JPH06226284A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH06226284A
JPH06226284A JP1464493A JP1464493A JPH06226284A JP H06226284 A JPH06226284 A JP H06226284A JP 1464493 A JP1464493 A JP 1464493A JP 1464493 A JP1464493 A JP 1464493A JP H06226284 A JPH06226284 A JP H06226284A
Authority
JP
Japan
Prior art keywords
sludge
treatment
tank
heat
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1464493A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tomomatsu
弘幸 友松
Koshi Wakazono
紘志 若園
Nobuyuki Kawase
信行 川瀬
Takahiko Yoshida
尊彦 吉田
Kazuyasu Kawai
和保 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP1464493A priority Critical patent/JPH06226284A/en
Publication of JPH06226284A publication Critical patent/JPH06226284A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To provide a waste water treating method capable of reducing the cost in treating the excess sludge as the industrial waste generated from the aerobic waste water treating plant and capable of solving even social and environmental problems. CONSTITUTION:A part of sludge is discharged from the treating tank (aeration tank 1), and the sludge is heat-treated 2 preferably at 65-95 deg.C and returned to the tank 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排水処理方法に関し、
詳しくは、好気性排水処理法を用いた排水処理方法に関
する。
FIELD OF THE INVENTION The present invention relates to a wastewater treatment method,
Specifically, it relates to a wastewater treatment method using an aerobic wastewater treatment method.

【0002】[0002]

【従来の技術】従来から、排水の浄化を行う一手段とし
て、好気性菌体を用いた好気性排水処理法が行われてい
る。この方法は、好気性菌体により排水中の有機物を代
謝生成物(炭酸ガス,水等)と新細胞(汚泥)に変換す
ることで排水を浄化するものであり、発生した余剰汚泥
は、産業廃棄物として処理している。
2. Description of the Related Art Conventionally, as one means for purifying wastewater, an aerobic wastewater treatment method using aerobic bacteria has been performed. This method purifies the wastewater by converting organic matter in the wastewater into metabolites (carbon dioxide, water, etc.) and new cells (sludge) by aerobic bacteria, and the excess sludge generated is used for industrial purposes. It is treated as waste.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記余
剰汚泥の処理に関して、産業廃棄物としての処理費用が
高いということだけではなく、近年は、社会環境上の問
題が大きくなってきている。
However, regarding the treatment of the above-mentioned surplus sludge, not only is the treatment cost as industrial waste high, but in recent years, social environmental problems have become serious.

【0004】そこで本発明は、好気性排水処理施設から
発生する余剰汚泥の産業廃棄物としての処理費用の低減
とともに、社会環境問題も解決できる排水処理方法を提
供することを目的としている。
[0004] Therefore, an object of the present invention is to provide a wastewater treatment method capable of solving social environmental problems as well as reducing the treatment cost of excess sludge generated from an aerobic wastewater treatment facility as industrial waste.

【0005】[0005]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の排水処理方法は、好気性排水処理施設の
処理槽から汚泥の一部を導出し、該汚泥を、好ましくは
65〜95℃で加熱処理した後、前記処理槽に戻すこと
を特徴としている。
In order to achieve the above-mentioned object, the wastewater treatment method of the present invention draws out a part of sludge from a treatment tank of an aerobic wastewater treatment facility, and the sludge is preferably 65-55. After the heat treatment at 95 ° C., it is returned to the treatment tank.

【0006】[0006]

【作 用】上記のように、汚泥を加熱処理することによ
り、汚泥の大部分を占める菌体(蛋白質)を熱変性蛋白
質に変化させることができ、加熱処理後の汚泥を処理槽
に戻して生成した熱変性蛋白質を菌体に資化させること
により、汚泥の発生量を低減できる。
[Operation] By heating the sludge as described above, the cells (proteins) that make up the majority of the sludge can be converted into heat-denatured proteins, and the sludge after heat treatment can be returned to the treatment tank. By assimilating the produced heat-denatured protein into bacterial cells, the amount of sludge generated can be reduced.

【0007】[0007]

【実施例】以下、本発明を、実施例に基づいてさらに詳
細に説明する。図1は、回分式排水処理装置に本発明を
適用した一例を示すもので、この装置は、処理槽である
曝気槽1(直径128mm,容積20リットル)と汚泥
の加熱処理を行う加熱処理槽2とから構成されており、
曝気槽1には、周知の曝気槽と同様に、原水流入管3,
曝気用空気導入管4及び図示しない処理水排出管,余剰
汚泥抜出し管等が設けられ、曝気槽1と加熱処理槽2と
の間には、汚泥抜出し用の導管5と加熱処理後の汚泥を
返送する導管6とが設けられている。
The present invention will be described in more detail based on the following examples. FIG. 1 shows an example in which the present invention is applied to a batch type waste water treatment apparatus. This apparatus is an aeration tank 1 (diameter 128 mm, volume 20 liters) which is a processing tank and a heat treatment tank for performing heat treatment of sludge. It consists of 2 and
In the aeration tank 1, the raw water inflow pipes 3,
An aeration air introduction pipe 4, a treated water discharge pipe (not shown), a surplus sludge extraction pipe, etc. are provided, and between the aeration tank 1 and the heat treatment tank 2, a sludge extraction conduit 5 and a sludge after heat treatment are provided. A return conduit 6 is provided.

【0008】曝気槽1にて従来と同様の曝気処理を10
時間行った後、汚泥の沈降工程を3時間行うとともに、
処理水と共に従来式処理法で発生する余剰汚泥に相当す
る汚泥量を沈降汚泥状態で加熱処理槽2に抜出し、これ
を撹拌しながら90〜95℃で2時間、加熱処理を行っ
た。一方、曝気槽1から1時間をかけて処理水を排出し
た後、10時間をかけて原水を流入させるとともに、加
熱処理を終えた前記汚泥を曝気槽1に戻した。このサイ
クルを繰返したときの菌体濃度の変化、処理水のCOD
Mnの変化、処理水のTOCの変化をそれぞれ測定した結
果を図2乃至図4に示す。同時に、上記汚泥の一部導
出,加熱処理,加熱処理済汚泥の返送を行わない従来法
における菌体濃度の変化、処理水のCODMnの変化、処
理水のTOCの変化を、前記図2乃至図4に示す。
In the aeration tank 1, the same aeration process as the conventional one is performed.
After the time, the sludge settling process is performed for 3 hours,
Along with the treated water, the sludge amount corresponding to the excess sludge generated by the conventional treatment method was taken out to the heat treatment tank 2 in the state of sedimentation sludge, and the heat treatment was performed at 90 to 95 ° C for 2 hours while stirring. On the other hand, after the treated water was discharged from the aeration tank 1 for 1 hour, the raw water was allowed to flow in for 10 hours and the sludge that had been subjected to the heat treatment was returned to the aeration tank 1. Changes in cell concentration and COD of treated water when this cycle is repeated
The measurement results of the change in Mn and the change in TOC of the treated water are shown in FIGS. 2 to 4. At the same time, the changes in the bacterial cell concentration, the CODMn of the treated water, and the TOC of the treated water in the conventional method that does not carry out a part of the sludge, the heat treatment, and the return of the heat-treated sludge are performed as shown in FIGS. 4 shows.

【0009】図2に示す菌体濃度の変化から、汚泥の加
熱処理を行わない場合の汚泥増加量は23.4g/月で
あり、加熱処理済汚泥を曝気槽1へ返送した場合の汚泥
増加量は10.8g/月であった。したがって、汚泥発
生量を約1/2に低減できることが分かる。
From the change in bacterial cell concentration shown in FIG. 2, the sludge increase amount when the sludge was not heat-treated was 23.4 g / month, and the sludge increase when the heat-treated sludge was returned to the aeration tank 1. The amount was 10.8 g / month. Therefore, it can be seen that the sludge generation amount can be reduced to about 1/2.

【0010】また、図3に示す処理水のCODMnの変化
及び図4に示す処理水のTOCの変化から、汚泥の加熱
処理を行わない場合と加熱処理済汚泥を曝気槽1へ返送
した場合とにおける処理水の水質の変化をみると、共に
顕著な変化は認められなかった。すなわち、原水のCO
DMn(430mg/リットル)及びTOC(260mg
/リットル)と処理水の水質を比較すると、除去率は共
に約90%あり、処理水の水質は良好であると判断でき
る。
From the change in the CODMn of the treated water shown in FIG. 3 and the change in the TOC of the treated water shown in FIG. 4, there are cases where the sludge is not heat-treated and when the heat-treated sludge is returned to the aeration tank 1. As for the change in the quality of treated water, no significant change was observed. That is, CO of raw water
DMn (430 mg / liter) and TOC (260 mg
/ Liter) and the water quality of the treated water are both about 90%, it can be judged that the water quality of the treated water is good.

【0011】図5は、曝気槽11に沈降槽12を接続し
た連続式排水処理装置に本発明を適用した一例を示すも
ので、沈降槽12から曝気槽11に沈降汚泥を返送する
系統に、該返送汚泥の一部を抜き取って加熱処理を行う
加熱処理槽13を設けたものである。本実施例装置にお
いても、前記同様に汚泥の一部を導出して加熱処理を行
い、加熱処理後の汚泥を曝気槽11に戻すことにより、
発生する汚泥の量を低減することが可能である。
FIG. 5 shows an example in which the present invention is applied to a continuous type waste water treatment apparatus in which a settling tank 12 is connected to an aeration tank 11. The system for returning settling sludge from the settling tank 12 to the aeration tank 11 is shown in FIG. A heat treatment tank 13 is provided in which a part of the returned sludge is extracted and heat treatment is performed. Also in the apparatus of this embodiment, a part of the sludge is derived in the same manner as described above, heat treatment is performed, and the sludge after the heat treatment is returned to the aeration tank 11,
It is possible to reduce the amount of sludge generated.

【0012】なお、加熱処理の条件は、排水処理装置の
構成や処理量等によって異なり、特に限定されるもので
はないが、沈降汚泥を加熱処理する場合の抜出し汚泥量
は、少なくとも加熱処理しない従来の処理法で発生する
余剰汚泥に相当する量とし、加熱温度は65〜95℃、
好ましくは90〜95℃である。また、処理時間は、汚
泥量や加熱温度によって異なり、数分〜数時間の間で適
当に設定すればよい。上記加熱温度が低いと十分に菌体
(蛋白質)を熱変性蛋白質に変化させることができず、
加熱温度を高くするとエネルギーの無駄となる。さら
に、加熱処理は、バッチ式で行ってもよく、連続的に行
ってもよい。
The condition of the heat treatment varies depending on the configuration of the wastewater treatment equipment, the treatment amount, etc. and is not particularly limited. However, the amount of sludge extracted when the settled sludge is heat treated is at least the same as that of the conventional non-heat treatment. And the heating temperature is 65 to 95 ° C.
It is preferably 90 to 95 ° C. The treatment time varies depending on the amount of sludge and the heating temperature, and may be set appropriately within a range of several minutes to several hours. If the heating temperature is low, the cells (protein) cannot be sufficiently converted into heat-denatured protein,
Increasing the heating temperature wastes energy. Furthermore, the heat treatment may be performed in a batch system or continuously.

【0013】[0013]

【発明の効果】以上説明したように、本発明の排水処理
方法は、発生した汚泥の一部を加熱処理した後に処理槽
に戻すようにしたから、汚泥の大部分を占める菌体(蛋
白質)を熱変性蛋白質に変化させて菌体で処理すること
ができ、汚泥の発生量を大幅に低減することができる。
これにより、従来の汚泥処理に要していたコストの削減
を図れるとともに、社会環境問題も解決することが可能
になる。
As described above, in the wastewater treatment method of the present invention, since a part of the generated sludge is heat-treated and then returned to the treatment tank, bacterial cells (proteins) occupying the majority of the sludge. Can be converted into heat-denatured protein and treated with bacterial cells, and the amount of sludge generated can be significantly reduced.
As a result, it is possible to reduce the cost required for conventional sludge treatment and solve social and environmental problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を適用した回分式排水処理装置の一例
を示す系統図である。
FIG. 1 is a system diagram showing an example of a batch-type wastewater treatment device to which the present invention is applied.

【図2】 菌体濃度の変化を示す図である。FIG. 2 is a diagram showing changes in bacterial cell concentration.

【図3】 処理水のCODMnの変化を示す図である。FIG. 3 is a diagram showing changes in CODMn of treated water.

【図4】 処理水のTOCの変化を示す図である。FIG. 4 is a diagram showing changes in TOC of treated water.

【図5】 本発明を適用した連続式排水処理装置の一
例を示す系統図である。
FIG. 5 is a system diagram showing an example of a continuous wastewater treatment device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1,11…曝気槽、2,13加熱処理槽 1, 11 ... Aeration tank, 2, 13 heat treatment tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 尊彦 愛知県名古屋市熱田区三本松町1番1号 日本車輌製造株式会社内 (72)発明者 河合 和保 愛知県名古屋市熱田区三本松町1番1号 日本車輌製造株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takahiko Yoshida 1-1 Sanbonmatsucho, Atsuta-ku, Nagoya, Aichi Japan Vehicle Manufacturing Co., Ltd. (72) Inventor Kaho Kawai 1 Sanbonmatsu-cho, Atsuta-ku, Nagoya, Aichi No. 1 in Japan Vehicle Manufacturing Co.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 好気性排水処理施設の処理槽から汚泥の
一部を導出し、該汚泥を加熱処理した後に、前記処理槽
に戻すことを特徴とする排水処理方法。
1. A wastewater treatment method, which comprises discharging a part of sludge from a treatment tank of an aerobic wastewater treatment facility, heating the sludge, and then returning the sludge to the treatment tank.
JP1464493A 1993-02-01 1993-02-01 Treatment of waste water Pending JPH06226284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1464493A JPH06226284A (en) 1993-02-01 1993-02-01 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1464493A JPH06226284A (en) 1993-02-01 1993-02-01 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPH06226284A true JPH06226284A (en) 1994-08-16

Family

ID=11866909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1464493A Pending JPH06226284A (en) 1993-02-01 1993-02-01 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPH06226284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121254A (en) * 2019-01-29 2020-08-13 月島機械株式会社 Treatment equipment and treatment method of organic sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121254A (en) * 2019-01-29 2020-08-13 月島機械株式会社 Treatment equipment and treatment method of organic sludge

Similar Documents

Publication Publication Date Title
CN103011507B (en) Control method and device for deep denitrification treatment of garbage leachate by combination of short-range nitrification and anaerobic ammoxidation
JP3672117B2 (en) Organic wastewater treatment method and apparatus
CN109205791A (en) A kind of waste water advanced removal of carbon and nitrogen processing method of high-carbon nitrogen
JP2004033897A (en) Flocculation method of excretion-containing wastewater, flocculation equipment therefor, composting system equipped therewith
JPH06226284A (en) Treatment of waste water
JPH05305294A (en) Activated sludge treatment method
JPS6254075B2 (en)
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JPH08281284A (en) Combined septic tank
CN108439610A (en) A method of strengthening Cr (VI) biological wastewater treatment using sludge lysate
CN208218604U (en) A kind of high-concentration hardly-degradable industrial wastewater treatment system
US20020074286A1 (en) Trickling filter system for biological nutrient removal
JP2002059190A (en) Method of treating sewage and sludge
JP2000084596A (en) Treatment of sludge
TWI808839B (en) Crop cleaning waste liquid recycling system and treatment method thereof
CN208087437U (en) A kind of sludge treatment equipment
KR960007472A (en) Biological Removal Methods of Nitrogen and Phosphorus
JP2004025051A (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP4230617B2 (en) Wastewater treatment equipment containing organic solids
CN207998484U (en) A kind of removal of carbon and nitrogen equipment
JP2001225093A (en) Sewage treatment method
JP3823222B2 (en) Phosphorus removal method in activated sludge treatment
CN106892502A (en) A kind of processing method of cellulosic ethanol waste water
KR0178670B1 (en) Nitrogen removal method of organic wastewater in the water phase corrosion method
JPH10151487A (en) Purifying apparatus and its operation