JPH0622594A - Driving method for symchronous motor - Google Patents

Driving method for symchronous motor

Info

Publication number
JPH0622594A
JPH0622594A JP4177064A JP17706492A JPH0622594A JP H0622594 A JPH0622594 A JP H0622594A JP 4177064 A JP4177064 A JP 4177064A JP 17706492 A JP17706492 A JP 17706492A JP H0622594 A JPH0622594 A JP H0622594A
Authority
JP
Japan
Prior art keywords
phase
synchronous motor
inverter
voltage
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4177064A
Other languages
Japanese (ja)
Inventor
Takumi Yoshida
巧 吉田
Hirohiko Murata
裕彦 村田
Masaharu Ishiguro
正治 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP4177064A priority Critical patent/JPH0622594A/en
Publication of JPH0622594A publication Critical patent/JPH0622594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To eliminate windings for detecting pole position by outputting phase terminal voltage commands from a circuit for distributing a gate signal to a switching element, and using a magnetic flux signal obtained by integrating a multiplied value of the command and a DC input voltage detected value as a position signal of a rotor pole. CONSTITUTION:A three-phase synchronous motor 20 has stator windings 21 in which powers are supplied through a three-phase inverter 20 having three- phase bridge-connected switching elements to convert a DC power from a DC current source 1 into three-phase AC. An output phase of the inverter is converted in response to a rotor pole position of the motor 20. In this case, U-phase, V-phase and W-phase terminal voltage command signals of the inverter 10 are output by a logic circuit 28 of a control circuit 24, and the command signals are multiplied by an input current voltage value of the inverter 10 to be detected by a voltage sensor 33. The multiplied result is integrated by an integrator 26, and a magnetic flux signal obtained therefrom is output to the inverter 10 as a position signal of the rotor pole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング素子を3
相ブリッジ接続してなる電力変換器により直流を3相の
交流に変換して3相同期電動機の固定子巻線に供給し、
上記電力変換器の出力相を上記同期電動機のロータ磁極
位置に合わせて切り換える同期電動機の駆動方法に関す
る。
BACKGROUND OF THE INVENTION The present invention has three switching elements.
The DC power is converted into three-phase AC by the power converter connected to the phase bridge and supplied to the stator winding of the three-phase synchronous motor.
The present invention relates to a synchronous motor driving method for switching the output phase of the power converter according to the rotor magnetic pole position of the synchronous motor.

【0002】[0002]

【従来の技術】図6は同期電動機の従来の駆動回路の1
例を示したものである。同図において、1は定電圧の直
流電流源(例えば、バッテリ)、τ* はトルク指令、I
* は電流指令、2はトルク指令τ* を電流指令I* に変
換する変換器、10は3相のインバータ(図7に示
す)、20Aは永久磁石式の3相同期電動機SMであ
る。21は同期電動機の固定子巻線(U、V、W相巻線
を持つ主巻線)、22は永久磁石からなる磁石ロータ、
23は磁極位置検出用の検出巻線(u、v、w相巻線を
持つ補助巻線)である。24は3相インバータ10の制
御回路である。25はΔ→Y変換器、26は積分器、2
7は極性判別器、28は論理回路である。検出巻線23
はターン数の小さい低インピーダンス巻線である。図7
において、Tr1〜Tr6はトランジスタ、Dはダイオー
ド、g1 〜g6 はそれぞれTr1〜Tr6のベースに供給さ
れるベース信号である。
2. Description of the Related Art FIG. 6 shows a conventional drive circuit for a synchronous motor.
This is an example. In the figure, 1 is a constant voltage direct current source (for example, a battery), τ * is a torque command, I
* Is a current command, 2 is a converter for converting the torque command τ * into a current command I * , 10 is a three-phase inverter (shown in FIG. 7), and 20A is a permanent magnet type three-phase synchronous motor SM. Reference numeral 21 denotes a stator winding of the synchronous motor (main winding having U-, V-, and W-phase windings), 22 a magnet rotor made of a permanent magnet,
Reference numeral 23 is a detection winding (auxiliary winding having u-, v-, and w-phase windings) for detecting the magnetic pole position. Reference numeral 24 is a control circuit for the three-phase inverter 10. 25 is a Δ → Y converter, 26 is an integrator, 2
Reference numeral 7 is a polarity discriminator, and 28 is a logic circuit. Detection winding 23
Is a low impedance winding with a small number of turns. Figure 7
In the above, T r1 to T r6 are transistors, D is a diode, and g 1 to g 6 are base signals supplied to the bases of T r1 to T r6 , respectively.

【0003】この構成において、磁石ロータ22が回転
すると、検出巻線23の例えばu相巻線に対する永久磁
石の角度が変化するので、検出巻線23のu相巻線に鎖
交する磁束量Φが変化し、u相巻線に電圧eU が誘起す
る。積分器26はこの電圧eU を積分して、sin波形
の磁束信号ΦU を出力する。極性判定器27はこの磁束
信号ΦU の正負を判別して判別信号を論理回路28に与
える。論理回路28は正極性の磁束信号ΦU を入力する
と、図7のスイッチング素子Tr1とTr6を1200 導通
角で導通させるベース信号(図8に示す)を出力し、負
極性の磁束信号ΦU を入力すると、図5のスイッチング
素子Tr1とTr6を1200 導通角で導通させるベース信
号を出力する。v相巻線、w相巻線に誘起した電圧も同
様に処理され、この処理結果に基づき論理回路28がス
イッチング素子Tr2〜Tr6に対して所定の順序でベース
信号を分配する。
In this structure, when the magnet rotor 22 rotates, the angle of the permanent magnet with respect to the u-phase winding of the detection winding 23 changes, so that the amount of magnetic flux Φ interlinking with the u-phase winding of the detection winding 23. Changes, and a voltage e U is induced in the u-phase winding. The integrator 26 integrates the voltage e U, and outputs the magnetic flux signal [Phi U of sin waveform. The polarity determiner 27 determines whether the magnetic flux signal Φ U is positive or negative and gives a determination signal to the logic circuit 28. When the logic circuit 28 receives the positive magnetic flux signal Φ U , it outputs a base signal (shown in FIG. 8) that causes the switching elements T r1 and T r6 of FIG. 7 to conduct at a conduction angle of 120 0 , and the negative magnetic flux signal. When Φ U is input, a base signal that causes the switching elements T r1 and T r6 of FIG. 5 to conduct at a conduction angle of 120 0 is output. The voltages induced in the v-phase winding and the w-phase winding are processed in the same manner, and the logic circuit 28 distributes the base signal to the switching elements T r2 to T r6 in a predetermined order based on the processing result.

【0004】上記従来のものは、ロータ22の磁極位置
の変化を磁束量Φの変化として取り出し、磁束量Φの変
化に基づきロータ22の磁極位置を間接的に検出してイ
ンバータ10の出力相を切り換える方法であり、磁極位
置検出用の補助巻線23を同期電動機20Aに設けてい
るので、その分、同期電動機20Aが高価になり、大形
化するという問題があった。
The above-mentioned conventional device takes out the change of the magnetic pole position of the rotor 22 as the change of the magnetic flux amount Φ, indirectly detects the magnetic pole position of the rotor 22 based on the change of the magnetic flux amount Φ, and detects the output phase of the inverter 10. This is a switching method, and since the auxiliary winding 23 for magnetic pole position detection is provided in the synchronous motor 20A, there is a problem that the synchronous motor 20A becomes expensive and large in size.

【0005】そこで、本発明者等は、同期電動機20
が、その定子巻線21のターン数が少ない高速機(例え
ば、100.000rpm、1.67KHz)である場
合に、図5に示すように、ロータ22の永久磁石の磁束
が鎖交する固定子巻線21の巻線誘起電圧VM と巻線抵
抗Rによる電圧降下分VR とのベクトル和である固定子
巻線21の端子電圧Vが巻線誘起電圧VM とほぼ同一位
相になることに着目して、検出巻線23の検出電圧を積
分して得る上記磁束信号り代わり、端子電圧Vを積分し
て得られる磁束信号を用いることができることを実験に
より確認した。
Therefore, the present inventors have found that the synchronous motor 20
However, in the case of a high speed machine (for example, 100.000 rpm, 1.67 KHz) in which the number of turns of the stator winding 21 is small, as shown in FIG. 5, the stator in which the magnetic flux of the permanent magnet of the rotor 22 is interlinked. the winding induced voltage V M and the winding resistance R by the voltage drop V R and the terminal voltage V of the stator winding 21 is the vector sum of the winding 21 is substantially the same phase winding induced voltage V M Focusing on, the experiment confirmed that a magnetic flux signal obtained by integrating the terminal voltage V can be used instead of the magnetic flux signal obtained by integrating the detection voltage of the detection winding 23.

【0006】図3はこの実験に用いた回路構成を示した
ものである。図3において、20は永久磁石式の3相同
期電動機SMであるが、この同期電動機20は上記従来
例の説明で述べた磁極位置検出用巻線(補助巻線)23
は備えていない。30は3相変圧器PTであって、同期
電動機20の固定子巻線21の端子電圧Vを検出し、そ
の検出電圧を制御回路24に供給する。
FIG. 3 shows the circuit configuration used in this experiment. In FIG. 3, reference numeral 20 denotes a permanent magnet type three-phase synchronous motor SM. This synchronous motor 20 has a magnetic pole position detection winding (auxiliary winding) 23 described in the description of the conventional example.
Is not prepared. A three-phase transformer PT 30 detects the terminal voltage V of the stator winding 21 of the synchronous motor 20 and supplies the detected voltage to the control circuit 24.

【0007】図4は同期電動機20の固定子巻線21の
1相の等価回路を示したものであり、VR は巻線抵抗R
の両端電圧、VM は巻線誘起電圧、Lは巻線インダクタ
ンスを示す。
FIG. 4 shows a one-phase equivalent circuit of the stator winding 21 of the synchronous motor 20, where V R is the winding resistance R.
, V M is the winding induced voltage, and L is the winding inductance.

【0008】この構成において、変圧器30は固定子巻
線21の各相の端子電圧Vを検出する。この端子電圧V
は、図5に示すように、ロータ22の永久磁石の磁束が
鎖交する固定子巻線21の巻線誘起電圧VM と巻線抵抗
Rによる電圧降下分VR とのベクトル和であるが、同期
電動機20はR、Lの小さい低インピーダンス機である
ので、VM とVとは、図示のように、ほぼ等しいベクト
ル値となる。
In this structure, the transformer 30 detects the terminal voltage V of each phase of the stator winding 21. This terminal voltage V
Is the vector sum of the winding induced voltage V M of the stator winding 21 where the magnetic flux of the permanent magnet of the rotor 22 interlinks and the voltage drop V R due to the winding resistance R, as shown in FIG. since the synchronous motor 20 is R, smaller low impedance machines of L, and the V M and V, as shown, it is substantially equal to the vector values.

【0009】この端子電圧Vを積分して磁束信号(ΦA
とする)を得るが、固定子巻線21が前記検出巻線23
と同じように低インピーダンス巻線であるので、この磁
束信号ΦA の変化は磁束信号(ΦB とする)とほぼ同期
した変化を呈することになり、補助巻線21を有する従
来の場合と同様にロータ22の磁極位置の変化に合わせ
てインバータ10の出力相を切り換えることができる。
The terminal voltage V is integrated and the magnetic flux signal (Φ A
And the stator winding 21 is the detection winding 23
Since it is a low-impedance winding like the above, the change of the magnetic flux signal Φ A will be a change almost in synchronism with the magnetic flux signal (referred to as Φ B ), similar to the conventional case having the auxiliary winding 21. Moreover, the output phase of the inverter 10 can be switched according to the change of the magnetic pole position of the rotor 22.

【0010】[0010]

【発明が解決しようとする課題】この図3に示す駆動方
法の場合には、従来の補助巻線23が不要になるので、
その分、同期電動機を小形・安価にかることができる
が、変圧器31を必要とし、変圧器31を接続しなけれ
ばならないという欠点がある。
In the case of the driving method shown in FIG. 3, since the conventional auxiliary winding 23 is not necessary,
The size of the synchronous motor can be reduced and the cost can be reduced, but there is a drawback in that the transformer 31 is required and the transformer 31 must be connected.

【0011】本発明はこの問題を解消するためになされ
たもので、ロータの磁極位置の検出は間接的に行なう
が、同期電動機に上記補助巻線等を設けなくて済むだけ
でなく、磁極位置検出のための電気的諸量の検出手段を
一切設ける必要のない同期電動機の駆動方法を提供する
ことを目的とする。
The present invention has been made in order to solve this problem. Although the magnetic pole position of the rotor is indirectly detected, it is not only necessary to provide the above-mentioned auxiliary winding in the synchronous motor, but also the magnetic pole position is not required. An object of the present invention is to provide a method of driving a synchronous motor that does not require any detection means for detecting electrical quantities for detection.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1では、スイッチング素子を3相ブリ
ッジ接続してなる電力変換器により直流を3相の交流に
変換して3相同期電動機の固定子巻線に供給し、上記電
力変換器の出力相を上記同期電動機のロータ磁極位置に
合わせて切り換える同期電動機の駆動方法において、上
記スイッチング素子へゲート信号を分配する回路から当
該ゲート信号と同じ時間巾の各相端子電圧指令を取り出
し、この各相端子電圧指令と電力変換器の直流入力電圧
検出値との乗算値を積分した磁束信号を上記ロータ磁極
の位置信号とする構成とした。
In order to achieve the above object, the present invention according to claim 1 converts a direct current into a three-phase alternating current by a power converter formed by connecting a switching element to a three-phase bridge, and the three-phase same. In the driving method of the synchronous motor, which supplies the stator winding of the stationary motor and switches the output phase of the power converter in accordance with the rotor magnetic pole position of the synchronous motor, the gate from the circuit that distributes the gate signal to the switching element. Each phase terminal voltage command of the same time width as the signal is taken out, and the magnetic flux signal obtained by integrating the product value of each phase terminal voltage command and the DC input voltage detection value of the power converter is used as the position signal of the rotor magnetic pole. did.

【0013】請求項2では、電力変換器の直流入力電圧
検出値に代えて定数を用いる構成とした。
In the second aspect, a constant is used instead of the DC input voltage detection value of the power converter.

【0014】請求項3では、同期電動機は低インピーダ
ンスの高速機であることを特徴とする。
According to a third aspect of the present invention, the synchronous motor is a low-impedance high-speed machine.

【0015】[0015]

【作用】本発明では、スイッチング素子へゲート信号を
分配する回路から取り出した各相端子電圧指令と電力変
換器の直流入力電圧検出値との乗算値を積分して磁束信
号を得るが、この磁束信号は従来の補助巻線の前記誘起
電圧を積分して得る磁束信号とほぼ同期して変化する。
In the present invention, the magnetic flux signal is obtained by integrating the multiplication value of the voltage command for each phase terminal taken out from the circuit for distributing the gate signal to the switching element and the detected value of the DC input voltage of the power converter. The signal changes substantially in synchronization with the magnetic flux signal obtained by integrating the induced voltage of the conventional auxiliary winding.

【0016】[0016]

【実施例】以下、本発明の1実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1において、20は永久磁石式の3相同
期電動機SMであるが、この同期電動機20は前記従来
例の説明で述べた磁極位置検出用巻線23は備えていな
い。33はインバータ10の入力直流電圧Eを検出する
ための電圧センサである。U* 、V* 、W* は論理回路
28から取り出されたU相、V相、W相の端子電圧指令
信号(1200 導通波形)であり、乗算器34で電圧セ
ンサ33の検出値と乗算され、乗算器34の出力が積分
器26へ供給される。他の構成は図3のものと同じであ
る。
In FIG. 1, reference numeral 20 denotes a permanent magnet type three-phase synchronous motor SM, but this synchronous motor 20 does not include the magnetic pole position detection winding 23 described in the description of the conventional example. Reference numeral 33 is a voltage sensor for detecting the input DC voltage E of the inverter 10. U *, V *, W * is U-phase taken out from the logic circuit 28, V-phase, a W phase terminal voltage command signal (120 0 conduction waveform), multiplied by the detected value of the voltage sensor 33 at the multiplier 34 Then, the output of the multiplier 34 is supplied to the integrator 26. Other configurations are the same as those in FIG.

【0018】なお、3相同期電動機20は固定子巻線2
1のターン数が少ない高速機(例えば、100.000
rpm、1.67KHz)である。
The three-phase synchronous motor 20 has a stator winding 2
A high-speed machine with a small number of turns per 1 (for example, 100.000
rpm, 1.67 KHz).

【0019】図3の例では、固定子巻線21の端子電圧
Vを積分して磁束信号ΦA を得ているが、この端子電圧
Vはインバータ10の入力電圧Eとインバータ10のス
イッチング素子のON期間ton/OFF期間tofとの積
の値に等しい。
In the example of FIG. 3, the terminal voltage V of the stator winding 21 is integrated to obtain the magnetic flux signal Φ A. This terminal voltage V is the input voltage E of the inverter 10 and the switching element of the inverter 10. equal to the value of the product of the oN period t on / OFF period t of.

【0020】 端子電圧V=インバータ入力電圧E×ton/tof (1) 本実施例では、論理回路28でU相、V相、W相の端子
電圧指令信号U* 、V* 、W* を生成し、この端子電圧
指令信号U* 、V* 、W* と電圧センサ33の検出電圧
Eとの積を積分して磁束信号ΦA を得ている。
Terminal voltage V = inverter input voltage E × t on / t of (1) In this embodiment, the logic circuit 28 uses U-phase, V-phase, and W-phase terminal voltage command signals U * , V * , and W *. Is generated and the product of the terminal voltage command signals U * , V * , W * and the detection voltage E of the voltage sensor 33 is integrated to obtain the magnetic flux signal Φ A.

【0021】従って、本実施例では、図3の変圧器30
も不要になる。
Therefore, in this embodiment, the transformer 30 shown in FIG.
Becomes unnecessary.

【0022】上記実施例では、電圧センサ33を設け
て、インバータ10の入力電圧Eを検出しているが、直
流電流源1としてバッテリを使用した場合には、この入
力電圧Eはほぼ一定値となるので、図2に示すように、
端子電圧指令信号U* 、V* 、W* と定数KE の積の値
を積分して磁束信号ΦA を得るようにしてもよい。
In the above embodiment, the voltage sensor 33 is provided to detect the input voltage E of the inverter 10. However, when a battery is used as the direct current source 1, the input voltage E is a substantially constant value. Therefore, as shown in FIG.
The magnetic flux signal Φ A may be obtained by integrating the product value of the terminal voltage command signals U * , V * , W * and the constant K E.

【0023】[0023]

【発明の効果】本発明は以上説明した通り、同期電動機
に上記補助巻線等を設けなくて済むだけでなく、ロータ
の磁極位置検出のための電気的諸量の検出手段を一切設
ける必要がないので、駆動回路を含む同期電動機の装置
を従来に比し小形にし、安価に製作することができる。
As described above, according to the present invention, it is not only necessary to provide the above-mentioned auxiliary winding or the like in the synchronous motor, but also it is necessary to provide any means for detecting various electrical quantities for detecting the magnetic pole position of the rotor. Therefore, the synchronous motor device including the drive circuit can be made smaller and cheaper than the conventional device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】本発明の第2の実施例を示す回路図である。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】同期電動機の駆動回路の1例を示す回路図であ
る。
FIG. 3 is a circuit diagram showing an example of a drive circuit for a synchronous motor.

【図4】同期電動機の等価回路を示す図である。FIG. 4 is a diagram showing an equivalent circuit of a synchronous motor.

【図5】同期電動機の電圧ベクトル図である。FIG. 5 is a voltage vector diagram of the synchronous motor.

【図6】同期電動機の従来の駆動回路の回路図である。FIG. 6 is a circuit diagram of a conventional drive circuit for a synchronous motor.

【図7】3相インバータの回路図である。FIG. 7 is a circuit diagram of a three-phase inverter.

【図8】3相インバータのベース信号を示す図である。FIG. 8 is a diagram showing a base signal of a three-phase inverter.

【符号の説明】[Explanation of symbols]

1 直流電流源 2 変換器 10 3相インバータ 20 同期電動機 21 固定子巻線 22 ロータ 24 制御回路 26 積分器 27 極性判別器 28 論理回路 33 電圧センサ 34 乗算器 DESCRIPTION OF SYMBOLS 1 DC current source 2 Converter 10 Three-phase inverter 20 Synchronous motor 21 Stator winding 22 Rotor 24 Control circuit 26 Integrator 27 Polarity discriminator 28 Logic circuit 33 Voltage sensor 34 Multiplier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スイッチング素子を3相ブリッジ接続し
てなる電力変換器により直流を3相の交流に変換して3
相同期電動機の固定子巻線に供給し、上記電力変換器の
出力相を上記同期電動機のロータ磁極位置に合わせて切
り換える同期電動機の駆動方法において、 上記スイッチング素子へゲート信号を分配する回路から
当該ゲート信号と同じ時間巾の各相端子電圧指令を取り
出し、この各相端子電圧指令と電力変換器の直流入力電
圧検出値との乗算値を積分した磁束信号を上記ロータ磁
極の位置信号とすることを特徴とする同期電動機の駆動
方法。
1. A power converter formed by connecting switching elements to a three-phase bridge to convert direct current into three-phase alternating current.
In the method of driving a synchronous motor, which supplies the stator winding of a phase synchronous motor and switches the output phase of the power converter in accordance with the rotor magnetic pole position of the synchronous motor, a circuit for distributing a gate signal to the switching element is used. Take out each phase terminal voltage command of the same time width as the gate signal, and use the magnetic flux signal obtained by integrating the product of this phase terminal voltage command and the DC input voltage detection value of the power converter as the position signal of the rotor magnetic pole. And a method of driving a synchronous motor.
【請求項2】 電力変換器の直流入力電圧検出値に代え
て定数を用いることを特徴とする請求項1記載の同期電
動機の駆動方法。
2. The method for driving a synchronous motor according to claim 1, wherein a constant is used instead of the DC input voltage detection value of the power converter.
【請求項3】 同期電動機は低インピーダンスの高速機
であることを特徴とする請求項1または2記載の同期電
動機の駆動方法。
3. The method for driving a synchronous motor according to claim 1, wherein the synchronous motor is a high-speed machine having a low impedance.
JP4177064A 1992-07-03 1992-07-03 Driving method for symchronous motor Pending JPH0622594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4177064A JPH0622594A (en) 1992-07-03 1992-07-03 Driving method for symchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4177064A JPH0622594A (en) 1992-07-03 1992-07-03 Driving method for symchronous motor

Publications (1)

Publication Number Publication Date
JPH0622594A true JPH0622594A (en) 1994-01-28

Family

ID=16024494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4177064A Pending JPH0622594A (en) 1992-07-03 1992-07-03 Driving method for symchronous motor

Country Status (1)

Country Link
JP (1) JPH0622594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034280A (en) * 2000-07-18 2002-01-31 Daikin Ind Ltd Method and device for controlling brushless dc motor
JP2012235695A (en) * 2012-09-05 2012-11-29 Daikin Ind Ltd Method and device for controlling brushless dc motor
CN104578652A (en) * 2013-10-28 2015-04-29 Up电机有限公司 Single-pole coil motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034280A (en) * 2000-07-18 2002-01-31 Daikin Ind Ltd Method and device for controlling brushless dc motor
JP2012235695A (en) * 2012-09-05 2012-11-29 Daikin Ind Ltd Method and device for controlling brushless dc motor
CN104578652A (en) * 2013-10-28 2015-04-29 Up电机有限公司 Single-pole coil motor

Similar Documents

Publication Publication Date Title
Su et al. Low-cost sensorless control of brushless DC motors with improved speed range
AU619096B2 (en) Current chopping strategy for switched reluctance machines
US5166591A (en) Current chopping strategy for generating action in switched reluctance machines
EP1615333B1 (en) Electrical machine rotor position identification
JP4346813B2 (en) Power output apparatus and control method thereof
EP1174998B1 (en) Brushless motor,method and circuit for its control
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JPH0622594A (en) Driving method for symchronous motor
JPH05211795A (en) Phase-current command value generator of ac servo motor and generating method thereof
JPH11316249A (en) Current detecting circuit and excess current protecting circuit
JPH0622593A (en) Driving method for synchronous motor
JP2755057B2 (en) DC brushless motor drive circuit
JP3590541B2 (en) DC brushless motor drive
KR100308005B1 (en) Position sensing device of sensorless and brushless direct current(bldc) motor without sensor
JP2003209999A (en) Motor controller
JP2001025290A (en) Control device
JPH02159993A (en) Reference current waveform generator of synchronous ac servo-motor driving apparatus
JPH099672A (en) Overload protector for motor
JP4265395B2 (en) Inverter device
JP3085741B2 (en) Induction generator control
JP2001218490A (en) Inverter device
JPH0690597A (en) Controller for induction motor
JPH0691758B2 (en) Motor control device
JP3469336B2 (en) Control device for three-phase brushless motor
JPH09205795A (en) Driver for brushless motor