JPH06224060A - Manufacture of magnetic core for high frequency - Google Patents

Manufacture of magnetic core for high frequency

Info

Publication number
JPH06224060A
JPH06224060A JP5323169A JP32316993A JPH06224060A JP H06224060 A JPH06224060 A JP H06224060A JP 5323169 A JP5323169 A JP 5323169A JP 32316993 A JP32316993 A JP 32316993A JP H06224060 A JPH06224060 A JP H06224060A
Authority
JP
Japan
Prior art keywords
thin strip
magnetic core
iron loss
high frequency
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5323169A
Other languages
Japanese (ja)
Other versions
JP2506267B2 (en
Inventor
Senji Shimanuki
専治 嶋貫
Michio Hasegawa
迪雄 長谷川
Tadahiko Kobayashi
忠彦 小林
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5323169A priority Critical patent/JP2506267B2/en
Publication of JPH06224060A publication Critical patent/JPH06224060A/en
Application granted granted Critical
Publication of JP2506267B2 publication Critical patent/JP2506267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To lessen remarkedly the iron loss of a magnetic core at a high-frequency region by a method wherein an amorphous magnetic alloy thin strip, which has specified conditions about its thickness, is manufactured by a molten metal quenching method and the magnetic core is obtained using this thin strip. CONSTITUTION:An amorphous magnetic alloy thin strip of a composition, which is shown by the formula [(The t) and the (t) respectively show the maximum value of the thickness of the thin strip and the mean value of the thickness of the thin strip and the (t) corresponds to the mean values of W, (d), (l) and (p) (The W, the (d), the (l) and the (p) respectively show the weight, width, length and density of the thin strip.)]. is manufactured by a molten metal quenching method. That is, a molten alloy of this composition is made to jet on a single roll, which is rotated at high speed, by an argon gas pressure through a quartz tube nozzle, is quenched and a thin strip sample is manufactured. This sample is cut off, is wound on a bobbin made of aluminium, is subjected to heat treatment and thereafter, a magnetic core is obtained. Thereby, the iron loss of the magnetic core at a high-frequency region can be remarkedly lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電磁気装置に用いて有効
な低損失非晶質磁性合金の磁心に関し、更に詳しくは、
高周波領域(10kHz〜200kHz)で鉄損が著し
く小さくスイッチングレギュレータなどに好適な高周波
用磁心の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss amorphous magnetic alloy magnetic core effective for use in an electromagnetic device.
The present invention relates to a method for manufacturing a high frequency magnetic core, which has a significantly small iron loss in a high frequency region (10 kHz to 200 kHz) and is suitable for a switching regulator or the like.

【0002】[0002]

【従来の技術】従来から、スイッチングレギュレータな
ど高周波で使用する磁心としては、パーマロイ、フエラ
イトなどの結晶質材料が用いられている。
2. Description of the Related Art Conventionally, crystalline materials such as permalloy and ferrite have been used as magnetic cores used in high frequencies such as switching regulators.

【0003】しかしながら、パーマロイは比抵抗が小さ
いので高周波での鉄損が大きくなる。また、フエライト
は高周波で損失は小さいが、磁束密度もせいぜい500
0Gと小さく、そのため、大きな動作磁束密度での使用
時にあっては、飽和に近くなりその結果鉄損が増大す
る。近時、スイッチングレギュレータに使用される電源
トランスなど高周波で使用されるトランスにおいては、
形状の小型化が望まれているが、その場合、動作磁束密
度の増大が必要となるため、フエライトの鉄損増大は実
用上大きな問題となる。
However, since permalloy has a small specific resistance, iron loss at high frequencies becomes large. Also, although ferrite has a high frequency and a small loss, the magnetic flux density is at most 500.
It is as small as 0 G, so that when it is used with a large operating magnetic flux density, it approaches saturation, resulting in an increase in iron loss. Recently, in the transformer used at high frequency such as the power transformer used for the switching regulator,
Although it is desired to reduce the size of the shape, in this case, the operating magnetic flux density must be increased, so that the increase in iron loss of the ferrite becomes a serious problem in practical use.

【0004】一方、結晶構造を持たない非晶質磁性合金
は、高透磁率、低保磁力など優れた軟質磁性特性を示す
ので最近注目を集めている。これらの非晶質磁性合金
は、Fe、Co、Niなどを基本とし、これに非晶質化
元素(メタロイド)として、P、C、B、Si、Al、
Geなどを包含するものである。
On the other hand, amorphous magnetic alloys having no crystal structure have recently attracted attention because they exhibit excellent soft magnetic characteristics such as high magnetic permeability and low coercive force. These amorphous magnetic alloys are based on Fe, Co, Ni, etc., on which P, C, B, Si, Al, and
It includes Ge and the like.

【0005】しかしながら、これら非晶質磁性合金の全
てが高周波領域で鉄損が小さいというわけではない。例
えば、Fe系非晶質合金は、50〜60Hzの低周波領
域ではケイ素鋼の約1/4という非常に小さい鉄損を示
すが、1kHz以上の高周波領域になると著しく大きな
鉄損を示し、とてもスイッチングレギュレータ等の高周
波領域での使用に適合するものではない。これは、動作
周波数の2乗に比例する渦電流損失に基づく現象であ
る。そのため、非晶質磁性合金の薄帯を磁心として1K
Hz以上の高周波領域で使用する場合には、一般に、該
薄帯の厚みを30μm以下に調整することが必要であ
る。
However, not all of these amorphous magnetic alloys have small iron loss in the high frequency region. For example, an Fe-based amorphous alloy shows a very small iron loss of about 1/4 that of silicon steel in the low frequency region of 50 to 60 Hz, but exhibits a significantly large iron loss in the high frequency region of 1 kHz or more, which is very low. It is not suitable for use in high frequency areas such as switching regulators. This is a phenomenon based on eddy current loss that is proportional to the square of the operating frequency. Therefore, the amorphous magnetic alloy ribbon is used as a magnetic core for 1K.
When used in a high frequency region of Hz or higher, it is generally necessary to adjust the thickness of the ribbon to 30 μm or less.

【0006】他方、非晶質磁性合金の薄帯は、通常、石
英などの耐熱容器の中で溶融した所定組成の溶融合金を
該合金にガス圧を加えることによって、該容器先端のノ
ズルから高速回転する金属製の単ロール又は双ロールの
回転面に噴出して急冷する溶湯急冷法で作成されてい
る。しかしながら、このようにして作製された薄帯の表
面には微細な凹凸が存在し、その凹凸の状態によって高
周波領域での鉄損が増大したり、また、占積率が著しく
小さくなるなどの実用面における不都合を招くことがあ
った。
On the other hand, a ribbon of an amorphous magnetic alloy is usually produced by applying a molten alloy of a predetermined composition which is melted in a heat-resistant container such as quartz to the alloy at high speed from a nozzle at the tip of the container. It is prepared by a molten metal quenching method in which it is jetted onto a rotating surface of a rotating metal single roll or twin rolls and rapidly cooled. However, the surface of the ribbon thus produced has fine irregularities, and the state of the irregularities increases iron loss in a high frequency region, and the space factor is significantly reduced. There was a case where the inconvenience was caused.

【0007】[0007]

【発明が解決しようとする課題】本発明は以上の点を考
慮してなされたもので、非晶質合金をもちい高周波領域
における低鉄損を実現する高周波磁心の製造方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object thereof is to provide a method of manufacturing a high frequency magnetic core which uses an amorphous alloy and realizes low iron loss in a high frequency region. And

【0008】[0008]

【課題を解決するための手段及び作用】本発明者らは、
高周波領域、とりわけ10〜200kHzの高周波領域
における非晶質磁性合金の薄帯の表面凹凸状態(表面粗
さ)と鉄損の関係について鋭意研究を重ねた結果、該薄
帯の厚み最大値と厚み平均値とから算出して表示される
表面粗さが所定の値の範囲にあるとき、また、厚み最大
値が所定の範囲にあるときその鉄損が小さくなるとの事
実を見出し本発明を完成するに到った。
Means and Actions for Solving the Problems The present inventors have
As a result of intensive studies on the relationship between the surface roughness of the ribbon of amorphous magnetic alloy and the iron loss in the high frequency region, particularly in the high frequency region of 10 to 200 kHz, the maximum thickness and the thickness of the thin ribbon The present invention has been completed by finding the fact that the iron loss becomes small when the surface roughness calculated and displayed from the average value is in a predetermined value range, and when the maximum thickness value is in a predetermined range. Came to.

【0009】本発明は、高周波領域において鉄損が著し
く小さい高周波用磁心を提供することに目的がある。
An object of the present invention is to provide a high frequency magnetic core having a remarkably small iron loss in the high frequency region.

【0010】本発明は、表面粗さがThe present invention has a surface roughness

【0011】[0011]

【数2】 を満足する非晶質磁性合金薄帯を溶湯急冷法により製造
し、これを用いて磁心となすことを特徴とする。
[Equation 2] It is characterized in that an amorphous magnetic alloy ribbon satisfying the above conditions is manufactured by a molten metal quenching method and is used as a magnetic core.

【0012】本発明の磁心において、それを構成する非
晶質磁性合金は一般にM100-2 Nzの組成式で表わされ
る。ここで、MはFe、Co、Niのうち少なくとも1
種の元素であり、その一部は、Ti、V、Cr、MnC
o、Zr、Nb、Mo、Ta、Wの群から選ばれる少く
とも1種の元素で1〜10原子%置換されていてもよ
い。NはP、C、B、Si、Al、Geなどのメタロイ
ドの少くとも1種の元素であり、Zは15<Z<30を
満足する数である。特に磁束密度7KG以下のCo基非
晶質磁性合金を用いると効果が大きい。
In the magnetic core of the present invention, the amorphous magnetic alloy constituting the magnetic core is generally represented by a composition formula of M 100-2 Nz. Here, M is at least one of Fe, Co, and Ni.
It is a seed element, some of which are Ti, V, Cr, MnC.
1 to 10 atom% may be substituted with at least one element selected from the group consisting of o, Zr, Nb, Mo, Ta and W. N is at least one element of metalloid such as P, C, B, Si, Al and Ge, and Z is a number satisfying 15 <Z <30. Particularly, the effect is large when a Co-based amorphous magnetic alloy having a magnetic flux density of 7 KG or less is used.

【0013】このような非晶質磁性合金は、上記した
M、Nの各成分を所定の割合いで混合した後、溶融し、
これを溶湯急冷法などの方法によって非晶質磁性合金化
し、ついで無磁場中で所定の温度(例えば、400〜4
50℃)に加熱処置して容易に作製することができる。
上記式におけるtは該薄帯に関する実測値として求めら
れ、tは該薄帯の重量、幅、長さ、密度をそれぞれW、
d、l、ρとしたときに、t=W/d・l・ρの式から
算出される計算値である。
Such an amorphous magnetic alloy is prepared by mixing the above-mentioned respective components of M and N in a predetermined ratio and then melting them.
This is made into an amorphous magnetic alloy by a method such as a melt quenching method, and then in a non-magnetic field at a predetermined temperature (for example, 400 to 4).
It can be easily prepared by heat treatment at 50 ° C.
In the above equation, t is obtained as an actual measurement value regarding the ribbon, and t is the weight, width, length, and density of the ribbon, respectively,
It is a calculated value calculated from the equation of t = W / d · l · ρ, where d, l and ρ.

【0014】この表面粗さの値が0.30を超えると該
薄帯の表面凹凸の状態が顕著になり(表面が粗くな
り)、高周波領域での鉄損が著しく大きくなって使用に
適さなくなる。さらに0.30を超えると角形比も低下
してしまう。
When the value of the surface roughness exceeds 0.30, the surface irregularity of the ribbon becomes remarkable (the surface becomes rough), and the iron loss in the high frequency region becomes extremely large, which makes it unsuitable for use. . Further, if it exceeds 0.30, the squareness ratio also decreases.

【0015】また、該薄帯にあって、厚み最大値(t)
が5μm未満の場合には、得られた磁心の巻回時におっ
て層間絶縁体を大量に必要とするためその占積率が著し
く低下し実用的でなくなる。更に、tが30μmを超え
ると表面粗さに関係なく高周波領域における鉄損が著し
く増大する。したがって、本発明の磁心にあっては、そ
の薄帯の厚み最大値が5μm≦t≦30μmの範囲に設
定することが好ましい。
Further, in the ribbon, the maximum thickness value (t)
If it is less than 5 μm, a large amount of interlayer insulator is required during winding of the obtained magnetic core, so that the space factor thereof is remarkably reduced, which is not practical. Further, when t exceeds 30 μm, iron loss in the high frequency region remarkably increases regardless of the surface roughness. Therefore, in the magnetic core of the present invention, it is preferable to set the maximum thickness of the ribbon in the range of 5 μm ≦ t ≦ 30 μm.

【0016】本発明の磁心は、10〜200kHzの動
作周波数にあって特に鉄損を小さくして有効である。
The magnetic core of the present invention has an operating frequency of 10 to 200 kHz and is particularly effective in reducing iron loss.

【0017】本発明の磁心を構成する薄帯の厚み最大値
は、溶湯急冷法にあっては、ロールの回転数、溶融合金
をノズルから噴出するときに該溶融合金に印加するガス
圧などを調整し、また、表面粗さは更にノズルとロール
との間隔を0.1〜0.5mmの範囲内で調整することに
よって適宜な値にすることができる。
In the melt quenching method, the maximum thickness of the ribbon forming the magnetic core of the present invention depends on the number of rotations of the roll, the gas pressure applied to the molten alloy when it is ejected from the nozzle, and the like. The surface roughness can be adjusted to an appropriate value by further adjusting the distance between the nozzle and the roll within the range of 0.1 to 0.5 mm.

【0018】ただし本願発明においては溶湯急冷後の状
態で上記条件を満たすことが重要であり、研磨処理など
でこの条件を満たしても本願発明の磁気特性の向上効果
は達成できない。これは溶湯急冷で作製した非晶質磁性
合金薄帯表面に存在する微小な凹凸が、研磨処理ではな
くなってしまい、本願発明の如く、溶湯急冷後の状態で
上記条件を満たすようにした場合とでは、非晶質磁性合
金薄帯表面の状態が微妙に異なるためと考えられる。ま
た研磨処置は非晶質磁性合金薄帯に歪みを導入すること
になり、これも磁気特性上好ましいことでない。
However, in the present invention, it is important that the above conditions are satisfied after the molten metal is rapidly cooled, and even if this condition is satisfied by polishing or the like, the effect of improving the magnetic properties of the present invention cannot be achieved. This is because the fine irregularities present on the surface of the amorphous magnetic alloy ribbon produced by the melt quenching are lost by the polishing treatment, and the above conditions are satisfied after the melt quenching as in the present invention. Then, it is considered that the state of the amorphous magnetic alloy ribbon surface is slightly different. Further, the polishing treatment introduces strain into the amorphous magnetic alloy ribbon, which is also not preferable in terms of magnetic characteristics.

【0019】[0019]

【実施例】以下に、本発明を実施例に基づいて説明す
る。 実施例1 表に示した各種組成の非晶質磁性合金の薄帯を溶湯急冷
法で作製した。すなわち、高速回転する単ロールの上に
石英管ノズルから各種組成の溶融合金をアルゴンガス圧
で噴出せしめて急冷し、幅5mm、長さ100mの薄帯試
料を作製した。このとき、ロール回転数、ガス圧、ノズ
ルとロール間の距離を種々に変動せしめて、厚み最大
値、表面粗さを変化させた。
EXAMPLES The present invention will be described below based on examples. Example 1 Thin ribbons of amorphous magnetic alloys having various compositions shown in the table were prepared by a melt quenching method. That is, molten alloys of various compositions were jetted from a quartz tube nozzle onto a high-speed rotating single roll at an argon gas pressure and rapidly cooled to prepare a ribbon sample having a width of 5 mm and a length of 100 m. At this time, the roll rotation speed, gas pressure, and the distance between the nozzle and the roll were variously changed to change the maximum thickness value and the surface roughness.

【0020】薄帯試料から長さ14mを切り取り、それ
を直径20mmのアルミナ製ポビンに巻きつけ、全体を4
00℃で15分間熱処理した後、内径20mm、外径30
mmのプラスチックケースに入れて1次コイル、2次コイ
ルとしてともに70回巻き、ワットメータを用いて磁束
密度(Bm)3kG、周波数20kHz、100kHz
における鉄損を測定した。また薄帯試料の飽和磁束密度
を試料振動形磁力計を用いて測定した。結果を一括して
表に示した。なお最大値は10cmごとにマイクロメータ
で測定して求めた。
A length of 14 m was cut from a thin strip sample, which was wound around an alumina pobin having a diameter of 20 mm, and the whole was 4
After heat treatment at 00 ℃ for 15 minutes, inner diameter 20mm, outer diameter 30
Put in a plastic case of mm and wind 70 times both as a primary coil and a secondary coil. Use a wattmeter to measure magnetic flux density (Bm) 3kG, frequency 20kHz, 100kHz.
Was measured for iron loss. The saturation magnetic flux density of the ribbon sample was measured using a sample vibrating magnetometer. The results are shown collectively in the table. The maximum value was obtained by measuring every 10 cm with a micrometer.

【0021】[0021]

【表1】 表から明らかなように、本発明にかかる薄帯試料(試料
番号1〜6)は、比較例薄帯試料(試料番号7、8)に
比べ、磁束密度3kG、周波数20kHz、100kH
zにおける鉄損が著しく小さいことが判明した。 実施例2 組成(Fe0.6 Ni0.2 78Si8 14の非晶質磁性合
金の薄帯から成り、表面粗さを種々に変化させた磁心に
ついて、磁束密度3kG、周波数20kHz、100k
Hzにおける鉄損を測定した。その結果を、表面粗さの
関係として図に示した。図から明らかなように、表面粗
さが、0.30を超えると鉄損が急激に増大することが
判明した。
[Table 1] As is clear from the table, the ribbon samples (sample numbers 1 to 6) according to the present invention have a magnetic flux density of 3 kG, a frequency of 20 kHz, and 100 kHz as compared with the comparative ribbon samples (sample numbers 7 and 8).
It was found that the iron loss at z was extremely small. Example 2 A magnetic core composed of a ribbon of an amorphous magnetic alloy of composition (Fe 0.6 Ni 0.2 ) 78 Si 8 B 14 and having various surface roughnesses, magnetic flux density of 3 kG, frequency of 20 kHz, 100 k.
The iron loss at Hz was measured. The results are shown in the figure as a relation of surface roughness. As is clear from the figure, when the surface roughness exceeds 0.30, the iron loss suddenly increases.

【0022】組成(Co0.94Fe0.0671(Si0.6
0.4 29の非晶質磁性合金(磁束密度6.1kG)を単
ロール法にて作成した。なお板厚18μm、幅10mmを
基準とし、表面性を変化させた。
Composition (Co 0.94 Fe 0.06 ) 71 (Si 0.6 B
0.4 ) 29 amorphous magnetic alloy (magnetic flux density 6.1 kG) was prepared by the single roll method. The surface property was changed based on a plate thickness of 18 μm and a width of 10 mm.

【0023】この非晶質磁性合金リボンを巻回し、外径
18mm、内径12mmのトロイダルコアを成形した。次に
キュリー温度以上、結晶化温度以下の最適温度で熱処置
した後、4℃/minで冷却した。
The amorphous magnetic alloy ribbon was wound to form a toroidal core having an outer diameter of 18 mm and an inner diameter of 12 mm. Next, heat treatment was performed at an optimum temperature not lower than the Curie temperature and not higher than the crystallization temperature, and then cooled at 4 ° C./min.

【0024】得られたコアに1次及び2次巻線を施し、
1Oeの外部磁場を印加して交流磁化測定装置を用いて
周波数100kHzにおけるヒステリシス曲線を測定
し、角形比B/B1 (B:残留磁束密度、B1 :1
Oeにおける磁束密度)を求めた。その結果を第2図と
して示す。
The obtained core is provided with primary and secondary windings,
A hysteresis curve at a frequency of 100 kHz was measured by applying an external magnetic field of 1 Oe using an AC magnetization measuring device, and the squareness ratio B r / B 1 (B r : residual magnetic flux density, B 1 : 1) was measured.
The magnetic flux density in Oe) was determined. The result is shown in FIG.

【0025】[0025]

【発明の効果】以上説明したように、本発明の非晶質磁
性合金の薄帯から成る磁心は、高周波領域での鉄損が著
しく小さくなり、したがって、高周波トランスなどの小
型形状化を可能とするのでその工業的価値は大である。
As described above, the core made of the ribbon of the amorphous magnetic alloy of the present invention has a remarkably small iron loss in the high frequency region, and therefore, the high frequency transformer and the like can be miniaturized. Therefore, its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の鉄損を示す特性図。FIG. 1 is a characteristic diagram showing iron loss of the present invention.

【図2】 本発明の角形化を示す特性図。FIG. 2 is a characteristic diagram showing the squareness of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猪俣 浩一郎 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichiro Inomata 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 【数1】 を満たす非晶質磁性薄帯を溶湯急冷法により作成し、こ
の非晶質磁性合金薄帯を用い磁心を構成することを特徴
とする高周波用磁心の製造方法。
1. The equation 1 A method for producing a high frequency magnetic core, characterized in that an amorphous magnetic ribbon satisfying the above conditions is prepared by a molten metal quenching method, and the amorphous magnetic alloy ribbon is used to form a magnetic core.
JP5323169A 1993-11-29 1993-11-29 High frequency magnetic core manufacturing method Expired - Lifetime JP2506267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5323169A JP2506267B2 (en) 1993-11-29 1993-11-29 High frequency magnetic core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5323169A JP2506267B2 (en) 1993-11-29 1993-11-29 High frequency magnetic core manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56142252A Division JPS5844702A (en) 1981-09-11 1981-09-11 Magnetic core of amorphous magnetic alloy for high frequency

Publications (2)

Publication Number Publication Date
JPH06224060A true JPH06224060A (en) 1994-08-12
JP2506267B2 JP2506267B2 (en) 1996-06-12

Family

ID=18151853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5323169A Expired - Lifetime JP2506267B2 (en) 1993-11-29 1993-11-29 High frequency magnetic core manufacturing method

Country Status (1)

Country Link
JP (1) JP2506267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541632A (en) * 2010-05-27 2013-11-14 ザ・ナノスティール・カンパニー・インコーポレーテッド Alloys and deformation mechanisms exhibiting spinodal glass matrix microstructure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667905A (en) * 1979-11-07 1981-06-08 Hitachi Metals Ltd Improvement method of magnetic characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667905A (en) * 1979-11-07 1981-06-08 Hitachi Metals Ltd Improvement method of magnetic characteristic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541632A (en) * 2010-05-27 2013-11-14 ザ・ナノスティール・カンパニー・インコーポレーテッド Alloys and deformation mechanisms exhibiting spinodal glass matrix microstructure
US10266930B2 (en) 2010-05-27 2019-04-23 The Nanosteel Company, Inc. Alloys exhibiting spinodal glass matrix microconstituents structure and deformation mechanisms

Also Published As

Publication number Publication date
JP2506267B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
US5252144A (en) Heat treatment process and soft magnetic alloys produced thereby
US4385932A (en) Amorphous magnetic alloy
US4437907A (en) Amorphous alloy for use as a core
EP2557190A1 (en) Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy
US5593518A (en) Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications
US5871593A (en) Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications
JPH0525946B2 (en)
JPH01242755A (en) Fe-based magnetic alloy
US5593513A (en) Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications
EP0072893A1 (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
US5496418A (en) Amorphous Fe-B-Si alloys exhibiting enhanced AC magnetic properties and handleability
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JP2506267B2 (en) High frequency magnetic core manufacturing method
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH0480523B2 (en)
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH03197651A (en) Fe-base high transmissible magnetic alloy
JP2791173B2 (en) Magnetic core
JPH03197650A (en) Fe-base high transmissible magnetic alloy
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
JPH0323614B2 (en)
JPH01180944A (en) Amorphous magnetic alloy for choking coil and its production