JPH0622575B2 - Bioremediation base material - Google Patents

Bioremediation base material

Info

Publication number
JPH0622575B2
JPH0622575B2 JP1188660A JP18866089A JPH0622575B2 JP H0622575 B2 JPH0622575 B2 JP H0622575B2 JP 1188660 A JP1188660 A JP 1188660A JP 18866089 A JP18866089 A JP 18866089A JP H0622575 B2 JPH0622575 B2 JP H0622575B2
Authority
JP
Japan
Prior art keywords
base material
weight
phase
titanium
bioremediation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1188660A
Other languages
Japanese (ja)
Other versions
JPH0390153A (en
Inventor
卓嗣 進藤
浩光 内藤
正義 近藤
尚志 福山
昌明 小泉
伸男 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toho Titanium Co Ltd
Original Assignee
Nippon Steel Corp
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toho Titanium Co Ltd filed Critical Nippon Steel Corp
Publication of JPH0390153A publication Critical patent/JPH0390153A/en
Publication of JPH0622575B2 publication Critical patent/JPH0622575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、歯科、外科等の医療分野において、生体内に
埋入してなる人工関節、人口歯根、骨接合用部材、人工
骨等のインプラント或は歯科矯正用ワイヤ、義歯床の他
整形外科用義肢、義足などの構造部材…これらを總じた
生体修復用基材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to artificial joints, artificial dental roots, bone-joining members, artificial bones, etc. which are implanted in a living body in the medical fields such as dentistry and surgery. The present invention relates to an implant or orthodontic wire, a denture base, a structural member such as an orthopedic artificial limb, a artificial leg, and the like ...

(従来の技術) 従来、上記の生体修復用基材としては有機材料系、無機
材料系および金属系等様々なものが開発され使用されて
いる。これら既知の材料は施術部位により適宜に使い分
けられているが、生体修復用基材として求められる特性
は、一般的に生体親和性に優れ、生体為害性がなく、機
械的強度があり、しかも加工性が良いものが望まれてい
る。
(Prior Art) Conventionally, various materials such as an organic material-based material, an inorganic material-based material, and a metal-based material have been developed and used as the above-mentioned biological repair base material. These known materials are properly used depending on the site to be treated, but the properties required for a bioremediation base material are generally excellent in biocompatibility, non-toxic to living organisms, mechanically strong, and processed. What is good is desired.

従って、開発当初はセラミックスなどがその主流を占め
ていたが、機械的強度や加工性などに優れた金属系の材
料が注目されるようになった。
Therefore, although ceramics and the like were the mainstream at the beginning of development, metal-based materials having excellent mechanical strength and workability have come to the forefront.

金属系の代表的なものとしてはステンレス鋼、Co−C
r系合金、純チタンまたはチタン基合金、Ni−Ti合
金(形状記憶合金)などが実用化されている。
Typical metal type is stainless steel, Co-C
R-based alloys, pure titanium or titanium-based alloys, Ni-Ti alloys (shape memory alloys), etc. have been put to practical use.

(発明が解決しようとする課題) 従来公知のステンレス鋼、Co−Cr系合金は機械的強
度や加工性には優れているものの生体親和性や生体為害
性(生体内における耐食性)などに問題を残している。
(Problems to be Solved by the Invention) Conventionally known stainless steels and Co-Cr alloys have excellent mechanical strength and workability, but have problems in biocompatibility and biotoxicity (corrosion resistance in vivo). I have left.

斯る課題を解決するものとしてチタン基合金とりわけ代
表的なものとして6Al−4V−残Tiからなる合金が
提案され、一部実用化されているが、機械的強度は極め
て優れているものの加工性が悪く、且つ合金成分である
バナジウムが毒性を有するため、これが生体内に溶出す
ることを危惧する専門家もいる。
In order to solve such a problem, a titanium-based alloy, in particular, an alloy consisting of 6Al-4V-residual Ti has been proposed and partially put into practical use, but it has excellent mechanical strength, but it has workability. However, some experts are concerned that vanadium, which is an alloy component, is toxic and that it is dissolved in the living body.

また、近時注目を集めているNi−Ti合金(形状記憶
合金)は、その特異性により、今後の用途開発が期待さ
れるが、加工性が悪く、且つ合金成分であるニッケルが
生体に与える影響も無視できないという課題を残してい
る。
Further, Ni-Ti alloys (shape memory alloys), which have recently been attracting attention, are expected to be used in the future due to their peculiarities, but they have poor workability and nickel, which is an alloy component, gives the living body The issue remains that the impact cannot be ignored.

とりわけ、人工関節、骨接合用部材、人工骨等のいわゆ
る生体用インプラントは使用部位が生体内であるために
様々な形状が要求される。そのために機械切削、鋳造や
鍛造等の加工工程が必要とされる。特に、複雑な形状の
ものほど多くの加工工程を経て製品化されることにな
る。この加工経歴が重なるほど基材の持つ特性は損なわ
れて劣化、脆弱化する。例えば、前記した金属系材料の
中では機械的強度が最も優れているとされる6Al−4
V−残Ti合金の場合、素材の伸びが少ないために一つ
の加工工程が終了するごとに熱処理を必要とする。この
熱処理を省略して次の加工工程に入った場合、ひび割れ
や寸法不良などの欠陥製品を生じるおそれが多いことに
なる。従って、熱処理を繰り返し行わず加工して製品化
する例えば歯科矯正用ワイヤー、義歯床、骨接合板、義
肢、義足の構造部材などは、前記した欠陥を生じて実用
性に乏しいものとなる。また、複雑な形状のものほど加
工工程が増え、同時に熱処理工程も増加するため加工費
が著しく高価になる。しかし乍ら、その優れた機械的強
度は捨て難く、種々の問題を残しながらも人工股間節や
人工歯根等に用いられているのが現状である。純チタン
の場合は生体為害性がなく、生体親和性という点におい
ても優れているが、前記6Al−4V−残Ti合金と比
較すると機械的強度が著しく劣るという欠点があり、そ
れを補うために断面形状や応力集中回避の配慮が製品製
作上不可欠であった。
In particular, so-called biomedical implants such as artificial joints, osteosynthesis members, and artificial bones are required to have various shapes because they are used in the living body. Therefore, processing steps such as mechanical cutting, casting and forging are required. In particular, the more complicated the shape, the more products are processed through many processing steps. As the processing history increases, the properties of the base material are impaired and deteriorated and weakened. For example, 6Al-4, which is said to have the best mechanical strength among the above-mentioned metallic materials.
In the case of the V-residual Ti alloy, since the elongation of the material is small, heat treatment is required every time one working process is completed. If this heat treatment is omitted and the next processing step is started, defective products such as cracks and dimensional defects are likely to occur. Therefore, structural members such as orthodontic wires, denture bases, bone joint plates, artificial limbs, and artificial legs, which are processed and commercialized without being repeatedly subjected to heat treatment, have the above-mentioned defects and become impractical. Further, the more complicated the shape is, the more the number of processing steps is increased, and at the same time, the number of heat treatment steps is also increased, which significantly increases the processing cost. However, their excellent mechanical strength is difficult to throw away, and at present, they are used in artificial crotch joints, artificial tooth roots, etc., while leaving various problems. Pure titanium is not harmful to living organisms and is excellent in terms of biocompatibility, but it has a drawback that mechanical strength is significantly inferior to the above 6Al-4V-residual Ti alloy. Consideration of cross-sectional shape and avoiding stress concentration was essential for product manufacturing.

(課題を解決するための手段) 本発明者等は、高強度(65kgf/mm2以上)且つ優れ
た伸び(10%以上)を有し、高張力厚板、高張力ボル
ト、アンカーボルト等の工業的分野に対するチタン材料
の適性を増大したTi−Fe系低合金を開発した(特願
昭63−197852)。このものはFe0.1〜0.
8重量%、酸素等価量値Q=0.35〜1.0=〔O〕
+2.77〔N〕+0.1〔Fe〕残部が不可避の不純
物を除いてTiであり、組織がα+β二相等軸相状もし
くはラメラー相状細粒組織を有するもので、複雑な熱間
加工を施すことがなく、上記の高強度と延性とを備えた
ものであるが、其后の研究・実験によって、この先行低
合金は上記した生体修復用基材のあるべき性質に適合し
ていることを知悉するに至った。即ち、本発明は純チタ
ンの持つ生体為害性がなく、生体親和性に優れるという
特性を維持しつつ、6Al−4V−残Tiに匹敵する機
械的強度(引張強度91kg/mm2以上、耐力84kg/mm2
以上、降伏比0.92)を有する生体修復用基材を見出
し、ここに提供するものである。
(Means for Solving the Problems) The present inventors have a high strength (65 kgf / mm 2 or more) and an excellent elongation (10% or more), and a high tension thick plate, a high tension bolt, an anchor bolt, or the like. We have developed a Ti-Fe-based low alloy with increased suitability for titanium materials in the industrial field (Japanese Patent Application No. 63-197852). This product has Fe 0.1 to 0.
8% by weight, oxygen equivalent value Q = 0.35 to 1.0 = [O]
+2.77 [N] +0.1 [Fe] The balance is Ti except for unavoidable impurities, and the structure has α + β bi-phase equiaxed phase or lamellar phase-like fine grain structure. Although it is not applied, it has the above-mentioned high strength and ductility, but by the research and experiment after that, it is confirmed that this preceding low alloy is compatible with the above-mentioned desired properties of the biological repair base material. Came to know. That is, the present invention has a mechanical strength (tensile strength of 91 kg / mm 2 or more, yield strength of 84 kg) comparable to that of 6Al-4V-remaining Ti, while maintaining the characteristics that pure titanium has no biotoxicity and is excellent in biocompatibility. / Mm 2
As described above, a base material for biological repair having a yield ratio of 0.92) has been found and provided here.

すなわち、本発明はFeを0.1〜0.8重量%含有
し、固溶元素としてN0.01〜0.10重量%、O
0.01〜0.5重量%、残部が不可避不純物以外はT
iからなるTi−Fe系低合金基材より成ることを特徴
とする生体修復用基材に関する。
That is, the present invention contains 0.1 to 0.8% by weight of Fe, contains 0.01 to 0.10% by weight of N as a solid solution element, and O.
0.01 to 0.5% by weight, the balance is T except for unavoidable impurities
The present invention relates to a biorepair base material comprising a Ti-Fe-based low alloy base material made of i.

(作用) 本発明に於けるFeはTiの一部置換型であり、且つβ
共析型と云う不純物元素としてTi結晶の細粒化の作用
をなし高強度化に寄与する。すなわち、Feはα相に於
ける最大の固溶限である約0.06重量%(以下単に0
%とする)を超える量として0.1〜0.8重量%含ま
せる必要がある。0.1%未満の場合はTi結晶の細粒
化が不十分であり、逆に0.8%を超えるとTi結晶が
粗大化して安定した組織が得られず機械的特性も低下す
る。N,Oはいづれも侵入型固溶元素で固溶体の強化に
有効であるが過剰となると延性の低下を招くので好まし
くない。Nは0.01〜0.10%で0.01%未満の
場合は所期の効果が得られず0.10%を超えると硬化
しすぎて機械的強度が低下する。一方、Oは0.1〜
0.5%で0.1%未満の場合はNと同様所期効果が発
現せず0.5%を超えると加工性が低下する。
(Function) Fe in the present invention is a partial substitution type of Ti, and β
As an impurity element called eutectoid type, it acts to reduce the grain size of Ti crystals and contributes to high strength. That is, Fe is the maximum solid solubility limit in the α phase of about 0.06 wt% (hereinafter simply referred to as 0
%) And 0.1 to 0.8 wt% must be included. If it is less than 0.1%, the grain size of the Ti crystal is insufficient. On the contrary, if it exceeds 0.8%, the Ti crystal becomes coarse and a stable structure cannot be obtained, and the mechanical properties are deteriorated. N and O are both interstitial solid solution elements and are effective for strengthening the solid solution, but if they are excessive, ductility is lowered, which is not preferable. If N is 0.01 to 0.10% and less than 0.01%, the desired effect cannot be obtained, and if it exceeds 0.10%, it is excessively hardened to lower the mechanical strength. On the other hand, O is 0.1
When it is 0.5% and less than 0.1%, the desired effect is not exhibited like N, and when it exceeds 0.5%, the workability is deteriorated.

前記した範囲のFe含有量は上記範囲のN及びO含有量
(とりわけ高含有範囲域)による延性の低下をTi結晶
の細粒化によって防止する相関性がある。望ましい範囲
としてはFe0.5%、N0.07%、O0.2%残部
が不可避の不純物を除いてTiから成る。
The Fe content in the above range has a correlation that prevents the decrease in ductility due to the N and O contents in the above range (particularly in the high content range) by refining the Ti crystals. A preferable range is 0.5% of Fe, 0.07% of N, and 0.2% of O, and the balance is Ti except for unavoidable impurities.

本発明低合金に於ける組織調整について述べる。The structure adjustment in the low alloy of the present invention will be described.

チタン鋳塊のマクロ組織の結晶粒径は、約数10mmであ
るため、これを初期粒径として、まずβ変態点以上に加
熱し、変態による細粒化とともに、β単相域で、もしく
はβ域からα域にかけて熱間加工を施す。本発明基材の
場合は、上記の如くFeを0.1〜0.8重量%の範囲
で含有し、しかもFeを均一分散化させるために、β相
域で熱間加工を受けることにより、未再結晶あるいは再
結晶β相がβ→α変態時に、α+β二相ラメラー相状細
粒組織に変化する。この組織は、引続いてβ単相域、あ
るいはβからα相域、もしくはα単相域のいずれの領域
で再度加熱変形加工を受けても、α+β二相ラメラー相
状かもしく等軸的細粒組織を呈し、加工熱処理に対して
安定となる。従って、本発明基材の鋳塊を鍛造もしくは
圧延によって熱間成形する場合、少なくとも1回以上、
鋳塊をβ域に加熱して熱間加工を施す必要がある。この
方法によれば、通常行われるごとくに、熱間加工後にα
域で後熱処理を施しても、結晶粒の粗大化などの顕著な
組織変化を生じがたく、結果として安定した機械的特性
を得ることが可能である。
The crystal grain size of the macrostructure of titanium ingot is about several tens of millimeters, so this is taken as the initial grain size and first heated above the β transformation point to refine the grain by transformation, and in the β single phase region, or β Hot working is performed from the zone to the α zone. In the case of the base material of the present invention, Fe is contained in the range of 0.1 to 0.8 wt% as described above, and further, in order to uniformly disperse Fe, by subjecting it to hot working in the β phase region, The unrecrystallized or recrystallized β phase changes into α + β two-phase lamellar phase-like fine grain structure during β → α transformation. Even if the structure is subsequently subjected to heat deformation processing again in the β single phase region, β to α phase region, or α single phase region, α + β two-phase lamellar phase or equiaxed fine phase It has a grain structure and is stable against thermomechanical treatment. Therefore, when hot-forming the ingot of the base material of the present invention by forging or rolling, at least once or more,
It is necessary to heat the ingot to the β region and perform hot working. According to this method, as is usually done, after hot working α
Even if post-heat treatment is performed in the region, a remarkable change in structure such as coarsening of crystal grains is unlikely to occur, and as a result, stable mechanical properties can be obtained.

以上述べた方法と異なり、鋳塊を1度もβ域に加熱する
ことなく常にα域にて加熱成形加工する場合は、鋳塊マ
クロ粗粒組織にもとづく表面肌荒れ、シワ疵、Fe濃度
のマクロ偏析が解消できない。
Unlike the method described above, when the ingot is always heat-formed in the α region without being heated to the β region even once, the ingot macro has a rough surface, wrinkles, and a macro of Fe concentration. Segregation cannot be eliminated.

従って、鍛造もしくは圧延によって熱間成形する場合
は、上記した組織調整が必要となる。しかし、用いるイ
ンプラント部材のあるべき性質、形状如何によって冷間
成形で済ませる場合は敢えてこのような組織調整は不要
である。
Therefore, in the case of hot forming by forging or rolling, the above-mentioned structure adjustment is necessary. However, when the cold forming can be done depending on the desired properties and shape of the implant member to be used, such structure adjustment is not necessary intentionally.

(実施例) 以下に、本発明の低合金チタン及び純チタン(2種相当
品)、6Al−4Vチタン合金の機械的特性を示す。
(Examples) The mechanical properties of the low alloy titanium, pure titanium (corresponding to two kinds), and 6Al-4V titanium alloy of the present invention are shown below.

以下に、人工歯根に応用したときの各実施例を示す。 Below, each example when applied to an artificial tooth root is shown.

上表より明らかなように、本発明生体修復用基材である
Ti−Fe系低合金は6Al−4Vチタン合金の持つ機
械的強度に至近の機械的性質がある上に伸びが更に改善
されていることが判る。また棒状人工歯根の直径でみた
場合は、6Al−4Vチタン合金よりは若干劣るものの
純チタンに比較した場合はその直径を小とすることも確
認されている。
As is clear from the above table, the Ti—Fe-based low alloy that is the base material for bioremediation of the present invention has mechanical properties close to the mechanical strength of the 6Al-4V titanium alloy, and further has improved elongation. It is understood that there is. It is also confirmed that the diameter of the rod-shaped artificial tooth root is slightly inferior to that of the 6Al-4V titanium alloy, but is smaller than that of pure titanium.

(発明の効果) 本発明生体修復用基材は叙述より判明するように、Ti
に少量のFeを加えたTi低合金よりなるために人体へ
の為害性がなく、生体親和性に優れ且つ展延性の改善に
より加工性が良いと云う特性を維持しつつ6Al−4V
−残Ti合金に匹敵する機械的強度があるので、前記し
た歯科用インプラント、整形外科用インプラント、その
他生体内には埋入しないが生体と密着的な使用環境に置
かれて使用される生体修復用基材としての適性の増大に
寄与し得る効果を備えたものである。
(Effects of the Invention) As will be apparent from the description, the base material for biological repair of the present invention is
Since it is made of a Ti low alloy with a small amount of Fe added to it, it is harmless to the human body, has excellent biocompatibility, and has excellent workability due to improved spreadability.
-Since it has a mechanical strength comparable to that of residual Ti alloy, it is not used for implanting in the above-mentioned dental implants, orthopedic implants, or other living bodies, but is repaired by being placed in an environment where the living body is in close contact with the living body. It has an effect that can contribute to an increase in suitability as a base material for use.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 浩光 神奈川県相模原市淵野辺5―10―1 新日 本製鐵株式会社第2技術研究所内 (72)発明者 近藤 正義 東京都千代田区大手町2―6―3 新日本 製鐵株式会社内 (72)発明者 福山 尚志 神奈川県茅ケ崎市茅ケ崎3丁目3番5号 東邦チタニウム株式会社内 (72)発明者 小泉 昌明 神奈川県茅ケ崎市茅ケ崎3丁目3番5号 東邦チタニウム株式会社内 (72)発明者 深田 伸男 神奈川県茅ケ崎市茅ケ崎3丁目3番5号 東邦チタニウム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromitsu Naito 5-10-1 Fuchinobe, Sagamihara City, Kanagawa Pref., 2nd Research Laboratory, Nippon Steel Corporation (72) Masayoshi Kondo 2 Otemachi, Chiyoda-ku, Tokyo ―6-3 Shin Nippon Steel Co., Ltd. (72) Inventor Naoshi Fukuyama 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Inventor Masaaki Koizumi 3-3 Chigasaki City, Chigasaki City, Kanagawa Prefecture No. 5 Toho Titanium Co., Ltd. (72) Inventor Nobuo Fukada 3-3-5 Chigasaki, Chigasaki-shi, Kanagawa Toho Titanium Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Feを0.1〜0.8重量%含有し、固溶
元素としてN0.01〜0.10重量%、O0.1〜
0.5重量%、残部が不可避不純物以外はTiからなる
Ti−Fe系低合金より成ることを特徴とする生体修復
用基材。
1. A steel containing 0.1 to 0.8% by weight of Fe, and 0.01 to 0.10% by weight of N and O0.1 to 0.1% as solid solution elements.
A bioremediation substrate, characterized in that it is made of a Ti-Fe-based low alloy containing 0.5% by weight and the balance being Ti except for inevitable impurities.
【請求項2】Fe0.5重量%、N0.07重量%、O
0.2重量%である請求項1記載の生体修復用基材。
2. 0.5% by weight of Fe, 0.07% by weight of N, O
The base material for biological repair according to claim 1, which is 0.2% by weight.
【請求項3】組織がα+β相等軸相状もしくはラメラー
相状細粒組織よりなる請求項1もしくは2記載の生体修
復用基材。
3. The biorepair base material according to claim 1, wherein the tissue comprises an α + β phase equiaxed phase-like or lamellar phase-like fine grain structure.
JP1188660A 1989-06-09 1989-07-19 Bioremediation base material Expired - Lifetime JPH0622575B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-146967 1989-06-09
JP14696789 1989-06-09

Publications (2)

Publication Number Publication Date
JPH0390153A JPH0390153A (en) 1991-04-16
JPH0622575B2 true JPH0622575B2 (en) 1994-03-30

Family

ID=15419630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188660A Expired - Lifetime JPH0622575B2 (en) 1989-06-09 1989-07-19 Bioremediation base material

Country Status (1)

Country Link
JP (1) JPH0622575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647672U (en) * 1992-12-02 1994-06-28 勝好 榛村 Bridge vibration power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647672U (en) * 1992-12-02 1994-06-28 勝好 榛村 Bridge vibration power generator

Also Published As

Publication number Publication date
JPH0390153A (en) 1991-04-16

Similar Documents

Publication Publication Date Title
Hermawan et al. Metals for biomedical applications
US7740798B2 (en) Alloy compositions and devices including the compositions
KR102246887B1 (en) Magnesium-aluminum-zinc alloy, method for the production thereof and use thereof
Pilliar Metallic biomaterials
US20080091267A1 (en) Medical devices including hardened alloys
EP1934381B1 (en) Medical devices having alloy compositions
CN101768685B (en) Biomedical titanium-niobium-based shape memory alloy as well as preparation method, processing method and application method thereof
JP2019148012A (en) Magnesium alloy, method for production thereof, and use thereof
Pilliar Metallic biomaterials
Narushima New-generation metallic biomaterials
US6786984B1 (en) Ternary alloy and apparatus thereof
EP1062374A4 (en) Pseudoelastic beta titanium alloy and uses therefor
JPS6018744B2 (en) Heat treatment method for cast alloys
Niinomi Recent research and development in metallic materials for biomedical, dental and healthcare products applications
DE102006025292A1 (en) Biocompatible titanium alloy, process for its preparation and medical bone implant made therefrom
Abd-Elaziem et al. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review
KR100653160B1 (en) Production method of Ti-base alloy with low elastic modulus and excellent bio-compatibility
JP4547797B2 (en) Biomedical Ti alloy and method for producing the same
JPH0622575B2 (en) Bioremediation base material
US20070131318A1 (en) Medical alloys with a non-alloyed dispersion and methods of making same
EP4133117B1 (en) Bioresorbable fe-mn-si-x alloys for medical implants
JP2000239799A (en) Ni-FREE TWO-PHASE STAINLESS STEEL FOR LIVING BODY
JPH1129844A (en) High strength titanium alloy and its production
CN117867325A (en) Degradable biomedical zinc alloy and preparation method and application thereof
JP2000087160A (en) Titanium alloy for living body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 15

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 16

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 16