステップS141に進んで蓄熱暖房
運転又は暖房運転を実行する。。
In step S136, step S134
And the correction term given in step S135 are used to compare the cooling states in the heat-absorbing passenger compartment heat exchanger 35 in the cooling operation and in the heating operation, and the cooling state in the cooling operation is more heating. When the temperature becomes lower than that in the case of operation, the three-way valve 32 is switched to the cooling operation side in step S137, and the process proceeds to step S138 to execute the cooling operation, and conversely, the cooling state in the case of heating operation is the cooling operation. When it becomes lower than the case, the heat storage heating operation or the heating operation is executed in step S141. .

【0088】ステップS137では、三方弁32を冷房
運転側に切換えて、冷媒をコンプレッサ31から車室外
熱交換器38へ流通させて、ステップS138に進む。
In step S137, the three-way valve 32 is switched to the cooling operation side to allow the refrigerant to flow from the compressor 31 to the exterior heat exchanger 38, and the flow proceeds to step S138.

【0089】ステップS138では、目標吹出温度T0
と設定温度Tset1との大小を比較し、T0 <Tset1であ
る場合には、車室内がまだ充分に冷房されていないの
で、ステップS139に進んでクールダウン制御を行
い、T0 ≧Tset1である場合には、車室内温度が目標温
度に近づいたので、ステップS140に進んで通常の冷
房運転を行う。
In step S138, the target blowout temperature T 0.
The set temperature T set1 is compared with the set temperature T set1 . If T 0 <T set1 , the interior of the vehicle is not sufficiently cooled. Therefore, the process proceeds to step S139 to perform the cool down control and T 0 ≧ T If it is set1 , since the vehicle interior temperature has approached the target temperature, the routine proceeds to step S140, and the normal cooling operation is performed.

【0090】一方、ステップS141では、蓄熱暖房ス
イッチがONされたかどうかを判断する。蓄熱暖房スイ
ッチがONされていれば、ステップS142に進んで蓄
熱暖房運転を実行する。
On the other hand, in step S141, it is determined whether the heat storage heating switch is turned on. If the heat storage heating switch is turned on, the process proceeds to step S142 to execute the heat storage heating operation.

【0091】蓄熱暖房スイッチがONされていなけれ
ば、ステップS143に進み、三方弁32を暖房運転側
に切換えて、冷媒をコンプレッサ31から直接放熱用車
室内熱交換器33へ流通させる。
If the heat storage heating switch is not turned on, the routine proceeds to step S143, where the three-way valve 32 is switched to the heating operation side, and the refrigerant is circulated from the compressor 31 directly to the heat radiating passenger compartment heat exchanger 33.

【0092】ステップS144では、目標吹出温度T0
と設定温度Tset2との大小を比較し、T0 >Tset2であ
る場合には、車室内がまだ充分に暖房されていないの
で、ステップS145に進んでウォームアップ制御を行
い、T0 ≦Tset2である場合には、車室内温度が目標温
度に近づいたので、ステップS146に進んで通常の暖
房運転を行う。
In step S144, the target outlet temperature T 0
The set temperature T set2 is compared with the set temperature T set2 . If T 0 > T set2 , the interior of the vehicle is not sufficiently heated. Therefore, the process proceeds to step S145 to perform warm-up control, and T 0 ≤T In the case of set2 , the vehicle interior temperature has approached the target temperature, so the routine proceeds to step S146 and the normal heating operation is performed.

【0093】図8は、暖房温調時のコンプレッサ制御の
フローチャートを示す。暖房運転が実行される(ステッ
プS1461)と、ステップS1462でデフロスタス
イッチがONされているか否かを判断する。
FIG. 8 shows a flowchart of compressor control during heating temperature control. When the heating operation is executed (step S1461), it is determined in step S1462 whether the defroster switch is ON.

【0094】ステップS1462でデフロスタスイッチ
がONの場合には、ステップS1463において、逆
に、デフロスタスイッチがOFFの場合には、ステップ
S1464において、暖房運転時の吸熱用車室内熱交換
器35の上限冷却温度Tfineに対する補正温度δTH
与える。ここでは、デフロスタスイッチのON/OFF
に対してのみ補正しているが、車両の熱負荷条件、例え
ば、日射や車室内温度や外気温や吹出温度に対して補正
してもよい。
If the defroster switch is ON in step S1462, in step S1463, conversely, if the defroster switch is OFF, in step S1464, the upper limit cooling of the heat-absorbing passenger compartment heat exchanger 35 during heating operation is performed. A correction temperature δT H for the temperature T fine is given. Here, ON / OFF of the defroster switch
However, it may be corrected for the heat load condition of the vehicle, for example, the solar radiation, the vehicle interior temperature, the outside air temperature, and the blowout temperature.

【0095】ステップS1465では、低外気温時の設
定上限冷却温度T5 と外気温Tambを基にした上限冷却
温度Tfineとを比較して、大きい方を暖房運転時の上限
冷却温度(上限T′int )として設定する。ここでは、
上限冷却温度を決める要素の一つとして、外気温度で代
表させているが、外気温以外にも車両の熱環境条件や窓
曇りセンサ出力等を用いてもよい。
In step S1465, the set upper limit cooling temperature T 5 at low outside air temperature and the upper limit cooling temperature T fine based on the outside air temperature T amb are compared, and the larger one is set to the upper limit cooling temperature (upper limit) during heating operation. T'int ). here,
The outside air temperature is represented as one of the factors for determining the upper limit cooling temperature, but the thermal environment condition of the vehicle, the window fog sensor output, or the like may be used in addition to the outside air temperature.

【0096】ステップS1466では、吸熱用車室内熱
交換器35の凍結に基づく温度Tse to(T6 )を下限冷
却温度(下限T′int )として設定する。
[0096] In step S1466, setting the temperature T se to (T 6) based on the freezing of the heat-absorbing inner heat exchanger 35 as the lower limit cooling temperature (the lower limit T 'int).

【0097】ステップS1467では、吸熱用の車室内
熱交換器吹き出し空気温Tout がステップS1466で
設定した下限冷却温度(下限T′int )よりも低いか否
かを判断する。Tout <下限T′int の場合、このまま
では、吸熱用車室内熱交換器35が凍結する恐れがあ
り、ステップS1473に進んで、コンプレッサ1の仕
事量をΔVc だけ減少させ、吸熱用車室内熱交換器吹き
出し温度を上げ、上下冷却温度内に入るようにする。こ
の時、図に示していないが、同時に吸熱用車室内熱交換
器吸い込み空気温を上昇させる制御を行なって、コンプ
レッサ1の仕事量減少に伴なう吹き出し温低下を防ぐ。
[0097] In step S1467, it is determined whether a lower or not than the lower limit cooling temperature to air temperature T out balloon passenger compartment heat exchanger for heat absorption is set in step S1466 (lower T 'int). If T out <lower limit T ′ int , then the heat-absorbing passenger compartment heat exchanger 35 may freeze, and the process proceeds to step S1473 to reduce the work of the compressor 1 by ΔV c to reduce the heat-absorbing passenger compartment. Raise the heat exchanger outlet temperature so that it falls within the upper and lower cooling temperatures. At this time, although not shown in the figure, at the same time, control is performed to raise the intake air temperature of the heat-absorbing passenger compartment heat exchanger to prevent the blow-out temperature from decreasing due to the decrease in the work of the compressor 1.

【0098】ステップS1467において、Tout >下
限T′int の場合には、ステップS1468に進み、吸
熱用車室内熱交換器吹き出し空気温Tout が、ステップ
S1465で設定した上限冷却温度(上限T′int )よ
りも大きいか否かを判断する。
If T out > lower limit T ′ int in step S1467, the flow advances to step S1468, and the endothermic vehicle interior heat exchanger air temperature T out is the upper limit cooling temperature (upper limit T ′ set in step S1465). int ).

【0099】ステップS1468において、Tout >上
限T´int の場合には、ステップS1471に進み、コ
ンプレッサ1の仕事量をΔVc だけ増加させ、空調風の
除湿量を確保するために吸熱用車室内熱交換器吹き出し
温度を下げる。逆に、T′ou t ≦上限T´int の場合に
は、ステップS1469に進み、目標空調風温度Tof
放熱用車室内熱交換器吹き出し空調温Tv の偏差Δθを
算出する。
[0099] In step S1468, in the case of T out> upper T'int, the process proceeds to step S1471, the workload of the compressor 1 is increased by [Delta] V c, the heat-absorbing inner to ensure the dehumidifying amount of the conditioned air Lower the heat exchanger outlet temperature. Conversely, in the case of T 'ou t ≦ upper T'int, the process proceeds to step S1469, calculates a deviation Δθ of the target conditioned air temperature T of the balloon heat-radiating inner heat exchanger air-conditioning temperature T v.

【0100】ステップS1470において、Δθ>Sの
場合には、吹出温が目標空調風温度Tofに達していない
ので、ステップS1471に進んで、コンプレッサ1の
仕事量をΔVc だけ増加させて吹出温を上昇させる。Δ
θ<−Sの場合には、吸熱用車室内熱交換器吹き出し空
気温が目標吹出温よりも高いので、ステップS1473
に進んでコンプレッサ1の仕事量をΔVc だけ減少させ
て吹出温を低下させる。これら以外の条件では、ステッ
プS1472に進み、現状のコンプレッサ仕事量を維持
する。
In step S1470, if Δθ> S, the blow-out temperature has not reached the target air conditioning air temperature T of , so the flow advances to step S1471 to increase the work of the compressor 1 by ΔV c. Raise. Δ
In the case of θ <−S, the air temperature of the heat-absorbing vehicle interior heat exchanger blown out is higher than the target blow-out temperature, so step S1473.
Then, the work amount of the compressor 1 is reduced by ΔV c to lower the blowout temperature. Under conditions other than these, the process proceeds to step S1472 and the current compressor work amount is maintained.

【0101】従来の車両用ヒートポンプ冷暖房装置にお
いても、コンプレッサの仕事量を可変して吹き出し温度
を制御することができるが、一定量の仕事量の変化に対
して、外気温度や走行条件によって吹き出し温の温度変
化量が大きく異なってしまい、安定した車室内温度制御
は困難であった。
Even in the conventional heat pump cooling and heating system for a vehicle, the blowout temperature can be controlled by varying the work of the compressor. However, the blowout temperature can be changed depending on the outside air temperature and the running condition with respect to a constant change in the work. The amount of change in temperature greatly differs, making it difficult to achieve stable vehicle interior temperature control.

【0102】ところが、本発明実施例の車両用冷暖房装
置の暖房運転においては、外気温の影響を受けずに連続
した暖房運転が可能で、一定量のコンプレッサ1の仕事
量の増減が、外気温度や走行条件に依らず、つねに所定
量の吹出温度変化量(車室内への放熱量変化)となって
現われ、しかも、暖房運転時には吸熱用車室内熱交換器
35において必ず除湿(冷却)を伴なうといった特徴を
持つために、図8に示すようなコンプレッサ制御によっ
て、不安定現象がない車室内除湿温度制御を行なうこと
ができる。
However, in the heating operation of the vehicle air conditioner of the embodiment of the present invention, continuous heating operation is possible without being affected by the outside air temperature, and the increase / decrease in the work amount of the compressor 1 by a constant amount changes to the outside air temperature. Always appears as a predetermined amount of change in the blowout temperature (change in the amount of heat released into the passenger compartment), regardless of the driving conditions, and moreover, during the heating operation, the heat-absorbing passenger compartment heat exchanger 35 is always accompanied by dehumidification (cooling). Due to the characteristic of being blunt, dehumidifying temperature control for the vehicle interior without instability can be performed by the compressor control as shown in FIG.

【0103】図9は、冷房運転時のコンプレッサ制御の
フローチャートを示している。冷房運転が実行される
(ステップS1401)と、ステップS1402におい
て、ベント吹き出しか否かを判断する。
FIG. 9 shows a flow chart of the compressor control during the cooling operation. When the cooling operation is executed (step S1401), it is determined in step S1402 whether or not the vent is blown.

【0104】ベント吹き出しの場合には、吸熱用の車室
内熱交換器35に流入する空気温度を目標吹出温にまで
冷却した後に車室内に吹き出すのが最も省エネとなるの
で、ステップS1403に進み、目標吹出温X
M (Tof) を吸熱用車室内熱交換器吹き出し空気温の目
標温度T′int に設定する。
In the case of venting, the most energy-saving is to blow the air into the passenger compartment after cooling the temperature of the air flowing into the heat-absorbing passenger compartment heat exchanger 35 to the target outlet temperature, so the flow proceeds to step S1403. Target outlet temperature X
M the (T of) to set the target temperature T 'int of air temperature blow-off the heat-absorbing inner heat exchanger.

【0105】ステップS1402において、ベント吹き
出し以外の場合には、ステップS1404に進み、バイ
レベルモードか否かを判断する。
In step S1402, in the case other than the vent blowing, the flow advances to step S1404 to determine whether or not the bi-level mode is set.

【0106】バイレベルモードの場合には、ステップS
1406に進み、それ以外の場合には、ステップS14
05に進み、吸熱用車室内熱交換器吹き出し空気温の補
正温度δTc を与える。この補正温度は、放熱用車室内
熱交換器33でのリヒート量が多くなるほど大きな値に
設定する。
In the case of the bilevel mode, step S
1406; otherwise, step S14
Proceeds to 05, providing a corrected temperature? T c of air temperature balloon heat-absorbing inner heat exchanger. This corrected temperature is set to a larger value as the amount of reheat in the heat radiation vehicle interior heat exchanger 33 increases.

【0107】ステップS1407では、吸熱用車室内熱
交換器吹き出し空気温の目標温度T′int を、ステップ
S1465で使用した温度T5 と、目標吹出温Tofをス
テップS1405またはステップS1406で与えた補
正項で補正した温度の大きい方の温度に設定する。
[0107] In step S1407, correction of the target temperature T 'int the air temperature balloon heat-absorbing inner heat exchanger, the temperature T 5 used in the step S1465, gave target outlet air temperature T of Step S1405 or Step S1406 Set the temperature that is the larger of the temperatures corrected in item.

【0108】ステップS1408では、ステップS14
03またはステップS1407で算出した目標温度T′
int と吸熱用車室内熱交換器吹き出し空気温Tout の差
θを計算する。
In step S1408, step S14
03 or the target temperature T ′ calculated in step S1407
The difference θ between int and the air temperature T out of the heat-absorbing passenger compartment heat exchanger is calculated.

【0109】ステップS1409では、ステップS14
08で算出したθの値がθ<−S0の場合には、ステッ
プS1410に進み、コンプレッサ1の仕事量をΔVc
だけ増やして吸熱用車室内熱交換器吹き出し空気温を下
げ、θ>S0 の場合には必要以上にコンプレッサ1の仕
事量が大きくなっていると判断して、ステップS141
2に進み、コンプレッサ1の仕事量をΔVc だけ減少さ
せ、それら以外の場合には、現状のコンプレッサ仕事量
を維持する。
In step S1409, step S14
When the value of θ calculated in 08 is θ <−S 0 , the process proceeds to step S1410, and the work amount of the compressor 1 is ΔV c
The temperature of air discharged from the heat exchanger for heat absorption in the passenger compartment is decreased by θ, and when θ> S 0 , it is determined that the work amount of the compressor 1 is unnecessarily large, and step S141 is performed.
In step 2, the work of the compressor 1 is reduced by ΔV c , otherwise, the current work of the compressor is maintained.

【0110】従って、暖房運転時には、三方弁32が図
1の点線示のように切り換えられ、冷媒がコンプレッサ
31→三方弁32→放熱用車室内熱交換器33→液タン
ク36→膨張弁34→吸熱用車室内熱交換器35→コン
プレッサ31と循環し、放熱用車室内熱交換器33がコ
ンプレッサ31から吐出された高温なる冷媒の熱をブロ
アファン37で導入された空気または車両走行時のラム
圧によって導入された空気に放熱して温風を作り、吸熱
用車室内熱交換器35がプロワファン37で導入された
空気または車両走行時のラム圧によって導入された空気
の熱を冷媒に放熱して冷風を作る。また、冷房運転時に
は、三方弁32が図1の点線示のように切り換えられ、
冷媒がコンプレッサ31→三方弁32→車室外熱交換器
38→逆止弁70→放熱用車室内熱交換器33→液タン
ク36→膨張弁34→吸熱用車室内熱交換器35→コン
プレッサ31と循環し、車室外熱交換器38がコンプレ
ッサ31から吐出された高温なる冷媒の熱を外気に放熱
し、残りの熱を放熱用車室内熱交換器33がブロアファ
ン37で導入された空気または車両走行時のラム圧によ
って導入された空気に放熱して温風を作り、吸熱用車室
内熱交換器35がブロアファン37で導入された空気ま
たは車両走行時のラム圧によって導入された空気の熱を
冷媒に放熱して冷風を作る。
Therefore, during the heating operation, the three-way valve 32 is switched as shown by the dotted line in FIG. 1, and the refrigerant is compressed by the compressor 31, the three-way valve 32, the heat radiating passenger compartment heat exchanger 33, the liquid tank 36, and the expansion valve 34. The heat of the vehicle interior heat exchanger 35 for heat absorption is circulated to the compressor 31, and the vehicle interior heat exchanger 33 for heat radiation radiates the heat of the high-temperature refrigerant discharged from the compressor 31 by the blower fan 37 or the ram when the vehicle is traveling. The air introduced by the pressure radiates heat to create warm air, and the heat-absorbing passenger compartment heat exchanger 35 radiates the heat introduced by the prowa fan 37 or the air introduced by the ram pressure when the vehicle is traveling to the refrigerant. To make cold air. During the cooling operation, the three-way valve 32 is switched as shown by the dotted line in FIG.
Refrigerant is compressor 31 → three-way valve 32 → exterior heat exchanger 38 → check valve 70 → heat dissipation vehicle interior heat exchanger 33 → liquid tank 36 → expansion valve 34 → heat absorption vehicle interior heat exchanger 35 → compressor 31. The heat of the high-temperature refrigerant that is circulated and discharged from the compressor 31 is radiated to the outside air by the heat exchanger 38 outside the vehicle compartment, and the remaining heat is radiated from the vehicle interior heat exchanger 33 by the blower fan 37 to the air or the vehicle. The air introduced by the ram pressure during traveling dissipates hot air to generate warm air, and the heat-absorbing vehicle interior heat exchanger 35 heats the air introduced by the blower fan 37 or the air introduced by the ram pressure during vehicle traveling. Radiates heat to the refrigerant to create cold air.

【0111】すなわち、暖房運転時には、コンプレッサ
31が始動すると、吸熱用車室内熱交換器35の吸熱量
と、コンプレッサ31の実入力値Wcompに相当する仕事
量とを、放熱用車室内熱交換器33において放熱するの
で、車室内には吸熱用車室内熱交換器35の吸い込み空
気温度Tsuc よりも高温の空気が吹き出され、運転時間
の経過とともに、車室内温度、すなわち、吸熱用車室内
熱交換器35の吸い込み空気温度Tsuc は上昇し、それ
に伴って、コンプレッサ31の実入力値Wcompも大きく
できるので、車室内は加速的に暖められる。また、吸熱
用車室内熱交換器35に流入した空気が、放熱用車室内
熱交換器33に流入するので吸熱用車室内熱交換器35
に流入する空気の熱負荷に対して、吸熱用車室内熱交換
器35で凍結が生じない範囲で、コンプレッサ31の実
入力値Wcompを決めておくことにより、コンプレッサ3
1の効率が最適となる。
That is, when the compressor 31 is started during the heating operation, the amount of heat absorbed by the heat-absorbing passenger compartment heat exchanger 35 and the work amount corresponding to the actual input value W comp of the compressor 31 are transferred to the heat-releasing passenger compartment. Since the heat is dissipated in the device 33, air having a temperature higher than the intake air temperature T suc of the heat-absorbing passenger compartment heat exchanger 35 is blown into the passenger compartment, and as the operating time elapses, the passenger compartment temperature, that is, the heat-absorbing passenger compartment Since the intake air temperature T suc of the heat exchanger 35 rises and the actual input value W comp of the compressor 31 can be increased accordingly, the passenger compartment is warmed up at an accelerated rate. Further, since the air that has flowed into the heat absorption vehicle interior heat exchanger 35 flows into the heat radiation vehicle interior heat exchanger 33, the heat absorption vehicle interior heat exchanger 35
The actual input value W comp of the compressor 31 is determined within a range in which freezing does not occur in the heat absorbing vehicle interior heat exchanger 35 with respect to the heat load of the air flowing into the compressor 3
An efficiency of 1 is optimal.

【0112】図10は、ウォームアップ時における温度
制御のフローチャートを示している。ウォームアップが
必要であると判断され暖房性能を向上させるための温度
制御(ステップS1451)が実行されると、ステップ
S1452で、ステップS132で求めた目標吹出温度
0 からステップS131で読込んだ放熱用車室内熱交
換器33の吹出空気温度Tv を引いた値Δθ1 を求め
る。
FIG. 10 shows a flowchart of temperature control during warm-up. When it is determined that the warm-up is necessary and the temperature control for improving the heating performance (step S1451) is executed, in step S1452, the heat radiation read in step S131 from the target outlet temperature T 0 obtained in step S132. A value Δθ 1 obtained by subtracting the temperature T v of air blown from the vehicle interior heat exchanger 33 is obtained.

【0113】ステップS1453では、吸熱用車室内熱
交換器35の凍結に基づく設定温度Tset1からステップ
S131で読込んだ吸熱用車室内熱交換器35の吹出空
気温度Tout を引いた値Δθ2 を求める。
In step S1453, a value Δθ 2 obtained by subtracting the air temperature T out of the heat-absorbing passenger compartment heat exchanger 35 read in step S131 from the set temperature T set1 based on the freezing of the heat-absorbing passenger compartment heat exchanger 35. Ask for.

【0114】このようにΔθ1 及びΔθ2 を設定したの
は、例えば通常運転時において日射等の変化により車室
内の熱負荷条件が変動した場合、乗員による設定温度の
変更等にはΔθ1 が対応し、また吸熱用車室内熱交換器
35にかかる熱負荷状態の変化にはΔθ2 が対応するた
め、これらの条件を加味したコンプレッサ31の入力制
御を行うことができるからである。
Δθ 1 and Δθ 2 are set as described above because, for example, when the thermal load condition in the passenger compartment fluctuates due to changes in solar radiation during normal operation, Δθ 1 does not change when the occupant changes the set temperature. This is because Δθ 2 corresponds to the change in the heat load state applied to the heat-absorbing passenger compartment heat exchanger 35, so that the input control of the compressor 31 can be performed in consideration of these conditions.

【0115】ステップS1454では、Δθ1 とΔθ2
とで設定される領域を、Δθ2 が所定値Δθ2a以下とな
る領域と、Δθ1 が所定値Δθ1a以下でΔθ2 がΔθ
2aよりも大きくとなる領域と、Δθ1 がΔθ1aよりも
大きく、かつΔθ2 がΔθ2aよりも大きくなる領域を領
域とに分割設定し、ステップS1455へ進む。
In step S1454, Δθ 1 and Δθ 2
The area set by and is the area where Δθ 2 is less than the predetermined value Δθ 2a, and the area where Δθ 1 is less than the predetermined value Δθ 1a and Δθ 2 is less than Δθ 2.
The region in which Δθ 1 is greater than 2a and the region in which Δθ 1 is greater than Δθ 1a and Δθ 2 is greater than Δθ 2a are divided and set as regions, and the flow proceeds to step S1455.

【0116】領域では、吸熱用車室内熱交換器35の
凍結に基づく設定温度Tset1から吸熱用車室内熱交換器
35の吹出空気温度Tout を引いた値Δθ2 が所定値Δ
θ2a以下である。すなわち、コンプレッサ入力の増加を
行っても吸熱用車室内熱交換器35が凍結する恐れがな
く、領域では、通常時におけるコンプレッサ入力の増
減による温度制御に入る。
In the region, a value Δθ 2 obtained by subtracting the air temperature T out of the heat absorbing passenger compartment heat exchanger 35 from the set temperature T set1 based on the freezing of the heat absorbing passenger compartment heat exchanger 35 is a predetermined value Δ.
θ 2a or less. That is, even if the compressor input is increased, there is no fear that the heat-absorbing vehicle interior heat exchanger 35 will freeze, and in the region, temperature control is started by increasing or decreasing the compressor input during normal times.

【0117】領域では、吸熱用車室内熱交換器35の
凍結に基づく設定温度Tset1から吸熱用車室内熱交換器
35の吹出空気温度Tout を引いた値Δθ2 が所定値Δ
θ2aよりも大きいので、吸熱用車室内熱交換器35が凍
結する恐れがあり、また、目標吹出温度T0 から放熱用
車室内熱交換器33の吹出空気温度Tv を引いた値Δθ
1 が所定値Δθ1a以下である。すなわち、吹出空気温度
v が目標吹出温度T0 に近接しておりこれ以上コンプ
レッサ入力を増加させて吹出空気温度Tv を上昇させる
必要もなく、領域では、コンプレッサ入力を下げる制
御を行う。
In the region, the value Δθ 2 obtained by subtracting the blown air temperature T out of the heat absorbing passenger compartment heat exchanger 35 from the set temperature T set1 based on the freezing of the heat absorbing passenger compartment heat exchanger 35 is the predetermined value Δ.
Since it is larger than θ 2a , the heat absorption vehicle interior heat exchanger 35 may be frozen, and the value Δθ obtained by subtracting the blown air temperature T v of the heat radiation vehicle interior heat exchanger 33 from the target outlet temperature T 0.
1 is less than or equal to the predetermined value Δθ 1a . That is, the blow-out air temperature T v is close to the target blow-out temperature T 0 , and it is not necessary to further increase the compressor input to raise the blow-out air temperature T v . In the region, control is performed to lower the compressor input.

【0118】領域では、吸熱用車室内熱交換器35の
凍結に基づく設定温度Tset1から吸熱用車室内熱交換器
35の吹出空気温度Tout を引いた値Δθ2 が所定値Δ
θ2aよりも大きいので、吸熱用車室内熱交換器35が凍
結する恐れがあり、また、目標吹出温度T0 から放熱用
車室内熱交換器33の吹出空気温度Tv を引いた値Δθ
1 が所定値Δθ1aよりも大きいので、吹出空気温度Tv
を上昇させなければならない。このため、領域では、
冷媒による冷却効率を低下させて吸熱用車室内熱交換器
35の吹出空気温度と放熱用車室内熱交換器33の吹出
空気温度とを同時に上昇させる制御を行う。
In the region, a value Δθ 2 obtained by subtracting the air temperature T out of the heat absorbing passenger compartment heat exchanger 35 from the set temperature T set1 based on the freezing of the heat absorbing passenger compartment heat exchanger 35 is a predetermined value Δ.
Since it is larger than θ 2a , the heat absorption vehicle interior heat exchanger 35 may be frozen, and the value Δθ obtained by subtracting the blown air temperature T v of the heat radiation vehicle interior heat exchanger 33 from the target outlet temperature T 0.
Since 1 is larger than the predetermined value Δθ 1a , the blown air temperature T v
Must be raised. Therefore, in the area,
Control is performed to reduce the cooling efficiency of the refrigerant and simultaneously raise the temperature of air blown out from the heat-absorbing vehicle interior heat exchanger 35 and the temperature of air blown out from the heat-radiating vehicle interior heat exchanger 33.

【0119】従って、ステップS1455では、ステッ
プS1452で求めたΔθ1 とステップS1453で求
めたΔθ2 が、領域に入るかどうかを判断して、領域
に入る場合にはステップS1456へ進んで通常の温
調制御を実行し、領域に入らない場合にはステップS
1457へ進む。
Therefore, in step S1455, it is judged whether or not Δθ 1 obtained in step S1452 and Δθ 2 obtained in step S1453 fall within the region. If it falls within the region, the process proceeds to step S1456 to proceed to the normal temperature. If the control is executed and the area is not entered, step S
Proceed to 1457.

【0120】ステップS1457では、Δθ1 とΔθ2
が領域に入るかどうかを判断して、領域に入る場合
にはステップS1458へ進んでコンプレッサ入力を下
げる制御を実行し、領域に入らない場合(領域に入
る場合)にはステップS1459へ進んで冷却効率を低
下させて暖房効率を向上させる制御を実行する。
At step S1457, Δθ 1 and Δθ 2
If it enters the area, the process proceeds to step S1458 to execute control for lowering the compressor input. If it does not enter the area (if entering the area), the process proceeds to step S1459. Control is performed to reduce heating efficiency and improve heating efficiency.

【0121】前記ステップS1456では、膨脹弁34
の設定を通常の設定に戻し、補助ヒータ76電源をOF
Fし、風量設定を通常の設定に戻した後、Δθ1 <−S
0 の場合は、吹出空気温度Tv が目標吹出温度To より
高いと判断してコンプレッサ入力を減らして吹出風温を
低下させる。また、Δθ1 >S0 の場合は、吹出空気温
度Tv が目標吹出温度T0 より低いと判断してコンプレ
ッサ入力を増やして吹出風温を上昇させる。それ以外の
場合には、現状のコンプレッサ入力を維持する。
In step S1456, the expansion valve 34
Of the auxiliary heater 76 power is returned to the normal setting.
F, and after returning the air volume setting to the normal setting, Δθ 1 <−S
In the case of 0 , it is determined that the blown air temperature T v is higher than the target blown air temperature T o , and the compressor input is reduced to lower the blown air temperature. When Δθ 1 > S 0 , it is determined that the blown air temperature T v is lower than the target blown air temperature T 0 , and the compressor input is increased to raise the blown air temperature. Otherwise, keep the current compressor input.

【0122】前記ステップS1458では、膨脹弁34
の設定を通常の設定に戻し、補助ヒータ76電源をOF
Fし、風量設定を通常の設定に戻した後、コンプレッサ
入力を減らす。
In step S1458, the expansion valve 34
Of the auxiliary heater 76 power is returned to the normal setting.
F, and after returning the air volume setting to the normal setting, reduce the compressor input.

【0123】前記ステップS1459では、ステップS
1564で設定した領域を、Δθ1 が所定値Δθ1b
満でΔθ2 が所定値Δθ2b未満となる領域Iと、Δθ1
がΔθ1b未満でΔθ2 がΔθ2b以上となる領域IIと、Δ
θ1 がΔθ1b以上でΔθ2 がΔθ2b未満となる領域III
と、Δθ1 がΔθ1b以上でΔθ2 がΔθ2b以上となる領
域IVとにさらに細かく分割設定する。
In step S1459, step S
The region set in 1564 is the region I in which Δθ 1 is less than the predetermined value Δθ 1b and Δθ 2 is less than the predetermined value Δθ 2b , and Δθ 1
Is less than Δθ 1b and Δθ 2 is more than Δθ 2b.
Region where θ 1 is greater than Δθ 1b and Δθ 2 is less than Δθ 2b III
And a region IV in which Δθ 1 is Δθ 1b or more and Δθ 2 is Δθ 2b or more.

【0124】領域IVでは、吸熱用車室内熱交換器35の
凍結に基づく設定温度Tset1から吸熱用車室内熱交換器
35の吹出空気温度Tout を引いた値Δθ2 が所定値Δ
θ2bよりも大きいので、吸熱用車室内熱交換器35が凍
結する可能性が高く、また、目標吹出温度T0 から放熱
用車室内熱交換器33の吹出空気温度Tv を引いた値Δ
θ1 が所定値Δθ1bよりも大きいので、吹出空気温度T
v の必要温度上昇幅が大きい。このため、領域IVでは、
膨脹弁34の絞り量を減らす制御を行った後、エアミッ
クスドア46の開度を減らす制御を行う。
In the region IV, the value Δθ 2 obtained by subtracting the air temperature T out of the heat absorbing passenger compartment heat exchanger 35 from the set temperature T set1 based on the freezing of the heat absorbing passenger compartment heat exchanger 35 is the predetermined value Δ.
Since it is larger than θ 2b, there is a high possibility that the heat-absorbing vehicle interior heat exchanger 35 will freeze, and the value Δ obtained by subtracting the air temperature T v of the heat-radiating vehicle interior heat exchanger 33 from the target outlet temperature T 0.
Since θ 1 is larger than the predetermined value Δθ 1b , the blown air temperature T
The required temperature rise range of v is large. Therefore, in Region IV,
After the control for reducing the expansion amount of the expansion valve 34 is performed, the control for reducing the opening degree of the air mix door 46 is performed.

【0125】膨脹弁34の制御は、放熱用車室内熱交換
器33出口側の冷媒温度Tref に対応する膨脹弁34の
絞り量の目標値を求め、膨脹弁34へ信号出力して、絞
り量を目標値に設定する。この絞り量の目標値は、冷媒
温度Tref が低いほど小さくなるように設定されてい
る。このように膨脹弁34の絞り量を減らすと、膨脹弁
34出口の冷媒圧力が上昇し、吸熱用車室内熱交換器3
5の作動圧力(冷媒の蒸発圧力)及び作動温度(冷媒の
蒸発温度)が上昇して、コンプレッサ31に流入する冷
媒温度が上昇し、エンタルピが増加して、コンプレッサ
入力が効率良く増加する。また、吸熱用車室内熱交換器
35の作動温度が上昇すると、吸熱用車室内熱交換器3
5の吹出空気温度及び放熱用車室内熱交換器33の吸込
空気温度が上昇し、放熱用車室内熱交換器33作動温度
が上昇し、また、コンプレッサ入力も増加するので、放
熱用車室内熱交換器33での放熱量が増加する。これに
より、吸熱用車室内熱交換器35の凍結を回避しつつ、
冷媒を最適使用温度まで上昇させることができると共
に、放熱用車室内熱交換器35の吹出空気温度を上昇さ
せることができる。従って、吸熱用車室内熱交換器35
の吸込空気温度及び冷媒温度が低い低外気温下等での起
動時において、暖房の立上がり時間を短縮することがで
きる。
The expansion valve 34 is controlled by obtaining a target value of the expansion amount of the expansion valve 34 corresponding to the refrigerant temperature T ref on the outlet side of the heat radiating passenger compartment heat exchanger 33, and outputting a signal to the expansion valve 34 to output the expansion value. Set the amount to the target value. The target value of the throttle amount is set to be smaller as the refrigerant temperature T ref is lower. When the expansion amount of the expansion valve 34 is reduced in this way, the refrigerant pressure at the outlet of the expansion valve 34 rises, and the heat absorption vehicle interior heat exchanger 3
The operating pressure (evaporating pressure of the refrigerant) and the operating temperature (evaporating temperature of the refrigerant) of 5 rise, the temperature of the refrigerant flowing into the compressor 31 rises, the enthalpy increases, and the compressor input efficiently increases. Further, when the operating temperature of the heat absorption vehicle interior heat exchanger 35 rises, the heat absorption vehicle interior heat exchanger 3
5 and the intake air temperature of the heat dissipation vehicle interior heat exchanger 33 rise, the heat dissipation vehicle interior heat exchanger 33 operating temperature rises, and the compressor input also increases. The heat radiation amount in the exchanger 33 increases. Thereby, while avoiding freezing of the heat-absorbing passenger compartment heat exchanger 35,
It is possible to raise the temperature of the refrigerant to the optimum operating temperature and raise the temperature of the air blown out from the heat-radiating vehicle interior heat exchanger 35. Therefore, the heat absorption vehicle interior heat exchanger 35
The startup time of heating can be shortened at the time of start-up under low outside air temperature where the intake air temperature and the refrigerant temperature are low.

【0126】なお、膨脹弁34の絞り量の目標値は、放
熱用車室内熱交換器33出口でのサブクール度(冷媒の
流出温度と流出圧力での飽和温度との差)や吸熱用車室
内熱交換器35出口でのスーパーヒート(冷媒の流出温
度と流出圧力での飽和温度との差)に基づいて求めるこ
ともできる。
The target value of the expansion amount of the expansion valve 34 is determined by the subcooling degree (difference between the outflow temperature of the refrigerant and the saturation temperature at the outflow pressure) at the outlet of the heat radiating passenger compartment heat exchanger 33 and the heat absorbing passenger compartment. It can also be determined based on the superheat at the outlet of the heat exchanger 35 (the difference between the outflow temperature of the refrigerant and the saturation temperature at the outflow pressure).

【0127】領域III では、吸熱用車室内熱交換器35
の凍結に基づく設定温度Tset1から吸熱用車室内熱交換
器35の吹出空気温度Tout を引いた値Δθ2 が所定値
Δθ2bよりも小さいので、吸熱用車室内熱交換器35が
凍結する可能性が低く、また、目標吹出温度T0 から放
熱用車室内熱交換器33の吹出空気温度Tv を引いた値
Δθ1 が所定値Δθ1bよりも大きいので、吹出空気温度
v の必要温度上昇幅が大きい。このため、領域III で
は、補助ヒータ76を作動する制御を行った後、エアミ
ックスドア46の開度を減らす制御を行う。
In the region III, the heat absorbing vehicle interior heat exchanger 35
Since the value Δθ 2 obtained by subtracting the outlet air temperature T out of the heat-absorbing passenger compartment heat exchanger 35 from the set temperature Tset1 based on the freezing is smaller than the predetermined value Δθ 2b , the heat-absorbing passenger compartment heat exchanger 35 can be frozen. Is low, and the value Δθ 1 obtained by subtracting the blown air temperature T v of the heat radiation vehicle interior heat exchanger 33 from the target blown temperature T 0 is larger than the predetermined value Δθ 1b. Therefore, the required temperature of the blown air temperature T v is The rate of increase is large. Therefore, in the region III, after the control for operating the auxiliary heater 76 is performed, the control for reducing the opening degree of the air mix door 46 is performed.

【0128】補助ヒータ76の制御は、ブロアファンモ
ータ44の電圧Vfan に対応する風量V0 を求め、補助
ヒータ76の入力値QheqtをΔθ1 ×V0 ×αによって
算出し、補助ヒータ76に信号出力する。このように補
助ヒータ76を作動すると、放熱用車室内熱交換器33
の吸込空気温度が上昇し、放熱用車室内熱交換器33の
作動温度が上昇し、これに伴って吸熱用車室内熱交換器
35の作動温度と吹出空気温度が若干上昇する。この吸
熱用車室内熱交換器35の吹出空気温度の上昇と、補助
ヒータ76の入力分及び放熱用車室内熱交換器33の作
動温度の上昇とによって、放熱用車室内熱交換器35の
吹出空気温度の上昇を冷媒温度の上昇に優先して行うこ
とができる。
In controlling the auxiliary heater 76, the air volume V 0 corresponding to the voltage V fan of the blower fan motor 44 is obtained, and the input value Q heqt of the auxiliary heater 76 is calculated by Δθ 1 × V 0 × α. Signal to. When the auxiliary heater 76 is operated in this way, the heat dissipation vehicle interior heat exchanger 33
Rises, the operating temperature of the heat radiating passenger compartment heat exchanger 33 rises, and the operating temperature of the heat sink passenger compartment heat exchanger 35 and the blown air temperature slightly rise accordingly. Due to the rise in the temperature of the air blown from the heat-absorbing vehicle interior heat exchanger 35 and the rise in the input of the auxiliary heater 76 and the operating temperature of the heat-radiating vehicle interior heat exchanger 33, the air-radiating vehicle interior heat exchanger 35 is blown out. The increase in air temperature can be prioritized over the increase in refrigerant temperature.

【0129】領域IIでは、吸熱用車室内熱交換器35の
凍結に基づく設定温度Tset1から吸熱用車室内熱交換器
35の吹出空気温度Tout を引いた値Δθ2 が所定値Δ
θ2bよりも大きいので、吸熱用車室内熱交換器35が凍
結する可能性が高く、また、目標吹出温度T0 から放熱
用車室内熱交換器33の吹出空気温度Tv を引いた値Δ
θ1 が所定値Δθ1bよりも小さいので、吹出空気温度T
v の必要温度上昇幅が小さい。このため、領域IIでは、
風量を増加する制御を行った後、エアミックスドア46
の開度を減らす制御を行う。
In the region II, the value Δθ 2 obtained by subtracting the air temperature T out from the heat absorbing vehicle interior heat exchanger 35 from the set temperature T set1 based on the freezing of the heat absorbing vehicle interior heat exchanger 35 is the predetermined value Δ.
Since it is larger than θ 2b, there is a high possibility that the heat-absorbing vehicle interior heat exchanger 35 will freeze, and the value Δ obtained by subtracting the air temperature T v of the heat-radiating vehicle interior heat exchanger 33 from the target outlet temperature T 0.
Since θ 1 is smaller than the predetermined value Δθ 1b , the blown air temperature T
The required temperature rise of v is small. Therefore, in Region II,
After performing control to increase the air volume, the air mix door 46
Control to reduce the opening degree of.

【0130】前記風量の制御は、目標吹出温度T0 に対
応するブロアファンモータ44の電圧補正ΔVを求め、
ブロアファンモータ44の電圧を電圧Vfan よりも少し
高い電圧Vfan +ΔVに設定し、吸熱用車室内熱交換器
35の吸込空気量を増加する。このように吸熱用車室内
熱交換器35の吸込空気量を増加すると、吸熱用車室内
熱交換器35の吹出空気温度がやや上昇し、放熱用車室
内熱交換器33の吸込空気温度が上昇すると共に、吸込
空気量も増加する。これにより、吹出空気温度はほぼ一
定もしくは若干低下するが、放熱用車室内熱交換器33
からの放熱量、すなわち車室内への放熱量が増加するの
で、車室内の暖房性能は向上する。
In controlling the air volume, the voltage correction ΔV of the blower fan motor 44 corresponding to the target outlet temperature T 0 is calculated,
Set the voltage of the blower fan motor 44 to a voltage slightly higher V fan + [Delta] V than the voltage V fan, to increase the intake air amount of the heat-absorbing inner heat exchanger 35. When the amount of intake air of the heat-absorbing vehicle interior heat exchanger 35 is increased in this way, the blown-air temperature of the heat-absorbing vehicle interior heat exchanger 35 rises slightly and the intake air temperature of the heat-radiating vehicle interior heat exchanger 33 rises. In addition, the intake air amount also increases. As a result, the temperature of the blown air is substantially constant or slightly decreases, but the heat-radiating vehicle interior heat exchanger 33
Since the amount of heat radiated from the vehicle, that is, the amount of heat radiated into the vehicle interior is increased, the heating performance of the vehicle interior is improved.

【0131】領域Iでは、吸熱用車室内熱交換器35の
凍結に基づく設定温度Tset1から吸熱用車室内熱交換器
35の吹出空気温度Tout を引いた値Δθ2 が所定値Δ
θ2bよりも小さいので、吸熱用車室内熱交換器35が凍
結する可能性が低く、また、目標吹出温度T0 から放熱
用車室内熱交換器33の吹出空気温度Tv を引いた値Δ
θ1 が所定値Δθ1bよりも小さいので、吹出空気温度T
v の必要温度上昇幅が小さい。このため、領域Iでは、
エアミックスドア46の開度を減らす制御のみを行う。
In the region I, the value Δθ 2 obtained by subtracting the blown air temperature T out of the heat absorbing passenger compartment heat exchanger 35 from the set temperature T set1 based on the freezing of the heat absorbing passenger compartment heat exchanger 35 is the predetermined value Δ.
Since it is smaller than θ 2b , the heat absorption vehicle interior heat exchanger 35 is less likely to freeze, and the value Δ obtained by subtracting the blown air temperature T v of the heat radiation vehicle interior heat exchanger 33 from the target outlet temperature T 0.
Since θ 1 is smaller than the predetermined value Δθ 1b , the blown air temperature T
The required temperature rise of v is small. Therefore, in region I,
Only control for reducing the opening degree of the air mix door 46 is performed.

【0132】エアミックスドア46の制御は、放熱用車
室内熱交換器33出口側の冷媒温度Tref に対応するエ
アミックスドア46の開度XD を求め、エアミックスド
ア46を開度XD に設定する。この開度XD は、冷媒温
度Tref が低いほど小さくなる(放熱用車室内熱交換器
33の吸込空気量が少なくなる)ように設定されてい
る。エアミックスドア46の開度XD を小さくすると、
放熱用車室内熱交換器33から流出する冷媒の温度が上
昇するので、コンプレッサ入力をさらに急速に増加する
ことができる。
[0132] Control of the air mixing door 46 obtains the opening degree X D of the air mixing door 46 that corresponds to the refrigerant temperature T ref of the heat-radiating inner heat exchanger 33 outlet, the air mixing door 46 opening degree X D Set to. The degree of opening X D is set so that the lower the refrigerant temperature T ref is reduced (the suction air amount of the heat-radiating inner heat exchanger 33 is reduced). When the opening X D of the air mix door 46 is reduced,
Since the temperature of the refrigerant flowing out from the heat dissipation vehicle interior heat exchanger 33 rises, the compressor input can be increased more rapidly.

【0133】また、冷媒温度Tref が低い場合には、放
熱用車室内熱交換器33の作動温度が低いので、エアミ
ックスドア46の開度XD を大きく変化させても冷媒の
循環状態が急変せず、冷媒温度Tref が高い場合には、
エアミックスドア46の変化量を微少量としたので、冷
媒の循環状態が不安定とならず、常に安定した循環状態
が得られ、ハンチングを起こす恐れが少ない。
Further, when the refrigerant temperature T ref is low, the operating temperature of the heat-radiating vehicle interior heat exchanger 33 is low, and therefore the refrigerant circulating state is maintained even if the opening X D of the air mix door 46 is greatly changed. When the refrigerant temperature T ref is high without sudden change,
Since the amount of change of the air mix door 46 is set to a very small amount, the circulation state of the refrigerant is not unstable, a stable circulation state is always obtained, and hunting is unlikely to occur.

【0134】なお、エアミックスドア46の開度XD
所定開度未満の時は、放熱用車室内熱交換器33の放熱
器としての機能が不充分となる恐れがあるので、三方弁
32を強制的に冷房運転側に切換えて車室外熱交換器3
8で放熱を行い、開度XD が所定開度以上の場合のみ暖
房運転を行うようにすることもできる。
When the opening X D of the air mix door 46 is less than the predetermined opening, the heat radiation inside the vehicle interior heat exchanger 33 may not function sufficiently as a radiator, so the three-way valve 32 is used. Is forcibly switched to the cooling operation side and the exterior heat exchanger 3
It is also possible to radiate heat at 8 and perform the heating operation only when the opening X D is equal to or larger than the predetermined opening.

【0135】また、エアミックスドア46の開度XD
御は、例えば、冷媒温度Tref が所定温度以下のときの
開度XD を最小値のXD min とし所定温度以上のときの
開度XD を全開状態としても良い。このような制御によ
れば、冷媒温度が低いときでも開度XD が所定開度XD
min 以上に保たれるので、放熱用車室内熱交換器33の
放熱器としての機能が確保され、また、冷媒温度の上昇
と共に徐々に開度XDを大きくすることにより、放熱用
車室内熱交換器33の作動圧力の急激な上昇が抑制され
て、安定した温度制御を行うことができる。
The opening X D of the air mix door 46 is controlled, for example, by setting the opening X D when the refrigerant temperature T ref is equal to or lower than the predetermined temperature as the minimum value X D min and opening the opening when the temperature is equal to or higher than the predetermined temperature. X D may be fully opened. According to such control, even when the refrigerant temperature is low, the opening X D is the predetermined opening X D.
Since it is maintained at min or more, the function of the heat dissipation vehicle interior heat exchanger 33 as a heat radiator is ensured, and by gradually increasing the opening degree X D as the refrigerant temperature rises, the heat dissipation vehicle interior heat is increased. A rapid increase in the operating pressure of the exchanger 33 is suppressed, and stable temperature control can be performed.

【0136】図11及び図12は、本実施例の蓄熱暖房
運転(図7のステップS142)のフローチャートを示
す。
11 and 12 are flowcharts of the heat storage heating operation (step S142 in FIG. 7) of this embodiment.

【0137】蓄熱暖房スイッチがONされると、蓄熱暖
房制御が開始され(ステップS1421)、ステップS
1422に進む。
When the heat storage heating switch is turned on, heat storage heating control is started (step S1421), and step S
Proceed to 1422.

【0138】ステップS1422では、第1の電磁弁1
01を開いてステップS1423に進み、ステップS1
423では、第2の電磁弁102を開く。このように、
第1の電磁弁101と第2の電磁弁102を共に開く
と、液タンク36から流出した冷媒の一部が蓄熱槽10
4側に流入し、蓄熱暖房運転が開始されて、ステップS
1424に進む。
In step S1422, the first solenoid valve 1
01 is opened and it progresses to step S1423, and step S1
At 423, the second solenoid valve 102 is opened. in this way,
When both the first solenoid valve 101 and the second solenoid valve 102 are opened, a part of the refrigerant flowing out of the liquid tank 36 is partially stored in the heat storage tank 10.
4 flows in, the heat storage heating operation is started, and step S
Proceed to 1424.

【0139】ステップS1424では、吸熱用車室内熱
交換器35の出口側の空気温度Tou t を新たに検出し
て、ステップS1425に進む。
[0139] At step S1424, and newly detected air temperature T ou t at the outlet side of the heat-absorbing inner heat exchanger 35, the process proceeds to step S1425.

【0140】ステップS1425では、ステップS13
1で読込んだ熱環境情報である車室内熱負荷情報を用い
て、窓晴れ性の判断基準となる温度Tf を演算し、ステ
ップS1426に進む。
In step S1425, step S13
Using the vehicle interior heat load information that is the thermal environment information read in step 1, the temperature T f, which is the criterion for determining the window transparency, is calculated, and the process proceeds to step S1426.

【0141】ステップS1426では、ウォームアップ
制御を行うかどうかを判断する。ウォームアップ制御を
行うかどうかの判断は、ステップS144と同様に、目
標吹出温度T0 と設定温度Tset3との大小を比較して行
う。すなわち、T0 >Tset3の場合には、車室内温度が
目標温度よりも低く車室内がまだ充分に暖房されていな
いので、ステップS1428に進んでウォームアップ制
御を行い、T0 ≦Tse t3の場合には、車室内温度が目標
温度に近づいたので、通常の蓄熱暖房運転を行う。この
通常の蓄熱暖房運転では、第1の電磁弁101と第2の
電磁弁102を共に開いた状態で、図8に示す暖房運転
時のコンプレッサ制御を実行する。すなわち、エアミッ
クスドアやブロアファン電圧やコンプレッサ回転数を、
蓄熱暖房運転を行わない通常運転と同様に制御する。
In step S1426, it is determined whether warm-up control is to be performed. Whether or not to perform the warm-up control is determined by comparing the target blow-out temperature T 0 and the set temperature T set3 with each other, as in step S144. That, T 0> in the case of T SET3, since the vehicle interior temperature cabin is not yet sufficiently heated lower than the target temperature, performs warm-up control proceeds to step S1428, T 0 ≦ T se t3 In this case, since the vehicle interior temperature has approached the target temperature, the normal heat storage heating operation is performed. In this normal heat storage heating operation, the compressor control during the heating operation shown in FIG. 8 is executed with both the first solenoid valve 101 and the second solenoid valve 102 open. That is, the air mix door and blower fan voltage and the compressor speed,
The control is performed in the same manner as the normal operation without the heat storage heating operation.

【0142】ステップS1428でT0 >Tset2と判断
し、ウォームアップ制御を行う場合には、まず、ウォー
ムアップ制御を開始してから予め設定された継続基準時
間が経過したかどうかを判断して、第1の電磁弁101
の開閉制御を行う。このように第1の電磁弁101の開
閉制御を行うのは、ウォームアップ時には、できるだけ
早くコンプレッサ吸入冷媒温度を安定させてコンプレッ
サ吐出圧力を上昇させたいので、第1の電磁弁101を
閉じると冷媒が全て蓄熱槽104側へ流入し吸熱用車室
内熱交換器35には流入せず、かかる状態で蓄熱暖房運
転を長時間継続すると、空調風の除湿が不充分となり窓
曇りが発生する恐れがあるので、継続基準時間経過前
は、第1の電磁弁101を閉じてコンプレッサ吐出圧力
を早く上昇させ、また、継続基準時間経過後は、第1の
電磁弁101を開いて除湿暖房を行って窓晴れ性を確保
するためである。すなわち、ウォームアップ制御を開始
してから継続基準時間がまだ経過していない場合は、ス
テップS1429に進んで第1の電磁弁101を閉じ、
逆に、継続基準時間に達した場合は、ステップS143
0に進んで第1の電磁弁101を開いて、その後ステッ
プS1431に進む。
When it is determined that T 0 > T set2 in step S1428 and the warm-up control is to be performed, first, it is determined whether or not a preset continuation reference time has elapsed since the warm-up control was started. , The first solenoid valve 101
Open and close control. Since the opening / closing control of the first solenoid valve 101 is performed in this way, it is desired to stabilize the compressor suction refrigerant temperature and raise the compressor discharge pressure as soon as possible during warm-up, so that the refrigerant is closed when the first solenoid valve 101 is closed. All flow into the heat storage tank 104 side and do not flow into the heat absorption vehicle interior heat exchanger 35, and if the heat storage heating operation is continued for a long time in such a state, dehumidification of the conditioned air may be insufficient and window fogging may occur. Therefore, before the continuation reference time has elapsed, the first solenoid valve 101 is closed to increase the compressor discharge pressure quickly, and after the continuation reference time has elapsed, the first solenoid valve 101 is opened to perform dehumidification heating. This is to secure the window transparency. That is, if the continuation reference time has not yet elapsed since the warm-up control was started, the process advances to step S1429 to close the first solenoid valve 101,
On the contrary, if the continuation reference time is reached, step S143.
The process proceeds to 0 to open the first solenoid valve 101, and then proceeds to step S1431.

【0143】ステップS1431では、ステップS14
29で第1の電磁弁101を閉じた場合は、冷媒の全量
を蓄熱槽104側へ流入して、また、ステップS143
0で第1の電磁弁101を開いた場合は、冷媒の一部を
蓄熱槽104側に流入し、残りを吸熱用車室内熱交換器
35側に流入して、蓄熱暖房時のウォームアップ制御を
行う。この蓄熱暖房運転時のウォームアップ制御では、
第1の電磁弁101を閉じて第2の電磁弁102のみを
開いた状態で、図10に示すウォームアップ時の温度制
御を実行するもので、エアミックスドアやブロアファン
電圧やコンプレッサ回転数を、非蓄熱暖房運転時のウォ
ームアップ運転と同様に制御し、ステップS1432に
進む。
In step S1431, step S14
When the first solenoid valve 101 is closed at 29, the entire amount of the refrigerant flows into the heat storage tank 104 side, and step S143
When the first solenoid valve 101 is opened at 0, a part of the refrigerant flows into the heat storage tank 104 side, and the rest flows into the heat absorbing vehicle interior heat exchanger 35 side to perform warm-up control during heat storage heating. I do. In this warm-up control during heat storage heating operation,
With the first solenoid valve 101 closed and only the second solenoid valve 102 opened, temperature control during warm-up shown in FIG. 10 is executed, and the air mix door, blower fan voltage, and compressor speed are adjusted. The control is performed similarly to the warm-up operation during the non-heat storage heating operation, and the process proceeds to step S1432.

【0144】ステップS1432では、ステップS14
24で検出した吸熱用車室内熱交換器35の出口側の空
気温度Tout と、ステップS1425で演算した窓晴れ
性の基準温度Tf との温度差Δθを算出して、ステップ
S1433に進む。このように吸熱用車室内熱交換器3
5の出口側の空気温度Tout と窓晴れ性の基準温度T
との温度差Δθを求めるのは、温度差Δθが大きい場
合、窓曇りが発生する可能性が高いため、窓曇りの発生
の防止が必要となるからである。
In step S1432, step S14
The temperature difference Δθ between the air temperature T out on the outlet side of the heat absorption passenger compartment heat exchanger 35 detected in 24 and the window temperature reference temperature T f calculated in step S1425 is calculated, and the process proceeds to step S1433. Thus, the heat exchanger 3 for heat absorption in the passenger compartment
5, the air temperature T out on the outlet side and the reference temperature T f of the window transparency
The reason why the temperature difference Δθ is calculated is that when the temperature difference Δθ is large, the window fog is likely to occur, and therefore it is necessary to prevent the window fog from occurring.

【0145】ステップS1433では、ステップS14
32で求めたΔθが予め設定した目標温度差Δθset
りも大きいかどうかを判断し、Δθが目標温度差Δθ
set よりも大きい場合は、窓曇りが発生する恐れがない
ので、そのままステップS1434に進む。逆に、Δθ
が予め設定した目標温度差Δθset よりも小さい場合
は、窓曇りが発生する可能性があるので、ステップS1
435に進み、予め設定されたマップにより、Δθの大
きさに応じてブロアファン34の入力電圧の減少補正量
ΔVfan を求めた後、ステップS1436に進み、ブロ
アファン34の風量を求めた補正量ΔVfan だけ減少し
て、ステップS1434に進む。ステップS1435で
用いられるマップは、Δθが小さい場合には、窓曇りが
発生する可能性が高いので、プロワファン電圧の補正量
ΔVfan が大きくなるように設定され、反対にΔθが大
きい場合には、窓曇りが発生する可能性が低いので、ブ
ロアファン電圧の補正量ΔVfan が小さくなるように設
定されている。
In step S1433, step S14
It is judged whether or not Δθ obtained in 32 is larger than a preset target temperature difference Δθ set , and Δθ is the target temperature difference Δθ set.
If it is larger than the set value , there is no risk of fogging of the window, and the process directly proceeds to step S1434. Conversely, Δθ
Is smaller than the preset target temperature difference Δθ set , there is a possibility that fogging of the window may occur.
In step 435, the correction amount ΔV fan for decreasing the input voltage of the blower fan 34 is obtained according to the magnitude of Δθ by the preset map, and then the flow proceeds to step S1436 to obtain the correction amount for the blower fan 34. It is decreased by ΔV fan , and the process proceeds to step S1434. The map used in step S1435 is set such that the correction amount ΔV fan of the Prowa fan voltage is set to be large when Δθ is small, and therefore the map is set to be large when Δθ is small. Since it is unlikely that window fog will occur, the blower fan voltage correction amount ΔV fan is set to be small.

【0146】ステップS1434では、蓄熱暖房運転を
開始してからのコンプレッサ吸入冷媒の最高温度が、予
め設定した基準冷媒温度よりも高いかどうかを判断す
る。このようにコンプレッサ吸入冷媒の最高温度が基準
冷媒温度よりも高いかどうかを判断するのは、図3及び
図4に示すように、蓄熱槽104の蓄熱量が充分であれ
ば、コンプレッサ吐出圧力がほぼ定常に達するまでの間
に、コンプレッサ吸入冷媒温度が最高温度付近まで上昇
することを利用して、以後蓄熱暖房運転を継続すること
により効果があるかどうかを判断するためである。すな
わち、コンプレッサ吸入冷媒の最高温度が基準冷媒温度
よりも高い場合は、蓄熱槽104の蓄熱量が充分であ
り、蓄熱暖房運転の効果が認められると判断し、ステッ
プS1437に進む。逆に、コンプレッサ吸入冷媒の最
高温度が基準温度よりも低い場合は、蓄熱槽104の蓄
熱量が不充分であり継続して蓄熱暖房運転を行っても大
きな効果が期待できないか、又は、蓄熱槽104の蓄熱
量は充分であるがまだ最高温度に達する以前であると判
断し、ステップS1438に進む。
In step S1434, it is determined whether the maximum temperature of the refrigerant sucked into the compressor after the heat storage heating operation is started is higher than a preset reference refrigerant temperature. In this way, it is determined whether the maximum temperature of the refrigerant sucked into the compressor is higher than the reference refrigerant temperature, as shown in FIGS. 3 and 4, if the heat storage amount in the heat storage tank 104 is sufficient, the compressor discharge pressure is This is because it is determined whether or not there is an effect by continuing the heat storage heating operation by utilizing the fact that the compressor suction refrigerant temperature rises to around the maximum temperature until it reaches a substantially steady state. That is, when the maximum temperature of the refrigerant sucked into the compressor is higher than the reference refrigerant temperature, it is determined that the heat storage amount in the heat storage tank 104 is sufficient and the effect of the heat storage heating operation is recognized, and the process proceeds to step S1437. On the contrary, when the maximum temperature of the refrigerant sucked into the compressor is lower than the reference temperature, the amount of heat stored in the heat storage tank 104 is insufficient and a large effect cannot be expected even if the heat storage heating operation is continuously performed, or the heat storage tank It is determined that the heat storage amount of 104 is sufficient but it has not yet reached the maximum temperature, and the process proceeds to step S1438.

【0147】ステップS1438では、コンプレッサ吸
入冷媒温度が基準冷媒温度に達しない状態で基準時間が
経過したかどうかを判断する。このように、コンプレッ
サ吸入冷媒温度が基準冷媒温度に達しない状態で基準時
間が経過したかどうかを判断するのは、基準時間が経過
してもコンプレッサ吸入冷媒温度が基準冷媒温度に達し
ない場合は、蓄熱槽104の蓄熱量が不足しているの
で、このまま蓄熱暖房運転を続けると、蓄熱槽104内
に冷媒が溜まり、コンプレッサ31が液冷媒を吸入して
液圧縮を起こしたり、サイクル内の作動冷媒が不足して
能力不足となり、窓曇りが発生しやすくなるからであ
る。このため、基準時間の経過後であれば、ステップS
1439に進んで第1の電磁弁101を開き、ステップ
S1440に進んで第2の電磁弁102を閉じて、蓄熱
槽104側への冷媒の流入を停止し、ステップS144
1に進む。ステップS1441では、蓄熱暖房運転から
蓄熱を使用しない通常の暖房運転の制御に切換え、図7
のステップS143の暖房運転を開始する。逆に、基準
時間の経過前であれば、蓄熱槽104の蓄熱量は充分で
あり、継続運転すれば、その後コンプレッサ吸入冷媒温
度が基準冷媒温度に達する可能性があるため、ステップ
S1424に戻り、本制御を継続する。
In step S1438, it is determined whether the reference time has elapsed with the compressor suction refrigerant temperature not reaching the reference refrigerant temperature. In this way, it is necessary to determine whether the reference time has elapsed while the compressor intake refrigerant temperature has not reached the reference refrigerant temperature. Since the heat storage amount of the heat storage tank 104 is insufficient, if the heat storage heating operation is continued as it is, the refrigerant accumulates in the heat storage tank 104, and the compressor 31 sucks the liquid refrigerant to cause liquid compression, or the operation in the cycle. This is because the refrigerant becomes insufficient and the capacity becomes insufficient, so that fogging of the window easily occurs. Therefore, if the reference time has elapsed, step S
Proceeding to 1439, the first solenoid valve 101 is opened, and proceeding to step S1440, the second solenoid valve 102 is closed to stop the inflow of the refrigerant to the heat storage tank 104 side, and then step S144.
Go to 1. In step S1441, the heat storage heating operation is switched to the normal heating operation control that does not use heat storage.
The heating operation in step S143 is started. On the contrary, before the elapse of the reference time, the heat storage amount in the heat storage tank 104 is sufficient, and if the compressor is continuously operated, the compressor suction refrigerant temperature may reach the reference refrigerant temperature, and thus the process returns to step S1424. Continue this control.

【0148】また、ステップS1434で、コンプレッ
サ吸入冷媒の最高温度が予め設定した基準冷媒温度に達
したと判断されると、ステップS1437に進んで、コ
ンプレッサ吸入冷媒温度がほぼ一定温度を維持している
かどうかを判断する。このようにコンプレッサ吸入冷媒
温度がほぼ一定温度を維持しているかどうかを判断する
のは、図3及び図4に示すように、蓄熱槽104から冷
媒への放熱量が低下すると、基準冷媒温度に達した後の
コンプレッサ吸入冷媒温度がほぼ一定に維持されること
を利用して、蓄熱暖房運転をさらに継続するかどうかを
判断するためである。すなわち、コンプレッサ吸入冷媒
温度がほぼ一定に維持されている場合は、蓄熱槽104
の放熱量が低下したと判断し、ステップS1439に進
む。ステップS1439では、第1の電磁弁101を開
いてステップS1440に進み、第2の電磁弁102を
閉じて、蓄熱槽104側への冷媒の流入を停止し、ステ
ップS1441に進み、蓄熱を使用しない通常の暖房運
転の制御に切換える。逆に、コンプレッサ吸入冷媒温度
がほぼ一定温度を維持していない場合は、ステップS1
424に戻り、本制御を継続する。
If it is determined in step S1434 that the maximum temperature of the refrigerant sucked into the compressor has reached the preset reference refrigerant temperature, the flow advances to step S1437 to see if the temperature of the refrigerant sucked into the compressor is maintained at a substantially constant temperature. Determine whether In this way, it is determined whether or not the compressor suction refrigerant temperature is maintained at a substantially constant temperature, as shown in FIGS. 3 and 4, when the heat radiation amount from the heat storage tank 104 to the refrigerant decreases, the reference refrigerant temperature is set. This is because it is determined whether or not the heat storage heating operation is further continued by utilizing the fact that the compressor suction refrigerant temperature after reaching the temperature is maintained substantially constant. That is, when the compressor suction refrigerant temperature is maintained substantially constant, the heat storage tank 104
It is determined that the heat radiation amount has decreased and the process proceeds to step S1439. In step S1439, the first electromagnetic valve 101 is opened, the process proceeds to step S1440, the second electromagnetic valve 102 is closed, the flow of the refrigerant to the heat storage tank 104 side is stopped, and the process proceeds to step S1441 to use no heat storage. Switch to normal heating operation control. On the contrary, if the compressor suction refrigerant temperature does not maintain a substantially constant temperature, step S1
Returning to 424, this control is continued.

【0149】要するに、本実施例によれば、乗員の指示
により蓄熱暖房スイッチがONされ、蓄熱暖房運転が開
始されると、冷媒が蓄熱槽104側に流入して、蓄熱槽
104に蓄えられた熱量が冷媒に放熱されるので、コン
プレッサ31に流入する冷媒の(圧力/温度)が上昇
し、コンプレッサ31の冷凍能力R及び入力量Wが急激
に増加させることができ、高いウォームアップ性が得ら
れる。
In short, according to the present embodiment, when the heat storage heating switch is turned on by the instruction of the passenger and the heat storage heating operation is started, the refrigerant flows into the heat storage tank 104 side and is stored in the heat storage tank 104. Since the amount of heat is radiated to the refrigerant, the (pressure / temperature) of the refrigerant flowing into the compressor 31 rises, the refrigerating capacity R and the input amount W of the compressor 31 can be rapidly increased, and a high warm-up property can be obtained. To be

【0150】また、蓄熱暖房運転時におけるコンプレッ
サ31やブロアファン37等の制御を、通常の暖房制御
とウォームアップ制御とに分けて行うので、蓄熱暖房運
転に加えてさらにウォームアップ性が向上する。
Further, since the control of the compressor 31, the blower fan 37 and the like during the heat storage heating operation is performed separately for the normal heating control and the warm-up control, the warm-up property is further improved in addition to the heat storage heating operation.

【0151】また、蓄熱暖房運転によるウォームアップ
制御が開始から継続基準時間を経過するまでは、第1の
電磁弁101を閉じて冷媒を全て蓄熱槽104に流入す
るので、窓晴れ性を損なうことなく、かつ効果的にウォ
ームアップを行うことができる。
Further, since the first solenoid valve 101 is closed and all the refrigerant flows into the heat storage tank 104 from the start of the warm-up control by the heat storage heating operation until the continuation reference time elapses, the window fineness is impaired. It is possible to perform warm-up effectively without the need.

【0152】また、吸熱用車室内熱交換器35の出口空
気温度Tout と窓晴れの基準温度Tf との温度差Δθが
大きい場合には、Δθに応じてブロアファン37の入力
電圧を減少させるので、確実な窓晴れ性を得ることがで
きる。
If the temperature difference Δθ between the outlet air temperature T out of the heat-absorbing passenger compartment heat exchanger 35 and the window clear reference temperature T f is large, the input voltage of the blower fan 37 is decreased according to Δθ. As a result, it is possible to obtain reliable window transparency.

【0153】また、蓄熱暖房運転開始から基準時間が経
過してもコンプレッサ吸入冷媒温度が基準冷媒温度に達
しない場合は、蓄熱暖房運転を終了して通常の暖房運亭
に切換えるので、蓄熱槽104の蓄熱量不足によるコン
プレッサ31の液圧縮やサイクル内の作動冷媒不足を防
止することができ、窓曇りが発生するおそれがない。
If the compressor intake refrigerant temperature does not reach the reference refrigerant temperature even after the reference time elapses from the start of the heat storage heating operation, the heat storage heating operation is ended and the normal heating operation is switched to. Therefore, the heat storage tank 104 It is possible to prevent the liquid compression of the compressor 31 and the shortage of the working refrigerant in the cycle due to the shortage of the heat storage amount, and there is no risk of fogging of the window.

【0154】また、コンプレッサ吸入冷媒温度が基準冷
媒温度に達した後ほぼ一定に維持されている場合は、蓄
熱暖房運転を終了して通常の暖房運転に切換えるので、
コンプレッサ31の冷凍能力R及び入力量Wの増加に伴
い、即座に通常の暖房運転に切換えることができ、快適
な暖房運転が得られる。
When the compressor suction refrigerant temperature is maintained substantially constant after reaching the reference refrigerant temperature, the heat storage heating operation is terminated and the normal heating operation is switched to.
As the refrigerating capacity R and the input amount W of the compressor 31 increase, it is possible to immediately switch to the normal heating operation, and a comfortable heating operation can be obtained.

【0155】さらに、冷媒の蓄熱槽104への流入を的
確に停止するので、冷媒が蓄熱槽104内に溜ることも
防止でき、冷媒が不足して暖房能力が低下し窓曇りが発
生したり、コンプレッサ31が液圧縮を起こすおそれが
ない。
Further, since the flow of the refrigerant into the heat storage tank 104 is accurately stopped, it is possible to prevent the refrigerant from accumulating in the heat storage tank 104, and the shortage of the refrigerant reduces the heating capacity to cause fogging of the window. There is no possibility that the compressor 31 will cause liquid compression.

【0156】すなわち、暖房能力の維持や窓曇りの防止
やコンプレッサ31の保護が満足に行うことができる条
件で、蓄熱暖房運転から除湿暖房運転に切換えることが
できる。
That is, the heat storage heating operation can be switched to the dehumidification heating operation under the condition that the heating capacity can be maintained, the window fogging can be prevented, and the compressor 31 can be protected.

【0157】なお、本実施例では、コンプレッサ吸入冷
媒温度を基準として蓄熱槽104から冷媒への放熱状態
を判断したが、これに代えて、蓄熱槽入口冷媒温度を基
準としてもよい。
In the present embodiment, the heat radiation state from the heat storage tank 104 to the refrigerant is judged based on the compressor suction refrigerant temperature, but instead, the heat storage tank inlet refrigerant temperature may be used as a reference.

【0158】ここで、本実施例において、冷暖房装置の
作動を停止し、空調運転を終了した場合は、第1の電磁
弁101及び第2の電磁弁102を閉じて、コンプレッ
サ31への冷媒の流入を阻止する。このように、空調運
転終了後にコンプレッサ31への冷媒の流入を阻止する
ことにより、次に冷暖房装置を再起動するまで、冷媒の
循環を完全に停止し、膨脹弁34に流入する前の高温高
圧状態にある冷媒と、膨脹弁34からの流出した後の低
温低圧状態にある冷媒とを、混合することなく分離した
状態で保持することができる。高温高圧状態にある冷媒
と低温低圧状態にある冷媒とを分離して保持すれば、高
温高圧冷媒のもつ熱がコンプレッサ31を保温するの
で、コンプレッサ31を長時間暖機した状態に維持でき
る。これにより、再起動時のコンプレッサ効率が向上
し、冷房運転時であればクールダウン性が向上し、暖房
運転時であればウォームアップ時間が短縮できる。
Here, in the present embodiment, when the operation of the cooling and heating device is stopped and the air conditioning operation is completed, the first electromagnetic valve 101 and the second electromagnetic valve 102 are closed to prevent the refrigerant from flowing into the compressor 31. Block the inflow. In this way, by blocking the inflow of the refrigerant into the compressor 31 after the air conditioning operation is completed, the circulation of the refrigerant is completely stopped and the high temperature / high pressure before flowing into the expansion valve 34 until the cooling / heating device is restarted next. The refrigerant in the state and the refrigerant in the low temperature and low pressure state after flowing out from the expansion valve 34 can be held in a separated state without being mixed. If the refrigerant in the high-temperature and high-pressure state and the refrigerant in the low-temperature and low-pressure state are separately held, the heat of the high-temperature and high-pressure refrigerant keeps the compressor 31 warm, and the compressor 31 can be kept warm for a long time. As a result, the compressor efficiency at the time of restart is improved, the cool down property is improved during the cooling operation, and the warm up time can be shortened during the heating operation.

【0159】また、冷暖房装置を一度停止した後、直ぐ
に再起動時するような場合には、高圧冷媒と低圧冷媒と
の圧力差が小さい状態となるまで待って再起動する。こ
れにより、冷媒の急激な移動に起因する冷媒音の発生を
防止することができる。
When the air conditioner is once stopped and then restarted immediately, it is restarted after waiting until the pressure difference between the high pressure refrigerant and the low pressure refrigerant becomes small. As a result, it is possible to prevent the refrigerant noise from being generated due to the abrupt movement of the refrigerant.

【0160】ここで、冷暖房装置を起動及び停止した場
合の制御フローの一例を、図13に基づき説明する。
Here, an example of the control flow when the air conditioner is started and stopped will be described with reference to FIG.

【0161】冷暖房装置を起動して制御を開始すると
(ステップS21)、ステップS22に進んで、冷暖房
装置が起動した直後かどうかを判断し、冷暖房装置が起
動した直後であればステップS23に進み、起動直後で
なければステップS24に進む。
When the air conditioner is started and control is started (step S21), the process proceeds to step S22, it is determined whether or not the air conditioner has just started, and if it is just after the air conditioner has started, the process proceeds to step S23. If it has not been started immediately, the process proceeds to step S24.

【0162】ステップS23では、第1の電磁弁101
に通電して第1の電磁弁101を開き、冷媒流路を開放
してステップS25に進む。この第1の電磁弁101
は、通電時に開き通電停止時に閉じる機構であり、冷暖
房装置停止時に閉じられ、再起動時直後に開かれる。
In step S23, the first solenoid valve 101
Is energized to open the first solenoid valve 101, open the refrigerant flow path, and proceed to step S25. This first solenoid valve 101
Is a mechanism that opens when power is turned on and closes when power is turned off. It is closed when the air conditioner is stopped and opened immediately after restart.

【0163】ステップS25では、起動後に所定時間が
経過したかどうかを判断し、所定時間が経過した場合は
ステップS26に進み、図5に示す空調制御を開始す
る。このように起動後所定時間が経過してから空調制御
を開始するのは、冷暖房装置停止直後はサイクル内の高
圧部分と低圧部分との圧力差が大きく、そのままの状態
で、高温高圧の冷媒と低温低圧の冷媒とを混合すると、
膨脹弁34を流れる際の冷媒音が車室内に響き、乗員に
違和感を与える恐れがあるのでこれを防止すると共に、
サイクル内の高圧冷媒と低圧冷媒との圧力差を小さくし
て、コンプレッサ31の起動トルクを小さくし、さら
に、第1の電磁弁101を開いたときの冷媒の移動によ
るコンプレッサ31の液圧縮を防止するためである。な
お、本実施例では所定時間が経過するまで待つようにし
たが、この他に、高圧側冷媒と低圧側冷媒の温度差や圧
力差が所定値となるまで待つようにしてもよい。
In step S25, it is determined whether or not a predetermined time has elapsed after the activation, and if the predetermined time has elapsed, the process proceeds to step S26 to start the air conditioning control shown in FIG. In this way, the air conditioning control is started after the lapse of a predetermined time after the start because the pressure difference between the high pressure part and the low pressure part in the cycle is large immediately after the cooling and heating device is stopped, and the high temperature and high pressure refrigerant is kept as it is. When mixed with low temperature low pressure refrigerant,
The refrigerant sound when flowing through the expansion valve 34 may echo in the passenger compartment, which may give an occupant an uncomfortable feeling.
The pressure difference between the high-pressure refrigerant and the low-pressure refrigerant in the cycle is reduced, the starting torque of the compressor 31 is reduced, and the liquid compression of the compressor 31 due to the movement of the refrigerant when the first solenoid valve 101 is opened is prevented. This is because In this embodiment, the predetermined time is waited for, but in addition to this, it may be waited until the temperature difference or the pressure difference between the high-pressure side refrigerant and the low-pressure side refrigerant reaches a predetermined value.

【0164】ステップS24では、冷暖房装置が停止直
後かどうかを判断し、停止直後でなければ、ステップS
26に進んで空調制御を開始し、冷暖房装置停止直後で
あれば、ステップS27に進む。
In step S24, it is determined whether or not the cooling / heating device has just been stopped. If not, it is determined in step S24.
26, the air conditioning control is started, and if the cooling / heating device has just been stopped, the process proceeds to step S27.

【0165】ステップS27では、イグニッションスイ
ッチがONかどうかを判断し、イグニッションスイッチ
がONの場合には、ステップS28に進んで第1の電磁
弁101への通電を止めて冷媒流路を閉鎖した後、ステ
ップS29に進んで冷暖房装置を停止する。一方、イグ
ニッションスイッチがOFFの場合には、第1の電磁弁
101の通電も行われなくなるので、ステップS29に
進み、冷暖房装置を停止する。このように、冷暖房装置
の停止直後に冷媒通路を停止するのは、冷暖房装置の停
止後に、高温高圧の状態に維持された冷媒のもつ熱によ
ってコンプレッサ31を保温して、再起動時のコンプレ
ッサ効率を向上させ、冷房時のクールダウン性及び暖房
時のウォームアップ性を高めるためである。
In step S27, it is determined whether or not the ignition switch is ON. If the ignition switch is ON, the process proceeds to step S28, in which the energization of the first solenoid valve 101 is stopped and the refrigerant passage is closed. The process proceeds to step S29, and the cooling / heating device is stopped. On the other hand, when the ignition switch is OFF, the first solenoid valve 101 is not energized either, so the process proceeds to step S29, and the cooling / heating device is stopped. In this way, the refrigerant passage is stopped immediately after the cooling and heating apparatus is stopped because the heat of the refrigerant maintained in the high temperature and high pressure state keeps the compressor 31 warm after the cooling and heating apparatus is stopped and the compressor efficiency at the time of restarting is increased. To improve the cool-down property during cooling and the warm-up property during heating.

【0166】なお、本実施例では、膨脹弁34として、
温度式膨脹弁を使用しているので、第1の電磁弁101
を設けているが、膨脹弁として外部から開度設定可能な
膨脹弁を使用する場合には、冷暖房装置の停止直後に膨
脹弁を閉じることによって、同様の効果を得ることがで
きる。
In this embodiment, as the expansion valve 34,
Since the temperature type expansion valve is used, the first solenoid valve 101
However, when an expansion valve whose opening can be set from the outside is used as the expansion valve, the same effect can be obtained by closing the expansion valve immediately after stopping the cooling and heating device.

【0167】また、図14に示すよう、コンプレッサ3
1の冷媒吐出側に、三方弁の代わりに2個の電磁弁10
5,106を使用することもできる。この場合、2個の
電磁弁105,106は、冷媒の流路を切換えると共に
流路の開閉を行う。さらに、三方弁の代わりに2個の電
磁弁105,106を使用すると、冷暖房装置の停止後
に、車室外熱交換器38に冷媒が流入するおそれがなく
なり、車室外熱交換器38における冷媒の残存を防止で
きる。
Further, as shown in FIG. 14, the compressor 3
Two solenoid valves 10 instead of a three-way valve on the refrigerant discharge side of No. 1
5,106 can also be used. In this case, the two solenoid valves 105 and 106 switch the flow path of the refrigerant and open / close the flow path. Further, if two electromagnetic valves 105 and 106 are used instead of the three-way valve, there is no possibility that the refrigerant will flow into the exterior heat exchanger 38 after the cooling and heating device is stopped, and the residual refrigerant in the exterior heat exchanger 38 will remain. Can be prevented.

【0168】また、図15に示すように、膨脹弁34の
下流に電磁弁107を設けることもできる。このよう
に、コンプレッサ31の吐出から吸熱用車室内熱交換器
35の入口までの間であれば、どこで冷媒の流通を阻止
してもよい。
Further, as shown in FIG. 15, an electromagnetic valve 107 can be provided downstream of the expansion valve 34. As described above, the flow of the refrigerant may be blocked anywhere between the discharge of the compressor 31 and the inlet of the heat absorbing vehicle interior heat exchanger 35.

【0169】また、本実施例では、蓄熱槽104を備え
た冷媒サイクルについて、空調装置停止後の冷媒の流通
阻止を行っているが、かかる冷媒の流通阻止による効果
は、蓄熱槽104の有無を問わず得ることができる。
Further, in the present embodiment, in the refrigerant cycle provided with the heat storage tank 104, the flow of the refrigerant is blocked after the air conditioner is stopped. The effect of blocking the flow of the refrigerant depends on whether the heat storage tank 104 is present or not. You can get it regardless.

【0170】次に、本発明の第2実施例について説明す
る。
Next, a second embodiment of the present invention will be described.

【0171】本実施例と前記第1実施例とは、ほぼ同一
の構成であるが、前記第1実施例では、図7の蓄熱暖房
運転(ステップS142)を行う際に、まず第1の電磁
弁101と第2の電磁弁102の両方を開けて制御を行
うのに対し、本実施例では、第1の電磁弁101を閉じ
て第2の電磁弁102のみを開ける点で相違する。
The present embodiment and the first embodiment have almost the same structure, but in the first embodiment, when the heat storage heating operation (step S142) of FIG. While the control is performed by opening both the valve 101 and the second solenoid valve 102, the present embodiment is different in that only the second solenoid valve 102 is opened while the first solenoid valve 101 is closed.

【0172】図16は、本実施例の蓄熱暖房運転(図7
のステップS142)のフローチャートを示す。
FIG. 16 shows the heat storage heating operation of this embodiment (see FIG.
10 shows a flowchart of step S142).

【0173】蓄熱暖房スイッチがONされると、蓄熱暖
房制御が開始され(ステップS31)、ステップS32
に進む。
When the heat storage heating switch is turned on, heat storage heating control is started (step S31), and step S32.
Proceed to.

【0174】ステップS32では、第1の電磁弁101
を閉じてステップS33に進み、ステップS33では、
第2の電磁弁102を開く。このように、第1の電磁弁
101を閉じ、第2の電磁弁102を開くと、液タンク
36から流出した冷媒の全部が蓄熱槽104側に流入
し、蓄熱暖房運転が開始され(ステップS34)、ステ
ップS35に進む。
In step S32, the first solenoid valve 101
Is closed and the process proceeds to step S33, and in step S33,
The second solenoid valve 102 is opened. In this way, when the first electromagnetic valve 101 is closed and the second electromagnetic valve 102 is opened, all the refrigerant flowing out of the liquid tank 36 flows into the heat storage tank 104 side, and the heat storage heating operation is started (step S34). ), And proceeds to step S35.

【0175】ステップS35では、蓄熱暖房運転を開始
してからのコンプレッサ吸入冷媒の最高温度が、予め設
定した基準冷媒温度よりも高いかどうかを判断する。こ
のようにコンプレッサ吸入冷媒の最高温度が基準冷媒温
度よりも高いかどうかを判断するのは、図3に示すよう
に、蓄熱槽104の蓄熱量が充分であれば、コンプレッ
サ吐出圧力がほぼ定常に達するまでの間に、コンプレッ
サ吸入冷媒温度が所定の最高温度付近まで必ず上昇する
ことを利用して、以後蓄熱暖房運転を継続して効果があ
るかどうかを判断するためである。すなわち、蓄熱暖房
運転を開始してからのコンプレッサ吸入冷媒の最高温度
が基準冷媒温度よりも高い場合は、蓄熱槽104の蓄熱
量が充分であり、蓄熱暖房運転の効果が認められると判
断し、ステップS36に進む。逆に、コンプレッサ吸入
冷媒の最高温度が基準冷媒温度よりも低い場合は、蓄熱
槽104の蓄熱量が不充分であり継続して蓄熱暖房運転
を行っても大きな効果が期待できないか、又は、蓄熱槽
104の蓄熱量は充分であるがまだ基準冷媒温度に達す
る以前であると判断し、ステップS37に進む。
In step S35, it is determined whether or not the maximum temperature of the compressor suction refrigerant after starting the heat storage heating operation is higher than a preset reference refrigerant temperature. In this way, it is determined whether or not the maximum temperature of the refrigerant sucked into the compressor is higher than the reference refrigerant temperature, as shown in FIG. 3, if the heat storage amount in the heat storage tank 104 is sufficient, the compressor discharge pressure becomes almost steady. This is because it is used to determine whether or not there is an effect by continuing the heat storage heating operation thereafter by utilizing that the compressor suction refrigerant temperature always rises to around the predetermined maximum temperature before reaching. That is, when the maximum temperature of the compressor suction refrigerant after starting the heat storage heating operation is higher than the reference refrigerant temperature, it is determined that the heat storage amount of the heat storage tank 104 is sufficient, and the effect of the heat storage heating operation is recognized, It proceeds to step S36. On the contrary, when the maximum temperature of the refrigerant sucked into the compressor is lower than the reference refrigerant temperature, the amount of heat stored in the heat storage tank 104 is insufficient and a large effect cannot be expected even if the heat storage heating operation is continuously performed, or the heat storage is performed. It is determined that the amount of heat stored in the tank 104 is sufficient but it has not yet reached the reference refrigerant temperature, and the process proceeds to step S37.

【0176】ステップS37では、コンプレッサ吸入冷
媒温度が基準冷媒温度に達しない状態で基準時間が経過
したかどうかを判断する。このように、コンプレッサ吸
入冷媒温度が基準冷媒温度に達しない状態で基準時間が
経過したかどうかを判断するのは、基準時間が経過して
もコンプレッサ吸入冷媒温度が基準冷媒温度に達しない
場合は、蓄熱槽104の蓄熱量が不足しているので、こ
のまま蓄熱暖房運転を続けると、蓄熱槽104内に冷媒
が溜まり、コンプレッサ31が液冷媒を吸入して液圧縮
を起こしたり、サイクル内の作動冷媒が不足して能力不
足となり、窓曇りが発生しやすくなるからである。この
ため、基準時間の経過後であれば、ステップS38に進
んで第1の電磁弁101を開き、ステップS39に進ん
で第2の電磁弁102を閉じて、蓄熱槽104側への冷
媒の流入を停止し、ステップS40に進む。ステップS
40では、蓄熱暖房運転から蓄熱を使用しない通常の暖
房運転の制御に切換え、図7のステップS143の暖房
運転を開始する。逆に、基準時間の経過前であれば、蓄
熱槽104の蓄熱量は充分であり、継続運転すれば、そ
の後コンプレッサ吸入冷媒温度が基準冷媒温度に達する
可能性があるため、ステップS34に戻り、本制御を継
続する。
In step S37, it is determined whether or not the reference time has elapsed while the compressor intake refrigerant temperature has not reached the reference refrigerant temperature. In this way, it is necessary to determine whether the reference time has elapsed while the compressor intake refrigerant temperature has not reached the reference refrigerant temperature. Since the heat storage amount of the heat storage tank 104 is insufficient, if the heat storage heating operation is continued as it is, the refrigerant accumulates in the heat storage tank 104, and the compressor 31 sucks the liquid refrigerant to cause liquid compression, or the operation in the cycle. This is because the refrigerant becomes insufficient and the capacity becomes insufficient, so that fogging of the window easily occurs. Therefore, if the reference time has elapsed, the process proceeds to step S38 to open the first electromagnetic valve 101, the process proceeds to step S39 to close the second electromagnetic valve 102, and the refrigerant flows into the heat storage tank 104 side. Is stopped and the process proceeds to step S40. Step S
In 40, the control is switched from the heat storage heating operation to the normal heating operation control that does not use heat storage, and the heating operation of step S143 of FIG. 7 is started. On the contrary, before the elapse of the reference time, the heat storage amount in the heat storage tank 104 is sufficient, and if the compressor is continuously operated, the compressor suction refrigerant temperature may reach the reference refrigerant temperature, and thus the process returns to step S34. Continue this control.

【0177】ステップS36では、コンプレッサ吸入冷
媒温度が最低基準温度温度よりも低下したかどうかを判
断する。このように、コンプレッサ吸入冷媒温度が最低
基準温度よりも低下したかどうかを判断するのは、図3
に示すように、蓄熱槽104から冷媒への放熱量が低下
したときに、コンプレッサ吸入冷媒温度が基準冷媒温度
に達した後に所定の温度以下に維持されることを利用し
て、蓄熱暖房運転を止めるかどうかを判断するためであ
る。すなわち、コンプレッサ吸入冷媒温度が最低基準温
度温度よりも低下した場合には、蓄熱槽104から冷媒
への放熱量が低下したと判断して、ステップS38以降
に進んで蓄熱暖房運転から通常の暖房運転に切換える。
逆に、コンプレッサ吸入冷媒温度が設定温度以上の場合
には、蓄熱槽104の蓄熱量が低下しておらず、継続し
て蓄熱暖房運転を行うことができる可能性が高いと判断
し、ステップS41に進む。
In step S36, it is determined whether the compressor intake refrigerant temperature has dropped below the minimum reference temperature temperature. As described above, it is necessary to determine whether or not the compressor intake refrigerant temperature is lower than the minimum reference temperature as shown in FIG.
As shown in, when the heat radiation amount from the heat storage tank 104 to the refrigerant is reduced, the heat storage heating operation is performed by utilizing the fact that the compressor suction refrigerant temperature is maintained below a predetermined temperature after reaching the reference refrigerant temperature. This is to determine whether to stop. That is, when the compressor intake refrigerant temperature is lower than the minimum reference temperature temperature, it is determined that the amount of heat released from the heat storage tank 104 to the refrigerant is decreased, and the process proceeds from step S38 to the heat storage heating operation to the normal heating operation. Switch to.
On the other hand, when the compressor intake refrigerant temperature is equal to or higher than the set temperature, it is determined that the heat storage amount in the heat storage tank 104 has not decreased and there is a high possibility that the heat storage heating operation can be continuously performed, and step S41 is performed. Proceed to.

【0178】ステップS41では、コンプレッサ吸入冷
媒温度の時間変化率を演算して、ステップS42に進
む。このように、コンプレッサ吸入冷媒温度の時間変化
率を演算するのは、図3に示すように、コンプレッサ吐
出圧力がほぼ定常に達し、蓄熱槽104から冷媒への放
熱量が低下したときに、コンプレッサ吸入冷媒温度が急
激に低下し、その時間変化率が負方向に急増することを
利用して、蓄熱暖房運転を止めるかどうかを判断するた
めである。
In step S41, the time change rate of the compressor suction refrigerant temperature is calculated, and the flow advances to step S42. In this way, as shown in FIG. 3, the time rate of change of the compressor suction refrigerant temperature is calculated when the compressor discharge pressure reaches a substantially steady state and the heat radiation amount from the heat storage tank 104 to the refrigerant decreases. This is to determine whether or not to stop the heat storage heating operation by utilizing the fact that the suction refrigerant temperature sharply decreases and the time change rate thereof sharply increases in the negative direction.

【0179】ステップS42では、ステップS41で演
算したコンプレッサ吸入冷媒温度の時間変化率が予め設
定した基準変化率よりも小さいかどうかを判断する。す
なわち、コンプレッサ吸入冷媒温度の時間変化率が負方
向に急増し、時間変化率が設定値よりも小さくなった場
合には、蓄熱槽104から冷媒への放熱量が低下したと
判断して、ステップS38以降に進み、蓄熱暖房運転か
ら通常の暖房運転に切換える。逆に、コンプレッサ吸入
冷媒温度の時間変化率が設定値以上の場合には、ステッ
プS43に進む。
In step S42, it is determined whether or not the time change rate of the compressor suction refrigerant temperature calculated in step S41 is smaller than a preset reference change rate. That is, when the time rate of change of the compressor suction refrigerant temperature sharply increases in the negative direction and becomes smaller than the set value, it is determined that the amount of heat released from the heat storage tank 104 to the refrigerant is reduced, After S38, the heat storage heating operation is switched to the normal heating operation. On the contrary, when the time change rate of the compressor suction refrigerant temperature is equal to or higher than the set value, the process proceeds to step S43.

【0180】ステップS43では、冷媒サイクルの高圧
側の作動状態が、設定状態に達してから所定時間が経過
したかどうかを判断する。このよう冷媒サイクルの高圧
側の作動状態が設定状態に達してから所定時間が経過し
たかどうかを判断するのは、冷媒サイクルの高圧側の作
動状態が設定状態に達した後に、蓄熱槽104から冷媒
への放熱量が低下することを利用して、蓄熱暖房運転を
止めるかどうかを判断するためである。すなわち、サイ
クルの作動状態が設定状態に達してから設定時間が経過
した場合には、蓄熱槽104から冷媒への放熱量が低下
した判断して、ステップS38以降に進み、蓄熱暖房運
転から通常の暖房運転に切換える。逆に、サイクルの作
動状態が設定状態に達してからまだ設定時間が経過てい
ない場合には、ステップS34に戻り、蓄熱暖房運転を
継続する。
In step S43, it is determined whether or not a predetermined time has elapsed after the operating state on the high pressure side of the refrigerant cycle reached the set state. In this way, it is determined whether or not a predetermined time has elapsed after the operating state of the high pressure side of the refrigerant cycle reaches the set state, after determining that the operating state of the high pressure side of the refrigerant cycle has reached the set state from the heat storage tank 104. This is because it is determined whether or not to stop the heat storage heating operation by utilizing the fact that the amount of heat released to the refrigerant decreases. That is, when the set time has elapsed after the operating state of the cycle has reached the set state, it is determined that the amount of heat released from the heat storage tank 104 to the refrigerant has decreased, and the process proceeds to step S38 and subsequent steps, from the heat storage heating operation to the normal operation. Switch to heating operation. On the contrary, when the set time has not elapsed after the operating state of the cycle reaches the set state, the process returns to step S34 and the heat storage heating operation is continued.

【0181】要するに、本実施例によれば、コンプレッ
サ吸入冷媒温度が基準冷媒温度に達した後に最低基準温
度温度よりも低下した場合には、蓄熱暖房運転を終了し
て通常の暖房運転に切換えるので、コンプレッサ31の
冷凍能力R及び入力量Wの増加に伴い、即座に通常の暖
房運転に切換えることができ、快適な暖房運転が得られ
る。
In short, according to this embodiment, when the compressor intake refrigerant temperature reaches the reference refrigerant temperature and then becomes lower than the minimum reference temperature temperature, the heat storage heating operation is terminated and the normal heating operation is switched to. As the refrigerating capacity R and the input amount W of the compressor 31 increase, it is possible to immediately switch to the normal heating operation, and a comfortable heating operation can be obtained.

【0182】また、コンプレッサ吸入冷媒温度の時間変
化率が基準変化率よりも小さい場合には、蓄熱暖房運転
を終了して通常の暖房運転に切換えるので、コンプレッ
サ吸入冷媒温度が基準冷媒温度以下となる以前であって
も、コンプレッサ31の冷凍能力R及び入力量Wの増加
に伴い、より迅速に通常の暖房運転に切換えることがで
き、快適な暖房運転が得られる。
Further, when the time change rate of the compressor intake refrigerant temperature is smaller than the reference change rate, the heat storage heating operation is ended and switched to the normal heating operation, so that the compressor intake refrigerant temperature becomes equal to or lower than the reference refrigerant temperature. Even before, as the refrigerating capacity R of the compressor 31 and the input amount W increase, it is possible to switch to the normal heating operation more quickly, and a comfortable heating operation can be obtained.

【0183】また、冷媒サイクルの高圧側の作動状態が
設定状態に達してから所定時間経過した場合にも蓄熱暖
房運転を終了して通常の暖房運転に切換えるので、通常
の暖房運転に切換えをさらに的確に行うことができる。
Further, the heat storage heating operation is terminated and switched to the normal heating operation even when a predetermined time has elapsed after the operating state of the high pressure side of the refrigerant cycle reaches the set state, so that the switching to the normal heating operation is further performed. Can be done accurately.

【0184】さらに、冷媒の蓄熱槽104への流入を的
確に停止するので、冷媒が蓄熱槽104内に溜ることも
防止できるので、冷媒が不足して暖房能力が低下し窓曇
りが発生したり、コンプレッサ31が液圧縮を起こすお
それがない。
Further, since the inflow of the refrigerant into the heat storage tank 104 is accurately stopped, it is possible to prevent the refrigerant from accumulating in the heat storage tank 104, so that the refrigerant becomes insufficient and the heating capacity is lowered to cause window fog. There is no possibility that the compressor 31 will cause liquid compression.

【0185】すなわち、暖房能力の維持や窓曇りの防止
やコンプレッサ31の保護が満足に行うことができる条
件で、蓄熱暖房運転から除湿暖房運転に切換えることが
できる。
That is, the heat storage heating operation can be switched to the dehumidification heating operation under the condition that the heating capacity can be maintained, window fogging can be prevented, and the compressor 31 can be protected.

【0186】次に、本発明の第3実施例について説明す
る。
Next, a third embodiment of the present invention will be described.

【0187】本実施例と前記第1実施例及び第2実施例
とは、ほぼ同一の構成であるが、前記第1実施例では、
図7の蓄熱暖房運転(ステップS142)を行う際に、
まず第1の電磁弁101と第2の電磁弁102の両方を
開けて制御を行うのに対し、本実施例では、第1の電磁
弁101を閉じて第2の電磁弁102のみを開ける点で
相違する。また前記第2実施例では、コンプレッサ吐出
冷媒温度に基づいて、蓄熱暖房運転を終了したが、本実
施例では、蓄熱槽入口冷媒温度に基づいて蓄熱暖房運転
を終了する点で相違する。このため、本実施例では、蓄
熱槽104の冷媒流入側に放熱要素検出手段としての入
口冷媒温度センサ108が設けられている。
The present embodiment and the first and second embodiments have substantially the same construction, but in the first embodiment,
When performing the heat storage heating operation (step S142) of FIG.
First, both the first solenoid valve 101 and the second solenoid valve 102 are opened for control, whereas in the present embodiment, the first solenoid valve 101 is closed and only the second solenoid valve 102 is opened. Is different. Further, in the second embodiment, the heat storage heating operation is ended based on the refrigerant temperature discharged from the compressor, but the present embodiment is different in that the heat storage heating operation is ended based on the refrigerant temperature at the inlet of the heat storage tank. Therefore, in this embodiment, an inlet refrigerant temperature sensor 108 as a heat radiating element detecting means is provided on the refrigerant inflow side of the heat storage tank 104.

【0188】図17は、本実施例の蓄熱暖房運転(図7
のステップS142)のフローチャートを示す。
FIG. 17 shows the heat storage heating operation of this embodiment (see FIG.
10 shows a flowchart of step S142).

【0189】蓄熱暖房スイッチがONされると、蓄熱暖
房制御が開始され(ステップS51)、ステップS52
に進む。
When the heat storage heating switch is turned on, heat storage heating control is started (step S51), and step S52.
Proceed to.

【0190】ステップS52では、第1の電磁弁101
を閉じてステップS53に進み、ステップS53では、
第2の電磁弁102を開く。このように、第1の電磁弁
101を閉じ、第2の電磁弁102を開くと、液タンク
36から流出した冷媒の一部が蓄熱槽104側に流入
し、蓄熱暖房運転が開始され(ステップS54)、ステ
ップS55に進む。
In step S52, the first solenoid valve 101
To step S53, and in step S53,
The second solenoid valve 102 is opened. Thus, when the first solenoid valve 101 is closed and the second solenoid valve 102 is opened, a part of the refrigerant flowing out of the liquid tank 36 flows into the heat storage tank 104 side, and the heat storage heating operation is started (step S54), and proceeds to step S55.

【0191】ステップS55では、蓄熱暖房運転を開始
してからの蓄熱槽入口冷媒の最高温度が、予め設定した
基準冷媒温度よりも高いかどうかを判断する。このよう
に蓄熱槽入口冷媒の最高温度が基準冷媒温度よりも高い
かどうかを判断するのは、図3に示すように、蓄熱槽1
04の蓄熱量が充分であれば、コンプレッサ吐出圧力が
ほぼ定常に達すると、蓄熱槽入口冷媒温度が所定の最高
温度付近まで必ず上昇することを利用して、以後蓄熱暖
房運転を継続して効果があるかどうかを判断するためで
ある。すなわち、蓄熱暖房運転を開始してからの蓄熱槽
入口冷媒温度の最高温度が基準冷媒温度よりも高い場合
は、蓄熱槽104の蓄熱量が充分であり、蓄熱暖房運転
の効果が認められると判断し、ステップS56に進む。
逆に、蓄熱槽入口冷媒温度の最高温度が基準冷媒温度よ
りも低い場合は、蓄熱槽104の蓄熱量が不充分であり
継続して蓄熱暖房運転を行っても大きな効果が期待でき
ないか、又は、蓄熱槽104の蓄熱量は充分であるがま
だ基準冷媒温度に達する以前であると判断し、ステップ
S57に進む。
In step S55, it is determined whether or not the maximum temperature of the heat storage tank inlet refrigerant after starting the heat storage heating operation is higher than a preset reference refrigerant temperature. In this way, it is determined whether or not the maximum temperature of the heat storage tank inlet refrigerant is higher than the reference refrigerant temperature, as shown in FIG.
If the heat storage amount of 04 is sufficient, when the compressor discharge pressure reaches a substantially steady state, the heat storage tank inlet refrigerant temperature always rises to around a predetermined maximum temperature, which is effective for continuing the heat storage heating operation thereafter. This is to determine whether or not there is. That is, when the maximum temperature of the refrigerant temperature at the inlet of the heat storage tank after starting the heat storage heating operation is higher than the reference refrigerant temperature, it is determined that the heat storage amount in the heat storage tank 104 is sufficient and the effect of the heat storage heating operation is recognized. Then, the process proceeds to step S56.
On the contrary, when the maximum temperature of the refrigerant temperature at the inlet of the heat storage tank is lower than the reference refrigerant temperature, the amount of heat stored in the heat storage tank 104 is insufficient and a large effect cannot be expected even if the heat storage heating operation is continuously performed, or It is determined that the heat storage amount in the heat storage tank 104 is sufficient but it has not yet reached the reference refrigerant temperature, and the process proceeds to step S57.

【0192】ステップS57では、蓄熱槽入口冷媒温度
が基準冷媒温度に達しない状態で基準時間が経過したか
どうかを判断する。このように、蓄熱槽入口冷媒温度が
基準冷媒温度に達しない状態で基準時間が経過したかど
うかを判断するのは、基準時間が経過しても蓄熱槽入口
冷媒温度が基準冷媒温度に達しない場合は、蓄熱槽10
4の蓄熱量が不足しているので、このまま蓄熱暖房運転
を続けると、蓄熱槽104内に冷媒が溜まり、コンプレ
ッサ31が液冷媒を吸入して液圧縮を起こしたり、サイ
クル内の作動冷媒が不足して能力不足となり、窓曇りが
発生しやすくなるからである。このため、基準時間の経
過後であれば、ステップS58に進んで第1の電磁弁1
01を開き、ステップS59に進んで第2の電磁弁10
2を閉じて、蓄熱槽104側への冷媒の流入を停止し、
ステップS60に進む。ステップS60では、蓄熱暖房
運転から蓄熱を使用しない通常の暖房運転の制御に切換
え、図7のステップS143の暖房運転を開始する。逆
に、基準時間の経過前であれば、蓄熱槽104の蓄熱量
は充分であり、継続運転すれば、その後蓄熱槽入口冷媒
温度が基準冷媒温度に達する可能性があるため、ステッ
プS54に戻り、本制御を継続する。
In step S57, it is determined whether or not the reference time has elapsed while the refrigerant temperature at the heat storage tank inlet has not reached the reference refrigerant temperature. In this way, it is determined whether the reference time has elapsed while the heat storage tank inlet refrigerant temperature has not reached the reference refrigerant temperature. The heat storage tank inlet refrigerant temperature does not reach the reference refrigerant temperature even after the reference time has elapsed. If the heat storage tank 10
Since the heat storage amount of 4 is insufficient, if the heat storage heating operation is continued as it is, the refrigerant accumulates in the heat storage tank 104, the compressor 31 sucks the liquid refrigerant to cause liquid compression, or the working refrigerant in the cycle is insufficient. This is because the capacity becomes insufficient and fogging of the window easily occurs. Therefore, if the reference time has elapsed, the process proceeds to step S58 and the first solenoid valve 1
01 is opened and it progresses to step S59 and the 2nd solenoid valve 10
2 is closed to stop the refrigerant from flowing into the heat storage tank 104,
It proceeds to step S60. In step S60, the heat storage heating operation is switched to the normal heating operation control that does not use heat storage, and the heating operation of step S143 in FIG. 7 is started. On the contrary, before the elapse of the reference time, the heat storage amount in the heat storage tank 104 is sufficient, and if the continuous operation is performed, the refrigerant temperature at the inlet of the heat storage tank may reach the reference refrigerant temperature. Therefore, the process returns to step S54. , Continue this control.

【0193】ステップS56では、蓄熱槽104の蓄熱
槽入口冷媒温度が予め設定した最低基準温度よりも低下
したかどうかを判断する。このように、蓄熱槽入口冷媒
温度が最低基準温度よりも低下したかどうかを判断する
のは、図3に示すように、蓄熱槽104から冷媒への放
熱量が低下したときに、蓄熱槽入口冷媒温度が蓄熱槽1
04の温度と並行に推移することを利用して、蓄熱暖房
運転を止めるかどうかを判断するためである。すなわ
ち、蓄熱槽入口冷媒温度が最低基準温度よりも低下した
場合には、蓄熱槽104から冷媒への放熱量が低下した
と判断して、ステップS58以降に進み、蓄熱暖房運転
から通常の暖房運転に切換える。逆に、蓄熱槽入口冷媒
温度が最低基準温度以上の場合には、ステップS61に
進む。
In step S56, it is determined whether the heat storage tank inlet refrigerant temperature of the heat storage tank 104 has fallen below a preset minimum reference temperature. In this way, it is determined whether the refrigerant temperature at the heat storage tank inlet is lower than the minimum reference temperature, as shown in FIG. 3, when the heat radiation amount from the heat storage tank 104 to the refrigerant is decreased, Refrigerant temperature is heat storage tank 1
This is because it is determined whether or not to stop the heat storage heating operation by utilizing the fact that the temperature changes in parallel with 04. That is, when the temperature of the refrigerant in the heat storage tank is lower than the minimum reference temperature, it is determined that the amount of heat released from the heat storage tank 104 to the refrigerant is decreased, and the process proceeds from step S58 to the heat storage heating operation to the normal heating operation. Switch to. On the contrary, when the refrigerant temperature at the heat storage tank inlet is equal to or higher than the minimum reference temperature, the process proceeds to step S61.

【0194】ステップS61では、蓄熱槽入口冷媒温度
が基準冷媒温度に達してから、設定時間が経過したかど
うかを判断する。このように、蓄熱槽入口冷媒温度が基
準冷媒温度に達してから、設定時間が経過したかどうか
を判断するのは、蓄熱槽入口冷媒温度は、蓄熱槽104
内の蓄熱体温度と同温程度に達するまで徐々に上昇し、
冷媒温度よりも高温となって蓄熱体温度に近づいたとき
に、蓄熱槽104から冷媒への放熱量が低下することを
利用して、蓄熱暖房運転を止めるかどうかを判断するた
めである。すなわち、蓄熱槽104の入口冷媒温度が基
準冷媒温度に達してから設定時間が経過した場合には、
蓄熱槽104から冷媒への放熱量が低下したと判断し
て、ステップS58以降に進み、蓄熱暖房運転から通常
の暖房運転に切換える。逆に、蓄熱槽104の入口冷媒
温度が基準冷媒温度に達してから、設定時間がまだ経過
していない場合には、ステップS54に戻り、本制御を
継続する。
In step S61, it is determined whether or not the set time has elapsed since the refrigerant temperature at the inlet of the heat storage tank reached the reference refrigerant temperature. As described above, the heat storage tank inlet refrigerant temperature is determined based on whether the heat storage tank inlet refrigerant temperature is the set time after the heat storage tank inlet refrigerant temperature reaches the reference refrigerant temperature.
It gradually rises until it reaches the same temperature as the temperature of the heat storage inside,
This is to determine whether or not to stop the heat storage heating operation by utilizing the fact that the amount of heat released from the heat storage tank 104 to the refrigerant decreases when the temperature becomes higher than the refrigerant temperature and approaches the heat storage body temperature. That is, when the set time has elapsed after the inlet refrigerant temperature of the heat storage tank 104 reached the reference refrigerant temperature,
When it is determined that the amount of heat released from the heat storage tank 104 to the refrigerant has decreased, the process proceeds to step S58 and subsequent steps, and the heat storage heating operation is switched to the normal heating operation. Conversely, if the set time has not yet elapsed after the inlet refrigerant temperature of the heat storage tank 104 reaches the reference refrigerant temperature, the process returns to step S54 and the present control is continued.

【0195】要するに、本実施例によれば、コンプレッ
サ吸入冷媒温度に代えて蓄熱槽入口冷媒温度を使用し、
蓄熱槽104から冷媒への放熱状態を判断するので、蓄
熱槽の温度変化に的確に対応して蓄熱暖房運転から通常
の暖房運転に切換えることができる。
In short, according to the present embodiment, the refrigerant temperature at the inlet of the heat storage tank is used in place of the refrigerant temperature at the compressor intake,
Since the state of heat radiation from the heat storage tank 104 to the refrigerant is determined, the heat storage heating operation can be switched to the normal heating operation in accordance with the temperature change of the heat storage tank.

【0196】なお、前記第2実施例及び本実施例では、
第1の電磁弁101を閉じ、第2の電磁弁102を開い
て蓄熱暖房運転を行ったが、第1の電磁弁101と第2
の電磁弁102を共に開いた状態で蓄熱暖房運転を行っ
ても良い。
In the second embodiment and this embodiment,
The first electromagnetic valve 101 was closed and the second electromagnetic valve 102 was opened to perform the heat storage heating operation.
The heat storage heating operation may be performed in a state in which both the solenoid valves 102 are opened.

【0197】[0197]

【発明の効果】以上より明らかなように、請求項1に記
載の発明によれば、暖房運転時には放熱用車室内熱交換
器で放熱すると共に、吸熱用車室内熱交換器で吸熱し、
冷房運転時には車室外熱交換器または車室外熱交換器と
放熱用車室内熱交換器との双方で放熱すると共に、吸熱
用車室内熱交換器で吸熱しているので、暖房運転時には
吸熱用車室内熱交換器の吸熱量と、コンプレッサの仕事
熱量とを放熱用車室内熱交換器で放熱し暖房能力が向上
すると共に外気の気象条件に左右されず低外気温でも運
転が可能となり安定した制御が可能となる。吸熱用車室
内熱交換器で除湿した後、放熱用車室内熱交換器で加熱
するので、除湿暖房が可能となる。空調風の除湿をした
後のリヒートは電気ヒータ等を使う必要がなく消費電力
を削減することができる。電気ヒータやエンジンの排熱
を用いることなく効率良く暖房ができるためエンジンを
持った車に限らずソーラーカーや電気自動車のような大
きな熱源を持たない場合でも適用することができる。冷
房と暖房で冷媒の流れ方向が同じであるため現在車両に
用いられている冷暖房装置を余り変更せずに適用するこ
とができ、設計上有利である。
As is apparent from the above, according to the invention as set forth in claim 1, during the heating operation, the heat is dissipated by the heat radiating passenger compartment heat exchanger and is also absorbed by the heat absorbing passenger compartment heat exchanger,
During cooling operation, heat is dissipated by the heat exchanger outside the passenger compartment or both the heat exchanger outside the passenger compartment and the heat exchanger inside the passenger compartment for heat dissipation, and the heat is absorbed by the heat exchanger inside the passenger compartment for heat absorption. The heat absorption amount of the indoor heat exchanger and the work heat amount of the compressor are radiated by the vehicle interior heat exchanger for heat radiation to improve the heating capacity, and the operation is possible regardless of the weather conditions of the outside air, and stable operation is possible even at low outside air temperature. Is possible. After dehumidifying with the heat-absorbing vehicle interior heat exchanger, since it is heated with the heat-radiating vehicle interior heat exchanger, dehumidifying and heating is possible. Reheating after dehumidifying the conditioned air does not require the use of an electric heater or the like, and power consumption can be reduced. Since heating can be efficiently performed without using an electric heater or exhaust heat of an engine, the present invention can be applied not only to a car having an engine but also to a solar car or an electric car that does not have a large heat source. Since the refrigerant flows in the same direction in cooling and heating, the cooling and heating device currently used in vehicles can be applied without much modification, which is advantageous in design.

【0198】しかも、暖房運転時は、外部熱源からの蓄
熱を利用することにより、消費電力を抑えながらコンプ
レッサ入力の増大を図ることができる。
Moreover, during the heating operation, the heat input from the external heat source is used to increase the compressor input while suppressing the power consumption.

【0199】また、蓄熱手段の放熱状態に応じて蓄熱調
整手段を可変制御するので、蓄熱手段の蓄熱能力に応じ
て蓄熱手段への冷媒導入量を調整でき、最適条件下で的
確な蓄熱暖房運転を行うことができと共に、冷媒の不足
等による暖房能力の低下や、コンプレッサの液圧縮が発
生せず、暖房能力と、窓晴れ性と、コンプレッサの保護
とを同時に成立させることができる。
Further, since the heat storage adjusting means is variably controlled according to the heat radiation state of the heat storage means, the amount of refrigerant introduced into the heat storage means can be adjusted according to the heat storage capacity of the heat storage means, and an accurate heat storage heating operation is performed under optimum conditions. In addition, the heating capacity is not deteriorated due to the shortage of the refrigerant, and the liquid compression of the compressor does not occur, so that the heating capacity, the window transparency, and the protection of the compressor can be simultaneously established.

【0200】請求項2に記載の発明では、コンプレッサ
に流入する冷媒温度又は前記蓄熱手段に導入する冷媒温
度に応じて蓄熱手段への冷媒導入量を調整でき、また、
蓄熱手段から冷媒への放熱量が低下したときに的確に蓄
熱暖房運転を停止するので、暖房能力と、窓晴れ性と、
コンプレッサの保護とをより的確に成立させることがで
きる。
According to the second aspect of the invention, the amount of refrigerant introduced into the heat storage means can be adjusted according to the temperature of the refrigerant flowing into the compressor or the temperature of the refrigerant introduced into the heat storage means, and
Since the heat storage heating operation is accurately stopped when the amount of heat released from the heat storage means to the refrigerant decreases, the heating capacity, the window transparency, and
The protection of the compressor can be established more accurately.

【0201】請求項3に記載の発明では、暖房運転開始
後の所定時間内は吸熱用車室内熱交換器への冷媒の導入
を停止するようにしたので、蓄熱を有効に利用可能な状
態で蓄熱暖房運転を行うことができると共に、暖房能力
の向上と窓晴れ性の維持とをより確実に両立させること
ができ、暖房運転開始時の蓄熱暖房運転がより快適とな
る。
According to the third aspect of the present invention, the introduction of the refrigerant into the heat-absorbing passenger compartment heat exchanger is stopped within a predetermined time after the start of the heating operation, so that the heat storage can be effectively used. The heat storage heating operation can be performed, and the improvement of the heating capacity and the maintenance of the window transparency can be more reliably achieved, and the heat storage heating operation at the start of the heating operation becomes more comfortable.

【0202】請求項4に記載の発明では、コンプレッサ
に流入する冷媒温度又は前記蓄熱手段に導入する冷媒温
度の少なくとも一方が、蓄熱手段への冷媒導入後所定時
間内に所定温度に達しないときは、蓄熱手段から冷媒へ
の放熱量が低下したと判断して蓄熱手段への冷媒の導入
を停止するので、特に、冷媒が蓄熱手段からの放熱を必
要としない場合や、蓄熱手段の蓄熱量が不充分である場
合に、的確に蓄熱暖房運転を停止することができる。
According to the invention described in claim 4, when at least one of the temperature of the refrigerant flowing into the compressor and the temperature of the refrigerant introduced into the heat storage means does not reach the predetermined temperature within a predetermined time after the introduction of the refrigerant into the heat storage means. Since the introduction of the refrigerant to the heat storage means is stopped when it is determined that the amount of heat released from the heat storage means to the refrigerant has decreased, particularly when the refrigerant does not require heat release from the heat storage means, the heat storage amount of the heat storage means is When it is insufficient, the heat storage heating operation can be stopped accurately.

【0203】請求項5に記載の発明では、コンプレッサ
に流入する冷媒温度又は前記蓄熱手段に導入する冷媒温
度の少なくとも一方が所定温度以下となったとき、又
は、その時間変化が所定値以下となったときに蓄熱手段
から冷媒への放熱量が低下したと判断して制御手段が蓄
熱手段への冷媒の導入を停止するので、蓄熱手段から冷
媒への放熱量が低下したときに迅速かつ的確に蓄熱暖房
運転を停止することができる。
According to the fifth aspect of the present invention, when at least one of the temperature of the refrigerant flowing into the compressor and the temperature of the refrigerant introduced into the heat storage means is equal to or lower than a predetermined temperature, or its time change is equal to or lower than a predetermined value. When it is determined that the heat radiation amount from the heat storage means to the refrigerant has decreased, the control means stops the introduction of the refrigerant to the heat storage means, so when the heat radiation amount from the heat storage means to the refrigerant decreases quickly and accurately. The heat storage heating operation can be stopped.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例に係るブロック図であ
る。
FIG. 1 is a block diagram according to a first embodiment of the present invention.

【図2】この発明の第1実施例に係る冷凍サイクルの構
成図である。
FIG. 2 is a configuration diagram of a refrigeration cycle according to the first embodiment of the present invention.

【図3】蓄熱槽のみに冷媒を流通させた場合の状態を示
す図であり、(a)は、コンプレッサ吐出圧力の時間的
変化を示し、(b)は、蓄熱槽温度、蓄熱槽入口冷媒温
度、及びコンプレッサ吸入冷媒温度のそれぞれの時間的
変化を示す。
FIG. 3 is a diagram showing a state in which a refrigerant is circulated only in a heat storage tank, (a) shows a temporal change in compressor discharge pressure, and (b) shows a heat storage tank temperature and a heat storage tank inlet refrigerant. The temperature and the temperature of the refrigerant sucked into the compressor are shown with time.

【図4】蓄熱槽と吸熱用車室内熱交換器の両方に冷媒を
流通させた場合の状態を示す図であり、(a)は、コン
プレッサ吐出圧力の時間的変化を示し、(b)は、蓄熱
槽温度、蓄熱槽入口冷媒温度、及びコンプレッサ吸入冷
媒温度のそれぞれの時間的変化を示す。
FIG. 4 is a diagram showing a state in which a refrigerant is passed through both a heat storage tank and a heat-absorbing passenger compartment heat exchanger, where (a) shows a temporal change in compressor discharge pressure, and (b) shows , The heat storage tank temperature, the heat storage tank inlet refrigerant temperature, and the compressor suction refrigerant temperature are shown with time.

【図5】この発明の第1実施例に係るフローチャートで
ある。
FIG. 5 is a flowchart according to the first embodiment of the present invention.

【図6】この発明の第1実施例に係るフローチャートで
ある。
FIG. 6 is a flowchart according to the first embodiment of the present invention.

【図7】この発明の第1実施例に係るフローチャートで
ある。
FIG. 7 is a flowchart according to the first embodiment of the present invention.

【図8】この発明の第1実施例に係るフローチャートで
ある。
FIG. 8 is a flowchart according to the first embodiment of the present invention.

【図9】この発明の第1実施例に係るフローチャートで
ある。
FIG. 9 is a flowchart according to the first embodiment of the present invention.

【図10】この発明の第1実施例に係るフローチャート
である。
FIG. 10 is a flowchart according to the first embodiment of the present invention.

【図11】この発明の第1実施例に係るフローチャート
である。
FIG. 11 is a flowchart according to the first embodiment of the present invention.

【図12】この発明の第1実施例に係るフローチャート
である。
FIG. 12 is a flowchart according to the first embodiment of the present invention.

【図13】この発明の第1実施例に係るフローチャート
である。
FIG. 13 is a flowchart according to the first embodiment of the present invention.

【図14】この発明の第1実施例に係る冷凍サイクルの
他の構成図である。
FIG. 14 is another configuration diagram of the refrigeration cycle according to the first embodiment of the present invention.

【図15】この発明の第1実施例に係る冷凍サイクルの
他の構成図である。
FIG. 15 is another configuration diagram of the refrigeration cycle according to the first embodiment of the present invention.

【図16】この発明の第2実施例に係るフローチャート
である。
FIG. 16 is a flowchart according to the second embodiment of the present invention.

【図17】この発明の第3実施例に係るフローチャート
である。
FIG. 17 is a flowchart according to the third embodiment of the present invention.

【図18】従来例に係る冷凍サイクルの構成図である。FIG. 18 is a configuration diagram of a refrigeration cycle according to a conventional example.

【図19】新たな車両用ヒートポンプ式冷暖房装置の冷
凍サイクルの構成図である。
FIG. 19 is a configuration diagram of a refrigeration cycle of a new vehicle heat pump type cooling and heating device.

【符号の説明】[Explanation of symbols]

31 コンプレッサ 32 三方弁(冷媒流路切換手段) 33 放熱用車室内熱交換器 34 膨脹弁(膨脹手段) 35 吸熱用車室内熱交換器 37 ブロアファン(送風手段) 38 車室外熱交換器 43 制御装置(放熱状態検出手段、制御手段) 101 第1の電磁弁(吸熱調整手段) 102 第2の電磁弁(蓄熱調整手段) 107 吸入冷媒温度センサ(放熱要素検出手段) 108 入口冷媒温度センサ(放熱要素検出手段) 31 Compressor 32 Three-way valve (refrigerant flow path switching means) 33 Radiating vehicle interior heat exchanger 34 Expansion valve (expansion means) 35 Endothermic vehicle interior heat exchanger 37 Blower fan (blowing means) 38 Vehicle exterior heat exchanger 43 Control Device (heat dissipation state detecting means, control means) 101 First solenoid valve (heat absorption adjusting means) 102 Second solenoid valve (heat storage adjusting means) 107 Intake refrigerant temperature sensor (heat dissipation element detecting means) 108 Inlet refrigerant temperature sensor (heat dissipation Element detection means)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒に仕事量を加えるコンプレッサと、 このコンプレッサの冷媒吐出側に接続され、冷媒の熱を
外気に放熱する車室外熱交換器と、 前記コンプレッサの冷媒吐出側に接続され、冷媒の熱を
送風手段により導入された空気と熱交換して温い空調風
を作る放熱用車室内熱交換器と、 この放熱用車室内熱交換器の冷媒流出側に接続された膨
張手段と、 この膨張手段の冷媒流出側と前記コンプレッサの冷媒吸
入側とに接続され、送風手段により導入された空気の熱
を前記車室外熱交換器および前記放熱用車室内熱交換器
の少なくとも一方から前記膨張手段を通して供給された
冷媒と熱交換して冷たい空調風を作る吸熱用車室内熱交
換器と、 前記コンプレッサの冷媒吐出側と前記車室外熱交換器お
よび前記放熱用車室内熱交換器の冷媒流入側との間に設
けられ、コンプレッサから吐出される冷媒を、冷房運転
時に少なくとも前記車室外熱交換器に導入し、暖房運転
時に前記車室外熱交換器を回避して前記放熱用車室内熱
交換器に導入する冷媒流路切換手段と、 前記放熱用車室内熱交換器の冷媒吐出側と前記コンプレ
ッサの冷媒流入側とに接続され、外部熱源からの熱量を
蓄熱して冷媒に放熱する蓄熱手段と、 この蓄熱手段の冷媒流入側に接続され前記蓄熱手段に導
入する冷媒量を調整する蓄熱調整手段と、 前記蓄熱手段から冷媒への放熱状態の増減に関する要素
を検出する放熱要素検出手段と、 この放熱要素検出手段の検出した要素に応じて前記蓄熱
手段から冷媒への放熱状態を判断する放熱状態判断手段
と、 この放熱状態判断手段の判断した放熱状態に応じて前記
蓄熱調整手段を可変制御する制御手段とを設けたことを
特徴とする車両用ヒートポンプ式冷暖房装置。
1. A compressor that adds work to a refrigerant, a vehicle exterior heat exchanger that is connected to the refrigerant discharge side of the compressor and radiates the heat of the refrigerant to the outside air, and a compressor that is connected to the refrigerant discharge side of the compressor. A heat radiating vehicle interior heat exchanger for exchanging the heat of the air with the air introduced by the air blowing means to generate warm conditioned air; and an expansion means connected to the refrigerant outflow side of the heat radiating vehicle interior heat exchanger, The heat of the air, which is connected to the refrigerant outflow side of the expansion means and the refrigerant suction side of the compressor, is introduced from at least one of the vehicle exterior heat exchanger and the heat dissipation vehicle interior heat exchanger by the expansion means. A heat exchanger for absorbing heat to create cold air-conditioned air by exchanging heat with the refrigerant supplied through, a refrigerant discharge side of the compressor, a heat exchanger outside the vehicle and a heat exchanger for heat radiating inside the vehicle. The refrigerant provided between the inlet side and the compressor is introduced into at least the vehicle exterior heat exchanger during cooling operation, and the vehicle interior heat for heat dissipation is avoided by avoiding the vehicle exterior heat exchanger during heating operation. Refrigerant flow path switching means to be introduced into the exchanger, heat storage that is connected to the refrigerant discharge side of the heat radiation vehicle interior heat exchanger and the refrigerant inflow side of the compressor, and stores the amount of heat from an external heat source to radiate the heat to the refrigerant. Means, a heat storage adjustment means connected to the refrigerant inflow side of the heat storage means for adjusting the amount of refrigerant introduced into the heat storage means, and a heat dissipation element detection means for detecting an element relating to an increase / decrease in the heat dissipation state from the heat storage means to the refrigerant. A heat dissipation state determining means for determining a heat dissipation state from the heat accumulating means to the refrigerant in accordance with the element detected by the heat dissipation element detecting means, and the heat storage state adjusting means according to the heat dissipation state determined by the heat dissipation state determining means. A heat pump type air conditioner for a vehicle, comprising: a control unit that variably controls the adjusting unit.
【請求項2】 請求項1記載の車両用ヒートポンプ式冷
暖房装置であって、 前記放熱要素検出手段は、前記コンプレッサに流入する
冷媒温度又は前記蓄熱手段に導入する冷媒温度の少なく
とも一方を検出し、 前記放熱状態判断手段は、前記冷媒温度がほぼ一定状態
にあるとき前記蓄熱手段から冷媒への放熱量が低下した
と判断し、 前記制御手段は、前記放熱状態判断手段が前記蓄熱手段
から冷媒への放熱量が低下したと判断したときに前記蓄
熱調整手段により前記蓄熱手段への冷媒の導入を停止す
ることを特徴とする車両用ヒートポンプ式冷暖房装置。
2. The vehicle heat pump type cooling and heating apparatus according to claim 1, wherein the heat dissipation element detection means detects at least one of a refrigerant temperature flowing into the compressor and a refrigerant temperature introduced into the heat storage means, The heat radiation state determination means determines that the amount of heat radiation from the heat storage means to the refrigerant has decreased when the refrigerant temperature is in a substantially constant state, and the control means causes the heat radiation state determination means to transfer from the heat storage means to the refrigerant. The heat pump type cooling and heating apparatus for vehicles, wherein the heat storage adjusting means stops the introduction of the refrigerant into the heat storage means when it is determined that the amount of heat radiation has decreased.
【請求項3】 冷媒に仕事量を加えるコンプレッサと、 このコンプレッサの冷媒吐出側に接続され、冷媒の熱を
外気に放熱する車室外熱交換器と、 前記コンプレッサの冷媒吐出側に接続され、冷媒の熱を
送風手段により導入された空気と熱交換して温い空調風
を作る放熱用車室内熱交換器と、 この放熱用車室内熱交換器の冷媒流出側に接続された膨
張手段と、 この膨張手段の冷媒流出側と前記コンプレッサの冷媒吸
入側とに接続され、送風手段により導入された空気の熱
を前記車室外熱交換器および前記放熱用車室内熱交換器
の少なくとも一方から前記膨張手段を通して供給された
冷媒と熱交換して冷たい空調風を作る吸熱用車室内熱交
換器と、 前記コンプレッサの冷媒吐出側と前記車室外熱交換器お
よび前記放熱用車室内熱交換器の冷媒流入側との間に設
けられ、コンプレッサから吐出される冷媒を、冷房運転
時に少なくとも前記車室外熱交換器に導入し、暖房運転
時に前記車室外熱交換器を回避して前記放熱用車室内熱
交換器に導入する冷媒流路切換手段と、 前記放熱用車室内熱交換器の冷媒吐出側と前記コンプレ
ッサの冷媒流入側とに接続され、外部熱源からの熱量を
蓄熱して冷媒に放熱する蓄熱手段と、 前記吸熱用車室内熱交換器の冷媒流入側に設けられ前記
吸熱用車室内熱交換器に導入する冷媒量を調整する吸熱
調整手段と、 暖房運転開始後の所定時間内は前記吸熱用車室内熱交換
器への冷媒の導入を停止するように前記吸熱調整手段を
可変制御する制御手段とを設けたことを特徴とする車両
用ヒートポンプ式冷暖房装置。
3. A compressor that adds work to the refrigerant, a vehicle exterior heat exchanger that is connected to the refrigerant discharge side of the compressor and radiates heat of the refrigerant to the outside air, and a refrigerant discharge side of the compressor that is connected to the refrigerant discharge side. A heat radiating vehicle interior heat exchanger for exchanging the heat of the air with the air introduced by the air blowing means to generate warm conditioned air; and an expansion means connected to the refrigerant outflow side of the heat radiating vehicle interior heat exchanger, The heat of the air, which is connected to the refrigerant outflow side of the expansion means and the refrigerant suction side of the compressor, is introduced from at least one of the vehicle exterior heat exchanger and the heat dissipation vehicle interior heat exchanger by the expansion means. A heat exchanger for absorbing heat to create cold air-conditioned air by exchanging heat with the refrigerant supplied through, a refrigerant discharge side of the compressor, a heat exchanger outside the vehicle and a heat exchanger for heat radiating inside the vehicle. The refrigerant provided between the inlet side and the compressor is introduced into at least the vehicle exterior heat exchanger during cooling operation, and the vehicle interior heat for heat dissipation is avoided by avoiding the vehicle exterior heat exchanger during heating operation. Refrigerant flow path switching means to be introduced into the exchanger, heat storage that is connected to the refrigerant discharge side of the heat radiation vehicle interior heat exchanger and the refrigerant inflow side of the compressor, and stores the amount of heat from an external heat source to radiate the heat to the refrigerant. Means, an endothermic adjusting means provided on the refrigerant inflow side of the heat absorbing vehicle interior heat exchanger for adjusting the amount of refrigerant introduced into the heat absorbing vehicle interior heat exchanger, and the heat absorbing means within a predetermined time after the start of heating operation. A heat pump type cooling and heating apparatus for a vehicle, comprising: a control means for variably controlling the heat absorption adjusting means so as to stop the introduction of the refrigerant into the vehicle interior heat exchanger.
【請求項4】 冷媒に仕事量を加えるコンプレッサと、 このコンプレッサの冷媒吐出側に接続され、冷媒の熱を
外気に放熱する車室外熱交換器と、 前記コンプレッサの冷媒吐出側に接続され、冷媒の熱を
送風手段により導入された空気と熱交換して温い空調風
を作る放熱用車室内熱交換器と、 この放熱用車室内熱交換器の冷媒流出側に接続された膨
張手段と、 この膨張手段の冷媒流出側と前記コンプレッサの冷媒吸
入側とに接続され、送風手段により導入された空気の熱
を前記車室外熱交換器および前記放熱用車室内熱交換器
の少なくとも一方から前記膨張手段を通して供給された
冷媒と熱交換して冷たい空調風を作る吸熱用車室内熱交
換器と、 前記コンプレッサの冷媒吐出側と前記車室外熱交換器お
よび前記放熱用車室内熱交換器の冷媒流入側との間に設
けられ、コンプレッサから吐出される冷媒を、冷房運転
時に少なくとも前記車室外熱交換器に導入し、暖房運転
時に前記車室外熱交換器を回避して前記放熱用車室内熱
交換器に導入する冷媒流路切換手段と、 前記放熱用車室内熱交換器の冷媒吐出側と前記コンプレ
ッサの冷媒流入側とに接続され、外部熱源からの熱量を
蓄熱して冷媒に放熱する蓄熱手段と、 この蓄熱手段の冷媒流入側に接続され前記蓄熱手段に導
入する冷媒量を調整する蓄熱調整手段と、 前記蓄熱手段から冷媒への放熱状態の増減に関する要素
として前記コンプレッサに流入する冷媒温度又は前記蓄
熱手段に導入する冷媒温度の少なくとも一方を検出する
放熱要素検出手段と、 前記蓄熱手段への冷媒導入後所定時間内に、前記放熱要
素検出手段の検出した冷媒温度が所定温度に達しないと
きに前記蓄熱手段から冷媒への放熱量が低下したと判断
する放熱状態判断手段と、 前記蓄熱手段から冷媒への放熱量が低下したと前記放熱
状態判断手段が判断したときに前記蓄熱調整手段により
前記蓄熱手段への冷媒の導入を停止する制御手段とを設
けたことを特徴とする車両用ヒートポンプ式冷暖房装
置。
4. A compressor that adds work to a refrigerant, a vehicle exterior heat exchanger that is connected to the refrigerant discharge side of the compressor and radiates heat of the refrigerant to the outside air, and a refrigerant discharge side of the compressor that is connected to the refrigerant discharge side. A heat radiating vehicle interior heat exchanger for exchanging the heat of the air with the air introduced by the air blowing means to generate warm conditioned air; and an expansion means connected to the refrigerant outflow side of the heat radiating vehicle interior heat exchanger, The heat of the air, which is connected to the refrigerant outflow side of the expansion means and the refrigerant suction side of the compressor, is introduced from at least one of the vehicle exterior heat exchanger and the heat dissipation vehicle interior heat exchanger by the expansion means. A heat exchanger for absorbing heat to create cold air-conditioned air by exchanging heat with the refrigerant supplied through, a refrigerant discharge side of the compressor, a heat exchanger outside the vehicle and a heat exchanger for heat radiating inside the vehicle. The refrigerant provided between the inlet side and the compressor is introduced into at least the vehicle exterior heat exchanger during cooling operation, and the vehicle interior heat for heat dissipation is avoided by avoiding the vehicle exterior heat exchanger during heating operation. Refrigerant flow path switching means to be introduced into the exchanger, heat storage that is connected to the refrigerant discharge side of the heat radiation vehicle interior heat exchanger and the refrigerant inflow side of the compressor, and stores the amount of heat from an external heat source to radiate the heat to the refrigerant. Means, a heat storage adjusting means connected to the refrigerant inflow side of the heat storage means for adjusting the amount of the refrigerant introduced into the heat storage means, and a refrigerant temperature flowing into the compressor as an element relating to an increase / decrease in a heat radiation state from the heat storage means to the refrigerant. Alternatively, a heat dissipation element detection means for detecting at least one of the refrigerant temperatures introduced to the heat storage means, and detection of the heat dissipation element detection means within a predetermined time after the introduction of the refrigerant to the heat storage means. When the medium temperature does not reach a predetermined temperature, the heat radiation state determination means determines that the heat radiation amount from the heat storage means to the refrigerant has decreased, and the heat radiation state determination means that the heat radiation amount from the heat storage means to the refrigerant has decreased. A heat pump type cooling and heating apparatus for a vehicle, comprising: a control means for stopping the introduction of the refrigerant to the heat storage means by the heat storage adjustment means when the determination is made.
【請求項5】 冷媒に仕事量を加えるコンプレッサと、 このコンプレッサの冷媒吐出側に接続され、冷媒の熱を
外気に放熱する車室外熱交換器と、 前記コンプレッサの冷媒吐出側に接続され、冷媒の熱を
送風手段により導入された空気と熱交換して温い空調風
を作る放熱用車室内熱交換器と、 この放熱用車室内熱交換器の冷媒流出側に接続された膨
張手段と、 この膨張手段の冷媒流出側と前記コンプレッサの冷媒吸
入側とに接続され、送風手段により導入された空気の熱
を前記車室外熱交換器および前記放熱用車室内熱交換器
の少なくとも一方から前記膨張手段を通して供給された
冷媒と熱交換して冷たい空調風を作る吸熱用車室内熱交
換器と、 前記コンプレッサの冷媒吐出側と前記車室外熱交換器お
よび前記放熱用車室内熱交換器の冷媒流入側との間に設
けられ、コンプレッサから吐出される冷媒を、冷房運転
時に少なくとも前記車室外熱交換器に導入し、暖房運転
時に前記車室外熱交換器を回避して前記放熱用車室内熱
交換器に導入する冷媒流路切換手段と、 前記放熱用車室内熱交換器の冷媒吐出側と前記コンプレ
ッサの冷媒流入側とに接続され、外部熱源からの熱量を
蓄熱して冷媒に放熱する蓄熱手段と、 この蓄熱手段の冷媒流入側に接続され前記蓄熱手段に導
入する冷媒量を調整する蓄熱調整手段と、 前記蓄熱手段から冷媒への放熱状態の増減に関する要素
として前記コンプレッサに流入する冷媒温度又は前記蓄
熱手段に導入する冷媒温度の少なくとも一方を検出する
放熱要素検出手段と、 前記放熱要素検出手段の検出した冷媒温度が所定温度以
下となったとき、又は前記冷媒温度の時間変化が所定値
以下となったときに前記蓄熱手段から冷媒への放熱量が
低下したと判断する放熱状態判断手段と、 前記蓄熱手段から冷媒への放熱量が低下したと前記放熱
状態判断手段が判断したときに前記蓄熱調整手段により
前記蓄熱手段への冷媒の導入を停止する制御手段とを設
けたことを特徴とする車両用ヒートポンプ式冷暖房装
置。
5. A compressor that adds work to the refrigerant, a vehicle exterior heat exchanger that is connected to the refrigerant discharge side of the compressor and radiates the heat of the refrigerant to the outside air, and a refrigerant discharge side that is connected to the refrigerant discharge side of the compressor. A heat radiating vehicle interior heat exchanger for exchanging the heat of the air with the air introduced by the air blowing means to generate warm conditioned air; and an expansion means connected to the refrigerant outflow side of the heat radiating vehicle interior heat exchanger, The heat of the air, which is connected to the refrigerant outflow side of the expansion means and the refrigerant suction side of the compressor, is introduced from at least one of the vehicle exterior heat exchanger and the heat dissipation vehicle interior heat exchanger by the expansion means. A heat exchanger for absorbing heat to create cold air-conditioned air by exchanging heat with the refrigerant supplied through, a refrigerant discharge side of the compressor, a heat exchanger outside the vehicle and a heat exchanger for heat radiating inside the vehicle. The refrigerant provided between the inlet side and the compressor is introduced into at least the vehicle exterior heat exchanger during cooling operation, and the vehicle interior heat radiating heat is avoided by avoiding the vehicle exterior heat exchanger during heating operation. Refrigerant flow path switching means to be introduced into the exchanger, heat storage that is connected to the refrigerant discharge side of the heat dissipation vehicle interior heat exchanger and the refrigerant inflow side of the compressor, and stores the amount of heat from an external heat source to radiate the heat to the refrigerant. Means, a heat storage adjusting means connected to the refrigerant inflow side of the heat storage means for adjusting the amount of the refrigerant introduced into the heat storage means, and a refrigerant temperature flowing into the compressor as an element relating to an increase / decrease in a heat radiation state from the heat storage means to the refrigerant. Alternatively, when the heat dissipation element detection means for detecting at least one of the refrigerant temperatures introduced into the heat storage means, and the refrigerant temperature detected by the heat dissipation element detection means is below a predetermined temperature, or The heat radiation state determining means for determining that the heat radiation amount from the heat storage means to the refrigerant has decreased when the time change of the refrigerant temperature is equal to or less than a predetermined value, and the heat radiation amount from the heat storage means to the refrigerant has decreased. A heat pump type cooling and heating apparatus for a vehicle, comprising: a control unit that stops introduction of a refrigerant into the heat storage unit by the heat storage adjustment unit when the heat radiation state determination unit makes a determination.
JP1478393A 1993-02-01 1993-02-01 Car cabin cooling/warming device of heat pump type Pending JPH06227244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1478393A JPH06227244A (en) 1993-02-01 1993-02-01 Car cabin cooling/warming device of heat pump type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1478393A JPH06227244A (en) 1993-02-01 1993-02-01 Car cabin cooling/warming device of heat pump type

Publications (1)

Publication Number Publication Date
JPH06227244A true JPH06227244A (en) 1994-08-16

Family

ID=11870654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1478393A Pending JPH06227244A (en) 1993-02-01 1993-02-01 Car cabin cooling/warming device of heat pump type

Country Status (1)

Country Link
JP (1) JPH06227244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08282263A (en) * 1995-04-17 1996-10-29 Sanden Corp Air conditioner for vehicle
WO2019026486A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Heat pump cycle device and valve device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08282263A (en) * 1995-04-17 1996-10-29 Sanden Corp Air conditioner for vehicle
WO2019026486A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Heat pump cycle device and valve device
JP2019026118A (en) * 2017-07-31 2019-02-21 株式会社デンソー Heat pump cycle device and valve gear
CN110740888A (en) * 2017-07-31 2020-01-31 株式会社电装 Heat pump cycle device and valve device
CN110740888B (en) * 2017-07-31 2022-10-28 株式会社电装 Heat pump cycle device and valve device

Similar Documents

Publication Publication Date Title
JP3284648B2 (en) Heat pump type air conditioner for vehicles
JP3463303B2 (en) Heat pump type air conditioner for vehicles
US11104205B2 (en) Vehicle air-conditioning device
JP2745997B2 (en) Heat pump type air conditioner for vehicles
US6715540B2 (en) Air-conditioning apparatus for vehicle
JP2882184B2 (en) Heat pump type air conditioner for vehicles
US20150239322A1 (en) Vehicle air conditioner
JP2004142646A (en) Air conditioner for vehicle
JP2002120546A (en) Air conditioner for vehicle
JP2874443B2 (en) Heat pump type air conditioner for vehicles
JP3608500B2 (en) Heat pump air conditioner for vehicles
JP3716686B2 (en) Air conditioner for vehicles
JP3216357B2 (en) Heat pump type air conditioner for vehicles
JPH05201243A (en) Heat pump type cooling and heating device for vehicle
JP2936936B2 (en) Vehicle air conditioner
JP2746013B2 (en) Heat pump type air conditioner for vehicles
JP3225724B2 (en) Vehicle air conditioner
JPH06227244A (en) Car cabin cooling/warming device of heat pump type
JP3182958B2 (en) Vehicle air conditioner
JP3301265B2 (en) Heat pump type air conditioner for vehicles
JP3301209B2 (en) Heat pump type air conditioner for vehicles
JP3460422B2 (en) Vehicle air conditioner
JP2800596B2 (en) Heat pump type air conditioner for vehicles
JP2874492B2 (en) Heat pump type air conditioner for vehicles
JP3301139B2 (en) Heat pump type air conditioner for vehicles