JPH06223874A - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JPH06223874A
JPH06223874A JP50A JP2764393A JPH06223874A JP H06223874 A JPH06223874 A JP H06223874A JP 50 A JP50 A JP 50A JP 2764393 A JP2764393 A JP 2764393A JP H06223874 A JPH06223874 A JP H06223874A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
organic solvent
electrolytic solution
sulfolane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Shuji Kubota
修司 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP50A priority Critical patent/JPH06223874A/en
Publication of JPH06223874A publication Critical patent/JPH06223874A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an electrolyte for lithium secondary battery having the excellent lifetime characteristic, which can be charged to a high voltage without generating the electrolysis and which can repeat charge and discharge many times stably. CONSTITUTION:Lithium salt is solved in the mixture solvent, which consists of sulfolane at 20-80% by capacity and organic solvent having a low viscosity at 10-70% by capacity and organic solvent having a high dielectric constant at 10-30% by capacity. The rise of the pressure inside of a battery due to the electrolysis and the running short of electrolyte are thereby hard to be generated, and a lithium secondary battery using an electrode for high electromotive force can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気分解しにくくて高
電圧に充電できるリチウム二次電池用電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for a lithium secondary battery which is difficult to electrolyze and can be charged at a high voltage.

【0002】[0002]

【従来の技術】高起電力を発生させうるリチウム・コバ
ルト系等の電極を正極に用いたリチウム二次電池におい
て、その高起電力を活かしうる電解液が求められてい
る。すなわち従来、リチウム二次電池用の電解液として
はプロピレンカーボネートと1,2−ジメトキシエタン
やテトラヒドロフランの如き低粘度の有機溶媒との混合
溶媒にリチウム塩を溶解させたものが知られていた。し
かしながら、かかる電解液では充電時の高電圧で電気分
解し、内圧上昇による電池の変形ないし破壊や液枯れが
発生して実用できない問題点があった。
2. Description of the Related Art In a lithium secondary battery using a lithium-cobalt-based electrode capable of generating high electromotive force as a positive electrode, an electrolytic solution that can utilize the high electromotive force is required. That is, conventionally, as an electrolytic solution for a lithium secondary battery, a solution in which a lithium salt is dissolved in a mixed solvent of propylene carbonate and a low-viscosity organic solvent such as 1,2-dimethoxyethane or tetrahydrofuran has been known. However, there is a problem in that such an electrolytic solution cannot be put into practical use because it is electrolyzed at a high voltage during charging, causing deformation or destruction of the battery or liquid depletion due to an increase in internal pressure.

【0003】[0003]

【発明が解決しようとする課題】本発明は、電気分解す
ることなく高電圧に充電でき、しかも充放電を多数回安
定して繰返すことができて電池寿命に優れるリチウム二
次電池用電解液の開発を課題とする。
DISCLOSURE OF THE INVENTION The present invention provides an electrolytic solution for a lithium secondary battery, which can be charged to a high voltage without electrolysis, and can be repeatedly charged and discharged stably a number of times and which is excellent in battery life. Development is an issue.

【0004】[0004]

【課題を解決するための手段】本発明は、スルホラン2
0〜80容量%、低粘度の有機溶媒10〜70容量%及
び高誘電率の有機溶媒10〜30容量%からなる混合溶
媒にリチウム塩を溶解させたことを特徴とするリチウム
二次電池用電解液を提供するものである。
The present invention provides sulfolane 2
Electrolysis for a lithium secondary battery, wherein a lithium salt is dissolved in a mixed solvent consisting of 0 to 80% by volume, an organic solvent having a low viscosity of 10 to 70% by volume, and an organic solvent having a high dielectric constant of 10 to 30% by volume. It provides a liquid.

【0005】[0005]

【作用】スルホランはリチウムに対する電位窓をプラス
側に広くする。低粘度の有機溶媒はスルホランを希釈し
て電解液の粘度を下げ、導電率を向上させる。高誘電率
の有機溶媒は電解液の誘電率を向上させ、低粘度の有機
溶媒の添加による誘電率の低下を防止してリチウム塩を
解離しやすくする。その結果、電解液の電気分解なく高
電圧に充電でき、導電率や誘電率に優れて高起電力を発
生させうるリチウム・コバルト系等の電極を正極に用い
たリチウム二次電池の形成が可能になる。
Function: Sulfolane widens the potential window for lithium to the positive side. The low-viscosity organic solvent dilutes sulfolane to reduce the viscosity of the electrolytic solution and improve the conductivity. The high-dielectric-constant organic solvent improves the dielectric constant of the electrolytic solution, prevents the dielectric constant from decreasing due to the addition of the low-viscosity organic solvent, and facilitates dissociation of the lithium salt. As a result, it is possible to form a lithium secondary battery that uses a lithium-cobalt-based electrode as the positive electrode, which can be charged to a high voltage without electrolysis of the electrolyte, has excellent conductivity and dielectric constant, and can generate high electromotive force. become.

【0006】[0006]

【実施例】本発明の電解液は、スルホラン、低粘度の有
機溶媒、高誘電率の有機溶媒及びリチウム塩を成分と
し、リチウム二次電池の形成に用いるものである。
EXAMPLE The electrolytic solution of the present invention contains sulfolane, an organic solvent having a low viscosity, an organic solvent having a high dielectric constant and a lithium salt as components, and is used for forming a lithium secondary battery.

【0007】低粘度の有機溶媒としては、常温での粘度
が1cP以下のものが好ましく用いられ、その例として
は蟻酸メチル、酢酸メチル、1,2−ジメトキシエタ
ン、ジメチルカーボネート、ジエチルカーボネート、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソランなどがあげられる。
As the low-viscosity organic solvent, those having a viscosity at room temperature of 1 cP or less are preferably used, and examples thereof include methyl formate, methyl acetate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran,
Examples include 1,3-dioxolane and the like.

【0008】高誘電率の有機溶媒としては、例えばエチ
レンカーボネート、ジメチルスルホキシド、γ−ブチロ
ラクトンなどが用いられる。
As the organic solvent having a high dielectric constant, for example, ethylene carbonate, dimethyl sulfoxide, γ-butyrolactone or the like is used.

【0009】リチウム塩としては適宜なものを用いてよ
く、その例としてはLiイオンと、PF6イオン、ClO4
イオン、BF4イオン、CF3SO3イオン、AlCl4イオ
ン、AsF6イオン、Iイオンなどの陰イオンとを組合せ
たものなどがあげられる。
Any appropriate lithium salt may be used, examples of which include Li ion, PF 6 ion and ClO 4
Ions, BF 4 ions, CF 3 SO 3 ions, AlCl 4 ions, AsF 6 ions, and combinations of anions such as I ions are included.

【0010】電解液の調製は、スルホラン、低粘度の有
機溶媒、高誘電率の有機溶媒の混合溶媒中にリチウム塩
を溶解させることにより行うことができる。混合に際し
ては1種又は2種以上の各成分を用いてよく、含水率が
可及的に低い、就中50ppm以下の電解液とすることが
好ましい。水は正・負の電極と反応して電池性能の低下
を招き、また水の電気分解が生じて本来の電池反応を妨
げる。
The electrolytic solution can be prepared by dissolving a lithium salt in a mixed solvent of sulfolane, an organic solvent having a low viscosity and an organic solvent having a high dielectric constant. Upon mixing, one or two or more kinds of components may be used, and it is preferable to use an electrolyte solution having a water content as low as possible, especially 50 ppm or less. Water reacts with the positive and negative electrodes to cause deterioration of battery performance, and electrolysis of water occurs to prevent the original battery reaction.

【0011】各溶媒成分の混合割合は、スルホラン20
〜80容量%、低粘度の有機溶媒10〜70容量%、高
誘電率の有機溶媒10〜30容量%とされる。混合割合
が前記範囲外では電位窓の広さと導電率と誘電率のバラ
ンスに劣るためか、電解液の電気分解により電池の内部
圧力が大きく上昇したり、充放電の繰返しによる性能の
低下が大きく電池寿命に乏しいものとなる。なお電解液
におけるリチウム塩の含有量は、電池の形態や性能など
に応じて適宜に決定してよく、一般には0.1〜3モル
/リットル程度とされる。
The mixing ratio of each solvent component is sulfolane 20.
˜80% by volume, low viscosity organic solvent 10˜70% by volume, and high dielectric constant organic solvent 10˜30% by volume. If the mixing ratio is out of the above range, the balance between the electric potential window width and the electric conductivity and the dielectric constant may be poor, or the internal pressure of the battery may be greatly increased by the electrolysis of the electrolytic solution, or the performance may be significantly deteriorated due to repeated charging and discharging. The battery life is short. The content of the lithium salt in the electrolytic solution may be appropriately determined depending on the form and performance of the battery, and is generally about 0.1 to 3 mol / liter.

【0012】本発明の電解液は、上記したようにリチウ
ム二次電池を形成するためのものであり、特に高起電力
を発生させうる電極を正極とするものの形成に好ましく
用いうる。ちなみにかかる正極用の電極としては、例え
ば一般式:LiwCo1-x-yxy2+zで表されるものな
どを活物質とするリチウム・コバルト系のものなどがあ
げられる。前記式中のMは、Niの如き遷移金属で2種
以上含有していてもよい。またwは0<w≦2であり、
xは0≦x<1である。さらにyは0≦y<1であり、
zは−1≦z≦4である。
The electrolytic solution of the present invention is for forming a lithium secondary battery as described above, and can be particularly preferably used for forming an electrode which can generate a high electromotive force as a positive electrode. Incidentally, as the positive electrode according to the present invention, for example, a lithium-cobalt type electrode having an active material represented by the general formula: Li w Co 1-xy M x P y O 2 + z can be used. M in the above formula may contain two or more kinds of transition metals such as Ni. Also, w is 0 <w ≦ 2,
x is 0 ≦ x <1. Further, y is 0 ≦ y <1, and
z is -1≤z≤4.

【0013】なお、リチウム二次電池の形成に際して本
発明の電解液は、そのまま用いる方式のほか、例えば適
宜なポリマーや多孔性支持体、あるいはゲル状物質に含
浸させるなどして保持させた方式などで用いることもで
き、その使用方式は任意である。
In addition to the method of using the electrolytic solution of the present invention as it is in the formation of a lithium secondary battery, for example, a method of holding it by impregnating it with an appropriate polymer, a porous support, or a gel-like substance. Can be used in any method.

【0014】実施例1 脱水精製処理により含水量を50ppm以下としたスルホ
ラン、1,2−ジメトキシエタン及びエチレンカーボネ
ートを50:40:10の容積比で用いて混合し、その
混合溶媒にLiClO4を1モル/リットルの濃度となる
ように溶解させて電解液を得た。なお用いたLiClO4
は、200℃で24時間真空乾燥処理したものである。
Example 1 Sulfolane, 1,2-dimethoxyethane and ethylene carbonate having a water content of 50 ppm or less by dehydration and refining treatment were mixed in a volume ratio of 50:40:10, and LiClO 4 was mixed in the mixed solvent. An electrolytic solution was obtained by dissolving the solution to a concentration of 1 mol / liter. The LiClO 4 used
Is a product that has been vacuum dried at 200 ° C. for 24 hours.

【0015】実施例2 スルホラン、1,2−ジメトキシエタン及びエチレンカ
ーボネートを20:70:10の容積比で用いたほかは
実施例1に準じて電解液を得た。
Example 2 An electrolytic solution was obtained in the same manner as in Example 1 except that sulfolane, 1,2-dimethoxyethane and ethylene carbonate were used in a volume ratio of 20:70:10.

【0016】実施例3 スルホラン、1,2−ジメトキシエタン及びエチレンカ
ーボネートを20:50:30の容積比で用いたほかは
実施例1に準じて電解液を得た。
Example 3 An electrolytic solution was obtained in the same manner as in Example 1 except that sulfolane, 1,2-dimethoxyethane and ethylene carbonate were used in a volume ratio of 20:50:30.

【0017】実施例4 スルホラン、1,2−ジメトキシエタン及びエチレンカ
ーボネートを80:10:10の容積比で用いたほかは
実施例1に準じて電解液を得た。
Example 4 An electrolytic solution was obtained in the same manner as in Example 1 except that sulfolane, 1,2-dimethoxyethane and ethylene carbonate were used at a volume ratio of 80:10:10.

【0018】比較例1 プロピレンカーボネートと1,2−ジメトキシエタンを
50:50の容積比で混合した混合溶媒を用いたほかは
実施例1に準じて電解液を得た。
Comparative Example 1 An electrolytic solution was obtained in the same manner as in Example 1 except that a mixed solvent prepared by mixing propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 50:50 was used.

【0019】比較例2 スルホラン、1,2−ジメトキシエタン及びエチレンカ
ーボネートを5:90:5の容積比で用いたほかは実施
例1に準じて電解液を得た。
Comparative Example 2 An electrolytic solution was obtained in the same manner as in Example 1 except that sulfolane, 1,2-dimethoxyethane and ethylene carbonate were used in a volume ratio of 5: 90: 5.

【0020】比較例3 スルホラン、1,2−ジメトキシエタン及びエチレンカ
ーボネートを5:45:50の容積比で用いたほかは実
施例1に準じて電解液を得た。
Comparative Example 3 An electrolytic solution was obtained in the same manner as in Example 1 except that sulfolane, 1,2-dimethoxyethane and ethylene carbonate were used in a volume ratio of 5:45:50.

【0021】比較例4 スルホラン、1,2−ジメトキシエタン及びエチレンカ
ーボネートを90:5:5の容積比で用いたほかは実施
例1に準じて電解液を得た。
Comparative Example 4 An electrolytic solution was obtained in the same manner as in Example 1 except that sulfolane, 1,2-dimethoxyethane and ethylene carbonate were used at a volume ratio of 90: 5: 5.

【0022】評価試験 電池の内部圧 上記した実施例及び比較例で得た電解液を用いて、Li
Co0.50.52を正極、Liを負極とする密閉容器型の
リチウム二次電池を作製し、そのキャップ型の負極に圧
力センサと圧力計を取り付けて充放電を繰返し、初期、
50回目及び100目における電池の内部圧を調べた。
Evaluation Test Internal Pressure of Battery Using the electrolytic solutions obtained in the above-mentioned Examples and Comparative Examples, Li
A closed container type lithium secondary battery having Co 0.5 P 0.5 O 2 as a positive electrode and Li as a negative electrode was prepared, and a pressure sensor and a pressure gauge were attached to the cap type negative electrode to repeat charging and discharging, and at the initial stage,
The internal pressure of the battery was examined at the 50th time and the 100th time.

【0023】充放電効率 前記に準じ密閉容器型のリチウム二次電池を作製し、そ
の充放電を繰返して50回目又は100目における充放
電の初期値に対する割合を調べた。
Charge / Discharge Efficiency A sealed container type lithium secondary battery was prepared according to the above, and the charge / discharge was repeated to examine the ratio of the charge / discharge to the initial value at the 50th or 100th cycle.

【0024】その結果を表1に示した。The results are shown in Table 1.

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明の電解液は、電気分解による電池
内部圧の上昇や液枯れが発生しにくく、高電圧に充電で
きて高起電力用電極使用のリチウム二次電池を形成で
き、得られた電池は充放電を多数回安定に繰返せて寿命
に優れている。
INDUSTRIAL APPLICABILITY The electrolytic solution of the present invention is unlikely to cause an increase in battery internal pressure or liquid depletion due to electrolysis, can be charged at a high voltage, and can form a lithium secondary battery using a high electromotive force electrode. The obtained battery can be repeatedly charged and discharged a number of times stably and has an excellent life.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スルホラン20〜80容量%、低粘度の
有機溶媒10〜70容量%及び高誘電率の有機溶媒10
〜30容量%からなる混合溶媒にリチウム塩を溶解させ
たことを特徴とするリチウム二次電池用電解液。
1. Sulfolane 20 to 80% by volume, low viscosity organic solvent 10 to 70% by volume, and high dielectric constant organic solvent 10
An electrolytic solution for a lithium secondary battery, characterized in that a lithium salt is dissolved in a mixed solvent of ˜30% by volume.
JP50A 1993-01-21 1993-01-21 Electrolyte for lithium secondary battery Pending JPH06223874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06223874A (en) 1993-01-21 1993-01-21 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06223874A (en) 1993-01-21 1993-01-21 Electrolyte for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH06223874A true JPH06223874A (en) 1994-08-12

Family

ID=12226619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06223874A (en) 1993-01-21 1993-01-21 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH06223874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032031A (en) 2013-09-17 2015-03-25 에스케이케미칼주식회사 Electrolyte solution for secondary battery and additive therefor
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
US9601809B2 (en) 2012-11-21 2017-03-21 Nec Corporation Lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
US9601809B2 (en) 2012-11-21 2017-03-21 Nec Corporation Lithium secondary battery
KR20150032031A (en) 2013-09-17 2015-03-25 에스케이케미칼주식회사 Electrolyte solution for secondary battery and additive therefor

Similar Documents

Publication Publication Date Title
JP4380265B2 (en) Water-based lithium secondary battery
CN109314240B (en) Aqueous secondary battery
KR101055144B1 (en) Electrolyte including amide compound and electrochemical device having same
KR970704726A (en) Fluorine-substituted cyclic carbonate esters and electrolytes containing them and batteries
JP4417472B2 (en) Non-aqueous electrolyte magnesium secondary battery
JP2004259650A (en) Magnesium secondary battery
JP5566910B2 (en) Electrolyte containing eutectic mixture and electrochemical device having the same
US6803152B2 (en) Nonaqueous electrolytes based on organosilicon ammonium derivatives for high-energy power sources
CN1891700A (en) Halogenated cyclic sulfite, and an electrolyte, lithium cell and lithium-sulfar cell
JP2003068358A (en) Electrolytic solution or gel electrolyte for electrochemical device, and battery
JPH06223874A (en) Electrolyte for lithium secondary battery
JP2018133146A (en) Electrolyte for nonaqueous secondary battery, electrolyte solution using the same, and battery
JPH1131529A (en) Solvent for lithium ion secondary battery
KR101645528B1 (en) Electrolyte comprising alkoxy alkyl nitrile compound and electrochemical device containing the same
JPH08138741A (en) Organic electrolyte secondary battery
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPS62165879A (en) Secondary cell
Salomon Ion-solvent effects and high energy batteries
JP3418715B2 (en) Organic electrolyte secondary battery
JPH0515034B2 (en)
JPH06223875A (en) Electrolyte for lithium secondary battery
CN110504490B (en) High-voltage electrolyte containing silicon-based additive and preparation method thereof
JP5220323B2 (en) Ionic polymer, and electrolyte and electrochemical device using the same
KR100324712B1 (en) New blended porous polymer electrolyte(Ⅱ) and a method for manufacturing thereof
JP4104291B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery