JPH06223508A - Signal reproducing method for recording medium - Google Patents

Signal reproducing method for recording medium

Info

Publication number
JPH06223508A
JPH06223508A JP1227793A JP1227793A JPH06223508A JP H06223508 A JPH06223508 A JP H06223508A JP 1227793 A JP1227793 A JP 1227793A JP 1227793 A JP1227793 A JP 1227793A JP H06223508 A JPH06223508 A JP H06223508A
Authority
JP
Japan
Prior art keywords
signal
area
circuit
reproducing
reproduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1227793A
Other languages
Japanese (ja)
Other versions
JP2865966B2 (en
Inventor
Seiichi Mita
誠一 三田
Toru Kawashima
徹 川嶋
Masanori Matsuzaki
政則 松崎
Toshimitsu Kaku
敏光 賀来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Image Information Systems Inc
Hitachi Ltd
Hitachi Advanced Digital Inc
Original Assignee
Hitachi Image Information Systems Inc
Hitachi Ltd
Hitachi Video and Information System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Image Information Systems Inc, Hitachi Ltd, Hitachi Video and Information System Inc filed Critical Hitachi Image Information Systems Inc
Priority to JP1227793A priority Critical patent/JP2865966B2/en
Priority to US08/155,228 priority patent/US5497361A/en
Publication of JPH06223508A publication Critical patent/JPH06223508A/en
Application granted granted Critical
Publication of JP2865966B2 publication Critical patent/JP2865966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the binarization of a signal at the same slice level possible by replacing a reproducing signal having the fluctuation of a low frequency component with another signal in an area other than a demodulation area, a non-recorded part and a relatively long default signal area. CONSTITUTION:The default and non-recorded areas of the reproducing signal are detected by a waveform shaping circuit 9. The output (c) of a DC correction circuit 2 is inputted to a signal compensation circuit 3 and replaced with a compensation signal (d) whose average potential is equal to a reference voltage Vr before a reproducing area, the non-recorded area in the reproducing area being reproduced and in the relatively long default signal area. Also even in the condition that a read gate (e), that is, a signal reproducing area from a system controller 14, is negative, when the non-recorded area being reproduced and the relatively long default signal area are detected by default detection circuits 10 and 11, it is replaced with the compensation signal (d) by the default detection signal (f) of the circuits 10 and 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は記録媒体の信号再生方法
に関する。より詳細には、記録信号帯域より低い周波数
成分を除去せずに二値化を行う信号再生方法に関し、特
に、信号の記録部分と未記録部分とが混在する光記録媒
体の信号再生に用いて好適な信号再生方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal reproducing method for a recording medium. More specifically, the present invention relates to a signal reproduction method for binarization without removing frequency components lower than the recording signal band, and particularly for signal reproduction of an optical recording medium in which a recorded portion and a non-recorded portion of the signal are mixed. The present invention relates to a suitable signal reproducing method and apparatus.

【0002】[0002]

【従来の技術】情報記憶装置として、光ビームを照射
し、その照射熱を利用して記録マークを記録した記録媒
体から信号再生する光ディスク装置や光磁気ディスク装
置が知られている。この種の情報記憶装置においては、
半導体レーザの発光パワー変動や、光ディスク媒体の感
度ばらつき及び環境による感度変動等により、記録媒体
に記録される記録マークの形状が変動し、この記録マー
クの形状変動がその再生時に偶数次歪となり、再生信号
のデューティが変動する問題がある。
2. Description of the Related Art As information storage devices, there are known optical disk devices and magneto-optical disk devices that irradiate a light beam and reproduce the signal from a recording medium on which recording marks are recorded by utilizing the irradiation heat. In this type of information storage device,
The shape of the recording mark recorded on the recording medium changes due to variations in the emission power of the semiconductor laser, variations in sensitivity of the optical disc medium, variations in sensitivity due to the environment, etc., and this variation in the shape of the recording mark becomes even-order distortion during reproduction, There is a problem that the duty of the reproduction signal varies.

【0003】この歪を除去するためには、再生信号を二
値化するコンパレータのスライスレベルを適正に制御す
ることが必要となる。この方法の一例が、光記録におけ
る信号処理技術 1989年 株式会社トリケップス発
行 田中 邦麿監修 第116頁から第118頁に記載
されている。
In order to remove this distortion, it is necessary to properly control the slice level of the comparator that binarizes the reproduction signal. An example of this method is described on pages 116 to 118 supervised by Kunimaro Tanaka, signal processing technology for optical recording, 1989, published by Trikeps Co., Ltd.

【0004】図3は従来の信号再生回路を示す。記録マ
ークのエッジ位置に情報を持たせるマーク長記録により
記録した記録媒体に、レーザ光を照射し、その反射光を
検出して再生信号を得、増幅器15で所望の振幅に増幅
する。この再生信号は、記録媒体の反射率や複屈折率の
変動及びレーザ光のトラック中心からのずれ等によっ
て、低周波成分の変動が生じる。この変動を取り除くた
めに高域通過フィルタ(以下HPFと称する)5を経
て、記録データの復調を行うための再生信号二値化手段
である波形整形回路8へ入力する。その一方、増幅した
再生信号の上部と下部のエンベロープを検出する上包絡
線検波回路16と下包絡線検波回路17へ入力し、それ
ぞれの出力の差分を差分回路18で検出し、波形整形回
路8へ入力する信号振幅の二分の一のレベルを得る。波
形整形回路8のスライスレベルは、記録媒体をトラック
に沿って多数に分割した記録領域(以下セクタと称す
る)の各先頭部に設けられ、復調用クロックの位相同期
を行うための同期信号領域(以下VFO部と称する)か
ら得られる再生信号の二分の一のレベルに設定する。こ
のため、VFO部を示すVFOゲートによりサンプルホ
ールド回路19を制御し、VFO部から得られる再生信
号の二分の一のレベルを波形整形回路8のスライスレベ
ルとして入力する。スライスレベルの設定にVFO部の
再生信号を用いるのは、マーク長記録ではVFO部の再
生波形の信号デューティが50%であり、その中心レベ
ルが記録データから得られる再生信号を二値化するため
の適正なスライスレベルとなるためである。
FIG. 3 shows a conventional signal reproducing circuit. A recording medium recorded by mark length recording in which information is provided at the edge position of the recording mark is irradiated with laser light, the reflected light is detected to obtain a reproduction signal, and the amplifier 15 amplifies it to a desired amplitude. The reproduced signal has low-frequency component fluctuations due to fluctuations in the reflectance and birefringence of the recording medium and deviations of the laser beam from the track center. In order to remove this fluctuation, it is passed through a high-pass filter (hereinafter referred to as HPF) 5 and input to a waveform shaping circuit 8 which is a reproduction signal binarizing means for demodulating the recorded data. On the other hand, the upper and lower envelope detection circuits 16 and 17 for detecting the upper and lower envelopes of the amplified reproduced signal are input to the lower envelope detection circuit 17, and the difference between the respective outputs is detected by the difference circuit 18, and the waveform shaping circuit 8 Obtain half the level of the signal amplitude input to. The slice level of the waveform shaping circuit 8 is provided at each head of a recording area (hereinafter referred to as a sector) obtained by dividing the recording medium into a large number along a track, and a sync signal area (for synchronizing the phase of the demodulation clock). (Hereinafter referred to as VFO section), the level is set to half the level of the reproduced signal. Therefore, the sample-hold circuit 19 is controlled by the VFO gate showing the VFO section, and the level of one half of the reproduction signal obtained from the VFO section is input as the slice level of the waveform shaping circuit 8. The reproduction signal of the VFO section is used to set the slice level because the signal duty of the reproduction waveform of the VFO section is 50% in mark length recording, and the center level of the reproduction signal is obtained by binarizing the reproduction signal. This is because the slice level becomes appropriate.

【0005】尚、スライスレベルの設定をVFO部に限
るのは、VFO部が再生信号の位相同期を行う基準であ
り、VFO部以外の再生信号のデューティがまちまちで
あるので、上包絡線検波と下包絡線検波の感度が異な
り、全ての信号で適正なスライスレベルとはならない理
由からである。
It is to be noted that the reason why the setting of the slice level is limited to the VFO section is a reference for the VFO section to perform phase synchronization of the reproduction signal, and the duty of the reproduction signal other than the VFO section is different, so that the upper envelope detection is not performed. This is because the sensitivities of the lower envelope detection are different and not all signals have proper slice levels.

【0006】[0006]

【発明が解決しようとする課題】図4は図3に示した回
路の各部の波形を表すものである。以下、図4のaに示
めすような1トラック中の1部分しか信号が記録されて
いない場合の信号再生の様子を説明する。また説明を簡
単にするため、VFO部の波形は信号デューティが50
%であり、二値化の適正なスライスレベルである中心レ
ベルが未記録レベルと直流記録レベルの平均レベルが等
しい場合とする。
FIG. 4 shows the waveform of each part of the circuit shown in FIG. Hereinafter, the state of signal reproduction in the case where the signal is recorded in only one portion in one track as shown in FIG. 4A will be described. In order to simplify the explanation, the waveform of the VFO section has a signal duty of 50.
%, And the center level, which is a proper slice level for binarization, has the same average level of the unrecorded level and the DC recorded level.

【0007】信号aがHPF5を経て、波形整形回路8
に入力する信号は波形bとなる。一方、上包絡線検波回
路16及び下包絡線検波回路17の出力はそれぞれ波形
c及びdであり、その差分波形である比較回路18の出
力は図4のeとなる。図4の波形eは再生信号のVFO
部、すなわち図4のfに示すVFOゲートがハイレベル
の間において、HPF5で生じた直流レベル変動と等し
く、それ以外の部分ではHPF5で生じた直流レベル変
動と等しいとは限らない。そこで、VFOゲートfがハ
イレベルの間サンプリング動作し、VFO部以外はVF
Oゲートfをローレベルとし、VFO部の最終部で比較
回路18の出力をホールドして、図4のgで表す波形を
波形整形回路8の他方の入力へ送る。尚、図4に破線g
で示す波形は、bに示した波形整形回路8のもう一方の
入力信号である。
The signal a passes through the HPF 5, and the waveform shaping circuit 8
The signal input to is a waveform b. On the other hand, the outputs of the upper envelope detection circuit 16 and the lower envelope detection circuit 17 are waveforms c and d, respectively, and the output of the comparison circuit 18, which is the difference waveform between them, is e in FIG. The waveform e in FIG. 4 is the VFO of the reproduced signal.
While the VFO gate shown in FIG. 4F is at a high level, it is not always equal to the DC level fluctuation caused by the HPF5, and is not necessarily equal to the DC level fluctuation caused by the HPF5 in other portions. Therefore, the sampling operation is performed while the VFO gate f is at the high level, and the VF gate is provided except for the VFO section.
The O gate f is set to low level, the output of the comparison circuit 18 is held at the final part of the VFO section, and the waveform represented by g in FIG. 4 is sent to the other input of the waveform shaping circuit 8. The broken line g in FIG.
The waveform shown by is the other input signal of the waveform shaping circuit 8 shown in b.

【0008】図4に示す様に、HPF5によって直流レ
ベル変動が整定するための過応答時間よりVFO部の方
が短いと、直流レベル変動の整定前に波形整形回路8の
スライスレベルがホールドされるため、スライスレベル
がホールド後のHPF5の直流レベル変動分だけ適正値
(図4の点線g)よりずれるため、トラック中に1部分
しか信号が記録されていない場合、信号を正しく読み取
れないという問題が生じる。
As shown in FIG. 4, when the VFO section is shorter than the over-response time for the HPF 5 to settle the DC level fluctuation, the slice level of the waveform shaping circuit 8 is held before the DC level fluctuation is settled. Therefore, since the slice level deviates from the proper value (dotted line g in FIG. 4) by the DC level fluctuation of the HPF 5 after the hold, there is a problem that the signal cannot be correctly read when only one portion of the signal is recorded in the track. Occurs.

【0009】これは1トラック中に1部分しか信号が記
録されていない場合だけでなく、再生信号に瞬時の直流
レベル変動がある場合、例えば光磁気ディスク装置にお
けるアドレス信号部とデータ信号部の境目、再生信号部
を検索するシーク動作の直後、大きな欠陥部を再生した
直後、信号の記録や消去の直後などに同様な問題が生じ
る。一番目の場合、アドレス信号は記録媒体の凹凸で記
録されており、データ信号は記録媒体の磁界の変化とし
て記録されているため、信号の検出方法が異なり、よっ
て再生信号の直流レベルも異なる。二番目から四番目の
場合、シーク時、欠陥部再生時および記録/消去時は、
正しい信号が検出されるわけでないので、再生した信号
の直流レベルはまちまちで、その後正しい信号が再生さ
れると直流レベル変動を生じる。
This is not only the case where a signal is recorded in only one part in one track, but also when the reproduced signal has an instantaneous DC level fluctuation, for example, a boundary between an address signal part and a data signal part in a magneto-optical disk device. The same problem occurs immediately after a seek operation for searching the reproduction signal portion, immediately after reproducing a large defective portion, immediately after recording or erasing a signal, and the like. In the first case, the address signal is recorded on the unevenness of the recording medium, and the data signal is recorded as the change of the magnetic field of the recording medium. Therefore, the signal detection method is different, and thus the DC level of the reproduction signal is also different. In the case of the 2nd to 4th, at the time of seek, reproduction of the defective portion and recording / erasing,
Since the correct signal is not detected, the DC level of the reproduced signal varies, and when the correct signal is reproduced thereafter, the DC level changes.

【0010】また、特定パターン部であるVFO部に欠
陥があると、VFO部の信号により制御を行う手段は適
正な制御を行えない。
Further, if there is a defect in the VFO portion which is the specific pattern portion, the means for controlling by the signal of the VFO portion cannot perform proper control.

【0011】本発明は、かかる点に鑑み、記録信号帯域
より低い周波数成分を除去せずに二値化を行う場合に、
未記録部や欠陥等があっても、常に安定に正常な信号を
読み取ることができる、記録媒体の信号再生方法及び装
置を提供することにある。
In view of the above point, the present invention provides a method of binarization without removing frequency components lower than the recording signal band.
It is an object of the present invention to provide a signal reproducing method and device for a recording medium, which can always read a normal signal stably even if there is an unrecorded portion or a defect.

【0012】[0012]

【課題を解決するための手段】本発明の信号再生方法
は、記録信号の再生を行う期間以外は、特定パターン部
で検出した電圧が平均電位である任意の信号に置き換え
て、補間することを特徴とし、本発明の情報記憶装置
は、この補間信号を発生する回路を備えた信号再生回路
を有する。
According to the signal reproducing method of the present invention, the voltage detected in the specific pattern portion is replaced with an arbitrary signal having an average potential and interpolation is performed except during the period for reproducing the recording signal. Characteristically, the information storage device of the present invention has a signal reproducing circuit provided with a circuit for generating this interpolation signal.

【0013】また、本発明は、信号復調を行うための二
値化手段とは異なる二値化手段により信号の異常を検出
する手段を有し、この検出信号により特定パターン部に
て制御する手段を中断する。
Further, the present invention has means for detecting an abnormality of the signal by the binarizing means different from the binarizing means for performing the signal demodulation, and means for controlling the specific pattern portion by the detected signal. To suspend.

【0014】さらに本発明は、再生信号の直流レベル補
正回路、利得制御回路、低域遮断補償回路、そしてスラ
イスレベル制御回路を備えた信号再生回路を有する情報
記憶装置である。
Further, the present invention is an information storage device having a signal reproducing circuit provided with a reproduced signal DC level correction circuit, a gain control circuit, a low frequency cutoff compensation circuit, and a slice level control circuit.

【0015】[0015]

【作用】本発明によれば、読み取るべき記録信号の再生
期間以外は補間信号に置き換えられるので、記録媒体に
未記録部や欠陥等があっても、信号の直流変動を抑える
ことができ、安定に信号を再生することができる。
According to the present invention, since the interpolation signal is replaced except during the reproduction period of the recording signal to be read, even if there is an unrecorded portion or a defect in the recording medium, it is possible to suppress the DC fluctuation of the signal and stabilize the signal. The signal can be played back.

【0016】また、特定パターン部における再生信号の
不良を再生信号の復調を行うための二値化手段とは異な
る二値化手段により検出し、特定パターン部で制御する
手段を中断することにより、該制御が不適正な動作をす
るのを防ぐことができる。
Further, a defect of the reproduction signal in the specific pattern portion is detected by a binarizing means different from the binarizing means for demodulating the reproduction signal, and the means for controlling in the specific pattern portion is interrupted. It is possible to prevent the control from performing an improper operation.

【0017】さらに本発明は、直流レベル補正手段、利
得制御手段、低域遮断補償手段そしてスライスレベル制
御手段の順に再生信号を処理することで、再生信号の直
流レベル変動に対し安定に二値化することができる。
Further, according to the present invention, the reproduced signal is processed in the order of the direct current level correction means, the gain control means, the low frequency cutoff compensation means and the slice level control means to stably binarize the reproduced signal with respect to the direct current level fluctuation. can do.

【0018】[0018]

【実施例】図1は、本発明の第1の実施例を示し、本発
明の信号再生方法を実施するための信号再生回路のブロ
ック図である。図2は、その動作を説明するため、図1
の各部の波形を示したものである。
1 is a block diagram of a signal reproducing circuit for carrying out the signal reproducing method of the present invention, showing a first embodiment of the present invention. FIG. 2 illustrates the operation by referring to FIG.
The waveforms of the respective parts are shown.

【0019】記録媒体からの再生信号aは、記録媒体に
予め記録されてある記録媒体の反射率情報により再生信
号の振幅を制御する利得制御アンプ1で増幅され、DC
補正回路2および波形整形回路9へ入力する。DC補正
回路2は再生信号の直流レベル補正を行うもので、VF
O部制御回路12からの制御信号bにより制御され、V
FO部の上下包絡線電位の中心電位または平均電位を基
準電位Vrに一致させるものである。
The reproduced signal a from the recording medium is amplified by a gain control amplifier 1 which controls the amplitude of the reproduced signal according to the reflectance information of the recording medium which has been recorded in advance on the recording medium, and a DC signal.
Input to the correction circuit 2 and the waveform shaping circuit 9. The DC correction circuit 2 corrects the DC level of the reproduced signal, and
Controlled by a control signal b from the O section control circuit 12,
The center potential or average potential of the upper and lower envelope potentials of the FO portion is made to match the reference potential Vr.

【0020】図5に、DC補正回路2の一例を示す。上
包絡線検波回路16と下包絡線検波回路17で得た上包
絡線電位mと下包絡線電位nを差分回路16で演算して
中心電位pを得、この中心電位pと基準電位Vrとを差
分回路20で差電位qを得る。そして、システムコント
ローラ14からのVFOゲートtでサンプルホールド1
9を制御して補正信号rとし、それを加算器21で入力
信号と加算するすることにより補正を行う。また、低域
遮断フィルタで平均電位を得、図5の中心電位pの代わ
りに、この平均電位を用いることもできる。
FIG. 5 shows an example of the DC correction circuit 2. The difference circuit 16 calculates the upper envelope potential m and the lower envelope potential n obtained by the upper envelope detection circuit 16 and the lower envelope detection circuit 17 to obtain the central potential p, and the central potential p and the reference potential Vr. The difference circuit 20 obtains the difference potential q. Then, the sample hold 1 is performed by the VFO gate t from the system controller 14.
9 is controlled to form a correction signal r, which is added to the input signal by the adder 21 to perform the correction. It is also possible to obtain an average potential with a low-frequency cutoff filter and use this average potential instead of the center potential p in FIG.

【0021】波形整形回路9は再生信号の不良領域や未
記録領域を検出するために用いるものである。
The waveform shaping circuit 9 is used to detect a defective area or an unrecorded area of the reproduced signal.

【0022】DC補正回路2の出力cは信号補間回路3
に入力し、信号補間制御回路13からの制御信号gによ
り制御され、再生領域以前や再生領域中の未記録領域及
び比較的長い不良信号領域においては、平均電位が基準
電位Vrと等しい補間信号dに置き換える。信号補間回
路3の出力信号hは、DC補正回路2の出力cがVFO
部では基準電位Vrを中心とする信号であり、補間信号
dの平均電位が基準電位Vrに等しことから、直流電位
の変動が極めて小さい信号となり、利得制御アンプ4へ
入力する。
The output c of the DC correction circuit 2 is the signal interpolation circuit 3
Is input to the control signal g from the signal interpolation control circuit 13 and the average potential is equal to the reference potential Vr in the unrecorded area before the reproduction area or in the reproduction area and the relatively long defective signal area. Replace with. In the output signal h of the signal interpolation circuit 3, the output c of the DC correction circuit 2 is VFO.
Since the average potential of the interpolation signal d is equal to the reference potential Vr, it is a signal centered on the reference potential Vr, so that a signal with a very small fluctuation in the DC potential is input to the gain control amplifier 4.

【0023】補間信号dはデューティ50%の信号であ
り、その周波数は再生信号と同等なものである。例え
ば、PLLの周波数同期用の信号を分周した信号であ
り、これなら補間信号用の発振器が必要なく、信号再生
回路の構成を簡素化でき、1チップのLSIに実装でき
る。
The interpolation signal d is a signal with a duty of 50% and its frequency is equivalent to that of the reproduced signal. For example, it is a signal obtained by dividing the frequency synchronization signal of the PLL, and this makes it possible to simplify the configuration of the signal reproducing circuit without using an oscillator for an interpolation signal, and to mount it on a single-chip LSI.

【0024】利得制御アンプ4はVFO部制御回路12
および信号補間制御回路13からの制御信号eにより制
御され、VFO部および補間信号部の信号レベルを検波
してVFO部の振幅が一定となるように制御する自動利
得制御アンプである。これによりセクタ間の信号振幅変
動が抑圧され、ほぼ一定レベルの振幅の信号iとなり、
その後HPF5で低周波のノイズを除去した信号hとな
り、量子化帰還回路6へ入力する。
The gain control amplifier 4 is a VFO control circuit 12
The automatic gain control amplifier is controlled by the control signal e from the signal interpolation control circuit 13 and detects the signal levels of the VFO section and the interpolation signal section to control the amplitude of the VFO section to be constant. This suppresses the signal amplitude fluctuation between sectors, resulting in a signal i having an amplitude of a substantially constant level,
After that, the low-frequency noise is removed by the HPF 5 to obtain a signal h, which is input to the quantization feedback circuit 6.

【0025】量子化帰還回路6はHPF5での低域遮断
の補償を行うものである。図6に、量子化帰還回路6の
一例を示す。量子化帰還回路6の出力kを波形整形回路
22でHPF5のバイアス電位Vbをスライスレベルに
用いて二値化し、その二値化信号からHPF5の周波数
変換した低域通過フィルタ(以下LPFと称する。)2
2で低周波数成分sを取り出す。そして、減算器24に
より低周波数成分sを量子化帰還回路6の入力jから引
き算するように帰還することにより、HPF5で失われ
た低域遮断の補償を行う。量子化帰還回路6の出力は直
流変動が極めて小さく、かつ、セクタ間の振幅変動も無
く、低周波のノイズが除去された再生信号kとなり、一
定のスライスレベルで二値化可能となる。但し、各部回
路の制御性能により、一定のスライスレベルでは各セク
タ間で必ずしも適正とはならない場合がある。
The quantized feedback circuit 6 compensates for low frequency cutoff in the HPF 5. FIG. 6 shows an example of the quantization feedback circuit 6. The output k of the quantization feedback circuit 6 is binarized by the waveform shaping circuit 22 using the bias potential Vb of the HPF 5 as a slice level, and the binarized signal is subjected to frequency conversion of the HPF 5 to obtain a low-pass filter (hereinafter referred to as LPF). ) 2
At 2, the low frequency component s is extracted. Then, the low frequency component s is fed back by the subtracter 24 so as to be subtracted from the input j of the quantization feedback circuit 6, so that the low frequency cutoff lost in the HPF 5 is compensated. The output of the quantization feedback circuit 6 has a very small DC fluctuation, and there is no amplitude fluctuation between sectors, and becomes a reproduction signal k from which low-frequency noise is removed, and can be binarized at a constant slice level. However, depending on the control performance of each circuit, there is a case in which a certain slice level is not always appropriate between sectors.

【0026】そこで、スライスレベル制御回路7は、V
FO部制御回路12からの制御信号gにより制御され、
各セクタ毎にVFO部にて適正なスライスレベルlを検
出し、波形整形回路8にて再生信号復調のための二値化
を行う。
Therefore, the slice level control circuit 7 controls the V
Controlled by a control signal g from the FO control circuit 12,
The VFO unit detects an appropriate slice level 1 for each sector, and the waveform shaping circuit 8 performs binarization for demodulating a reproduced signal.

【0027】VFO部制御回路12の動作について詳細
に説明する。基本的にはVFO領域でアクティブとなる
VFOゲートにより制御されるが、欠陥検出回路10か
らの欠陥検出信号とシステムコントローラからのRAW
ゲートとにより制限される。RAWゲートは、記録信号
の記録直後にその記録状態の確認を行うリードアフター
ライト(RAW Read After Write)のための再生期間
を表す。欠陥検出回路10は、波形整形回路9からの二
値化信号のパルス周期やパルス幅が所定の範囲以外であ
ることにより再生信号の不良を検出して、欠陥検出信号
を出力する。
The operation of the VFO control circuit 12 will be described in detail. Basically, it is controlled by the VFO gate that is active in the VFO area, but the defect detection signal from the defect detection circuit 10 and the RAW from the system controller are controlled.
Limited by the gate. The RAW gate represents a reproduction period for RAW Read After Write that confirms the recording state immediately after recording the recording signal. The defect detection circuit 10 detects a defect in the reproduction signal when the pulse period or pulse width of the binarized signal from the waveform shaping circuit 9 is out of a predetermined range, and outputs a defect detection signal.

【0028】図9は欠陥検出回路10の一例を示すブロ
ック図である。波形整形回路9からの二値化信号は、記
録信号周波数に比例したクロックを用いてラッチ51で
同期化した信号となる。また、それをシフトレジスタか
らなるDL52で該クロックn個分遅延した信号を生成
する。この遅延した信号と同期化した信号とを演算回路
53で比較演算して、欠陥を検出する。この欠陥検出回
路10は同期化した信号のパルス幅が所定の幅以上とな
ると欠陥とみなし、演算回路53がリトリガブル・モノ
スレーブル・マルチバイブレータのように動作し、同期
化した信号がnクロック分遅延後まで状態が変化しない
場合、欠陥検出信号を出力するものである。該クロック
としてPLL同期用の信号を用いると、ディスクの内外
周にて記録周波数が変化する、例えばZCAV方式の記
録媒体に対しても、内外周で均一な欠陥検出動作を行え
る。
FIG. 9 is a block diagram showing an example of the defect detection circuit 10. The binarized signal from the waveform shaping circuit 9 becomes a signal synchronized by the latch 51 using a clock proportional to the recording signal frequency. Also, a signal is generated by delaying it by the number of the clocks n by the DL 52 formed of a shift register. The delayed signal and the synchronized signal are compared and calculated by the arithmetic circuit 53 to detect a defect. The defect detection circuit 10 considers that the pulse width of the synchronized signal becomes a defect when the pulse width exceeds a predetermined width, the arithmetic circuit 53 operates like a retriggerable monoslave multivibrator, and the synchronized signal corresponds to n clocks. When the state does not change until after the delay, the defect detection signal is output. If a signal for PLL synchronization is used as the clock, a uniform defect detection operation can be performed on the inner and outer circumferences even for a recording medium of the ZCAV system in which the recording frequency changes on the inner and outer circumferences.

【0029】VFO領域に信号不良があると、DC補正
回路2、利得制御アンプ4およびスライスレベル制御回
路7は不良部で誤動作し、適正な制御ができない。そこ
で、信号不良を検出した欠陥検出信号により各々の制御
動作を停止させ、信号不良による誤動作を防止する。但
し、元よりVFO領域に記録媒体欠陥のあるセクタの場
合、欠陥が経年変動により大きくなり、経年時に防止策
を講じても誤動作を抑圧しきれず、再生信号の復調がで
きなくなる恐れがある。そこで、RAW処理時には、R
AWゲートにより欠陥検出信号による上述の防止策を禁
止し、元よりVFO領域に記録媒体欠陥のあるセクタは
再生信号の復調ができないことにより不良セクタとして
認識し、交代セクタに再度記録し直すようにする。
If there is a signal defect in the VFO area, the DC correction circuit 2, the gain control amplifier 4, and the slice level control circuit 7 malfunction in the defective portion, and proper control cannot be performed. Therefore, each control operation is stopped by a defect detection signal that detects a signal defect, and a malfunction due to a signal defect is prevented. However, in the case of a sector having a recording medium defect in the VFO area originally, the defect becomes large due to aged deterioration, and even if preventive measures are taken over time, malfunction cannot be suppressed sufficiently and demodulation of a reproduction signal may not be possible. Therefore, at the time of RAW processing, R
The above-mentioned preventive measures by the defect detection signal are prohibited by the AW gate, and the sector having the recording medium defect in the VFO area originally is recognized as a defective sector because the reproduction signal cannot be demodulated, and is recorded again in the alternate sector. To do.

【0030】欠陥検出を良好に行えるように、波形整形
回路9は入力信号の帯域を制限したり、入力信号レベル
によりスライスレベルを制御すると良い。
The waveform shaping circuit 9 may limit the band of the input signal or control the slice level according to the level of the input signal so that the defect can be detected well.

【0031】図1において、DC補正回路2、利得制御
アンプ4およびスライスレベル制御回路7はVFO部制
御回路12からの同一の制御信号にて制御されている
が、異なるタイミングの制御信号であってもかまわな
い。DC補正回路2、利得制御アンプ4およびスライス
レベル制御回路7は各々応答時間があり、前段の手段の
過渡応答時には後段の手段は適正な信号でないため正常
な動作とはならない。そこで、前段よりも後段の方のが
アクティブとなるタイミングが同時もしくは遅延した制
御信号を用いるようにする方が良好な制御を行える。
In FIG. 1, the DC correction circuit 2, the gain control amplifier 4, and the slice level control circuit 7 are controlled by the same control signal from the VFO section control circuit 12, but they are control signals of different timings. I don't care. Each of the DC correction circuit 2, the gain control amplifier 4, and the slice level control circuit 7 has a response time, and during the transient response of the means of the preceding stage, the means of the latter stage is not an appropriate signal, so that it does not operate normally. Therefore, it is possible to perform better control by using a control signal in which the timing of activation of the latter stage is the same as that of the former stage or delayed.

【0032】尚、光磁気ディスク装置においては、VF
O部制御回路12はアドレス信号部とデータ信号部それ
ぞれのVFO部にて制御を行う。前記したようにアドレ
ス信号部とデータ信号部は異なる方法で記録されてお
り、ディスクからの信号の読みだし方法も異なり、互い
に相関の無い信号なので、それぞれに基準となるVFO
部が設けられており、各々独立に制御する必要がある。
In the magneto-optical disk device, VF
The O section control circuit 12 controls the VFO section of each of the address signal section and the data signal section. As described above, the address signal portion and the data signal portion are recorded by different methods, and the signal reading method from the disc is also different, and since the signals have no correlation with each other, they are the reference VFO.
Parts are provided, and it is necessary to control each independently.

【0033】信号補間制御回路13の動作について詳細
に説明する。未記録部は元より、記録済部においても再
生信号を復調しない領域は補間信号に置き換え、直流変
動を極力抑えるようにする。この信号補間動作は基本的
にはシステムコントローラ14からのリードゲートeに
より制御される。
The operation of the signal interpolation control circuit 13 will be described in detail. Not only the unrecorded area but also the area where the reproduced signal is not demodulated even in the recorded area are replaced with the interpolated signal to suppress the DC fluctuation as much as possible. This signal interpolation operation is basically controlled by the read gate e from the system controller 14.

【0034】特に、以下の二つの場合は特記するところ
であり、明確に説明する。予め記録媒体にプリフォーマ
ットされている領域ではリードゲートeはアクティブに
ならなく、補間信号への置き換えは行わない。プリフォ
ーマット領域の再生信号には各セクタのアドレス情報等
が含まれており、システムコントローラ14が常時必要
としている情報のためである。次に、記録及び消去と再
生とを同時に行わない場合、記録及び消去の期間にはリ
ードゲートeはアクティブとなり、補間信号に置き換え
る。記録及び消去時は正常な再生信号が得られないため
である。
In particular, the following two cases are special notes and will be described clearly. In the area pre-formatted on the recording medium, the read gate e is not activated and is not replaced with the interpolation signal. This is because the reproduction signal in the pre-formatted area includes address information of each sector and the like, which is always required by the system controller 14. Next, when recording / erasing and reproducing are not performed at the same time, the read gate e becomes active during the recording / erasing period and is replaced with the interpolation signal. This is because a normal reproduction signal cannot be obtained during recording and erasing.

【0035】信号再生領域であるリードゲートeがネガ
ティブの状態においても、欠陥検出回路10及び欠陥検
出回路11で再生領域中の未記録領域及び比較的長い不
良信号領域を検出した場合は、欠陥検出回路10及び欠
陥検出回路11の欠陥検出信号fにより補間信号dに置
き換える。これは量子化帰還回路6の誤動作を防ぐため
である。未記録領域及び比較的長い不良信号領域ではH
PF5の出力で大きな直流変動が生じる。この直流変動
を抑圧するのが量子化帰還回路6であるが、比較的長い
不良信号領域では量子化帰還6回路は入力信号の振幅が
不均一であるのに対し、それに帰還する信号を生成する
波形整形回路22の出力振幅が一定なため、適正な帰還
量とはならなく、直流変動を抑圧しきれない。再生領域
中の未記録領域は、セクタ間のバッファ領域やプリフォ
ーマット領域とデータ領域の間のギャップ領域および記
録時に何らかの理由で記録を中断した領域等であり、回
路のばらつき等で不適性な帰還量やLPF23とHPF
5の特性不一致があると完全に抑圧しきれない。そこ
で、できる限りHPF5で直流変動が生じないように、
再生領域中の未記録領域及び比較的長い不良信号領域を
補間信号に置き換える必要がある。
Even when the read gate e, which is the signal reproduction area, is in the negative state, if the defect detection circuit 10 and the defect detection circuit 11 detect the unrecorded area and the relatively long defective signal area in the reproduction area, the defect detection is performed. The defect detection signal f of the circuit 10 and the defect detection circuit 11 is replaced with the interpolation signal d. This is to prevent malfunction of the quantization feedback circuit 6. H in the unrecorded area and the relatively long defective signal area
A large DC fluctuation occurs at the output of PF5. The quantized feedback circuit 6 suppresses this DC fluctuation. In the relatively long defective signal area, the quantized feedback 6 circuit generates a signal to be fed back to the quantized feedback 6 circuit, although the amplitude of the input signal is not uniform. Since the output amplitude of the waveform shaping circuit 22 is constant, an appropriate feedback amount cannot be obtained, and DC fluctuation cannot be suppressed completely. The unrecorded area in the playback area is a buffer area between sectors, a gap area between the preformatted area and the data area, and an area where recording is interrupted for some reason during recording. Quantity and LPF23 and HPF
If there is a characteristic disagreement of 5, it cannot be suppressed completely. Therefore, to prevent DC fluctuations in the HPF5 as much as possible,
It is necessary to replace the unrecorded area and the relatively long defective signal area in the reproduction area with the interpolation signal.

【0036】欠陥検出回路10は前述した動作であり、
比較的短い不良領域も検出するが、その部分ではHPF
5での直流変動は極めて小さいので、補間信号に置き換
える必要はない。そこで、短い不良領域は無視するよう
に、検出する不良幅を制限する必要がある。その幅の大
きさはHPF5の時定数とエラー訂正で復元できる幅の
兼ね合いで定まる。
The defect detection circuit 10 operates as described above,
A relatively short defective area is also detected, but the HPF is detected in that area.
Since the DC fluctuation at 5 is extremely small, it is not necessary to replace it with an interpolation signal. Therefore, it is necessary to limit the defect width to be detected so that the short defect area is ignored. The size of the width is determined by the balance between the time constant of the HPF 5 and the width that can be restored by error correction.

【0037】欠陥検出回路11は再生信号の振幅変動か
ら不良領域を検出するものであり、光ディスクにおける
ディスク面の傷やゴミ等で比較的長い間、再生信号振幅
が低下したときの検出に有効である。このような信号不
良は信号成分がのっこているため、欠陥検出10では検
出漏れを生じる恐れがあり、そのため欠陥検出回路11
も不良検出に併用すると良い。
The defect detection circuit 11 detects a defective area from the amplitude fluctuation of the reproduction signal, and is effective for detection when the reproduction signal amplitude is lowered for a relatively long time due to a scratch or dust on the disk surface of the optical disk. is there. Since such a signal defect has a signal component, the defect detection 10 may cause an omission of detection. Therefore, the defect detection circuit 11
Is also useful for defect detection.

【0038】図10に欠陥検出回路11のブロック図を
示す。再生信号の上下の包絡線を検出する上包絡線検出
回路41、42および下包絡線検出回路43、44を有
する。上包絡線検出回路41と下包絡線検出回路43は
短時定数の比較的応答性の早い回路で、欠陥部の波形変
動に応答し、上包絡線検出回路42と下包絡線検出回路
44は長時定数の比較的応答性の遅い回路で、欠陥部の
波形変動に応答しにくいものである。上包絡線検出回路
42および下包絡線検出回路44の出力はそれぞれシフ
トレジスタ45、46に入力し、上包絡線検出回路42
出力は負方向に、下包絡線検出回路44出力は正方向に
シフトし、上包絡線検出回路41と下包絡線検出回路4
3の出力と比較回路47、48にてコンパレートし、上
包絡線検出回路41の出力よりも上包絡線検出回路42
の出力の方が高電位の場合、下包絡線検出回路43の出
力よりも下包絡線検出回路44の出力の方が低電位の場
合、欠陥として判定し、それぞれの論理和をOR49で
とり、欠陥検出信号とする。
FIG. 10 shows a block diagram of the defect detection circuit 11. It has upper envelope detection circuits 41 and 42 and lower envelope detection circuits 43 and 44 that detect the upper and lower envelopes of the reproduction signal. The upper envelope detecting circuit 41 and the lower envelope detecting circuit 43 are circuits with a short time constant and relatively high responsiveness, and respond to the waveform fluctuation of the defective portion, and the upper envelope detecting circuit 42 and the lower envelope detecting circuit 44 are It is a circuit with a long time constant and relatively slow response, and it is difficult to respond to the waveform fluctuation of the defective portion. The outputs of the upper envelope detection circuit 42 and the lower envelope detection circuit 44 are input to shift registers 45 and 46, respectively, and the upper envelope detection circuit 42 is input.
The output shifts in the negative direction and the output in the lower envelope detection circuit 44 shifts in the positive direction, and the upper envelope detection circuit 41 and the lower envelope detection circuit 4 shift.
3 and the comparison circuits 47 and 48 are used for comparison, and the upper envelope detection circuit 42 is higher than the output of the upper envelope detection circuit 41.
When the output of the lower envelope detection circuit 44 has a lower potential than the output of the lower envelope detection circuit 43, it is determined as a defect, and the OR of each of them is taken by OR49. This is the defect detection signal.

【0039】尚、再生領域中の未記録領域及び比較的長
い不良信号領域の検出には、欠陥検出回路10または欠
陥検出回路11のどちらか一方だけを使用するのでもか
まわない。
Incidentally, only one of the defect detection circuit 10 and the defect detection circuit 11 may be used to detect the unrecorded area and the relatively long defective signal area in the reproduction area.

【0040】補間信号に置き換えた領域は再生信号とは
位相が異なるため、PLLの位相同期がずれ、再び再生
信号領域となっても位相同期が一致するのに時間が掛か
り、エラーが増加する。そこで、補間信号に置き換えた
領域ではPLLが動作しなく、置き換える直前の状態を
保つようにする。その方法の一例として、PLLのVC
Oの発振周波数を制御する電圧を置き換える直前の電圧
にホールドするものがある。
Since the phase of the area replaced with the interpolation signal is different from the phase of the reproduction signal, the phase synchronization of the PLL is deviated, and even if it becomes the reproduction signal area again, it takes time for the phase synchronization to coincide with each other and the error increases. Therefore, the PLL does not operate in the area replaced with the interpolation signal, and the state immediately before replacement is maintained. As an example of the method, a PLL VC
Some hold the voltage for controlling the oscillation frequency of O at the voltage immediately before replacement.

【0041】図7は、本発明の第2の実施例を示し、本
発明の信号再生方法を実施する信号再生回路のブロック
図である。図1と同じ番号のものは同じく動作するの
で、図1と異なる部分のみ説明する。本実施例では信号
補間の動作を二段階に分けて行っている。リードゲート
eにより信号補間回路3を制御して、DC補正回路2の
出力cを補間信号dに置き換える。利得制御アンプ4は
VFO部制御回路12のみで制御される。これでは信号
補間部の振幅が一定とはならなく、量子化帰還回路6が
誤動作するので、利得制御アンプ4とHPF5の間に信
号補間回路36を設け、信号補間制御回路13により補
間信号領域を再び一定振幅の補間信号に置き換える事
で、量子化帰還回路6に入力する補間信号の振幅を一定
に保つ。再生領域中の未記録領域及び比較的長い不良信
号領域のその検出は、利得制御アンプ4の出力信号iに
て欠陥検出回路11で行い、信号補間回路36にて補間
信号に置き換えを行う。これは再生領域中の未記録領域
及び比較的長い不良信号領域により誤動作するのは量子
化帰還回路6であり、その入力以前に信号補間を行えば
問題はなく、再生領域中の未記録領域及び比較的長い不
良信号領域の検出も利得制御アンプ4で再生信号の振幅
を一定にした方が良好に行えるからである。
FIG. 7 shows a second embodiment of the present invention and is a block diagram of a signal reproducing circuit for carrying out the signal reproducing method of the present invention. Those having the same numbers as in FIG. 1 operate in the same manner, so only the parts different from FIG. 1 will be described. In this embodiment, the signal interpolation operation is performed in two stages. The signal interpolation circuit 3 is controlled by the read gate e to replace the output c of the DC correction circuit 2 with the interpolation signal d. The gain control amplifier 4 is controlled only by the VFO control circuit 12. In this case, the amplitude of the signal interpolator is not constant and the quantization feedback circuit 6 malfunctions. Therefore, the signal interpolator 36 is provided between the gain control amplifier 4 and the HPF 5, and the interpolated signal area is set by the signal interpolator control circuit 13. By replacing the interpolation signal with a constant amplitude again, the amplitude of the interpolation signal input to the quantization feedback circuit 6 is kept constant. The detection of the unrecorded area and the relatively long defective signal area in the reproduction area is performed by the defect detection circuit 11 by the output signal i of the gain control amplifier 4 and replaced by the interpolation signal by the signal interpolation circuit 36. This is because the quantization feedback circuit 6 malfunctions due to the unrecorded area and the relatively long defective signal area in the reproduction area. If signal interpolation is performed before the input, there is no problem. This is because the detection of a relatively long defective signal region can be performed better by making the amplitude of the reproduced signal constant by the gain control amplifier 4.

【0042】図8は本発明を用いた光ディスク再生装置
の概略ブロック図である。スピンドルモータ26は光デ
ィスク媒体25を回転させる。光ピックアップ28は回
転した光ディスク25上の所望の情報が書き込まれた領
域に移動し、レーザ光29を照射して記録情報を読みだ
す。読みだした情報はRFアンプで増幅され、再生信号
として、本発明の信号再生方法を実施する再生信号二値
化処理回路31に送られて二値化信号となり、PLL3
3にて位相同期を取ったクロックを発生させ、クロック
と二値化信号を比較するデータ弁別32で再生信号の”
1”OR”0”判定を行い、復調回路34で記録した源
情報を得、システムコントローラ35に送る。システム
コントローラ35は、スピンドルモータ26、光ピック
アップ28を駆動するサーボ回路27、及び再生信号二
値化処理回路31の制御を行うものである。
FIG. 8 is a schematic block diagram of an optical disk reproducing apparatus using the present invention. The spindle motor 26 rotates the optical disc medium 25. The optical pickup 28 moves to a region on the rotated optical disc 25 in which desired information is written, and irradiates a laser beam 29 to read recorded information. The read information is amplified by the RF amplifier, and is sent as a reproduction signal to the reproduction signal binarization processing circuit 31 for carrying out the signal reproduction method of the present invention to become a binarization signal, and the PLL 3
Generate a clock that is phase-synchronized in 3 and compare the clock with the binarized signal.
1 "OR" 0 "determination is performed, source information recorded by the demodulation circuit 34 is obtained and sent to the system controller 35. The system controller 35, the spindle motor 26, the servo circuit 27 for driving the optical pickup 28, and the reproduction signal two. The digitization processing circuit 31 is controlled.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
低周波成分の変動を有する再生信号を復調領域以外や未
記録部および比較的長い不良信号領域では別の信号に置
き換えるにより、低周波成分の変動をHPFにより取り
除いても同一のスライスレベルで信号を二値化可能と
し、安定に信号を判別できる。
As described above, according to the present invention,
By replacing the reproduced signal having the fluctuation of the low frequency component with another signal in the areas other than the demodulation area, the unrecorded portion and the relatively long defective signal area, even if the fluctuation of the low frequency component is removed by the HPF, the signal at the same slice level is obtained. Binarization is possible, and signals can be discriminated stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す信号再生回路のブ
ロック図
FIG. 1 is a block diagram of a signal reproducing circuit showing a first embodiment of the present invention.

【図2】図1の動作説明図FIG. 2 is an operation explanatory diagram of FIG.

【図3】従来の信号再生方法を示すブロック図FIG. 3 is a block diagram showing a conventional signal reproduction method.

【図4】図3の動作説明図FIG. 4 is an operation explanatory diagram of FIG.

【図5】DC補正回路2のブロック図および動作説明図FIG. 5 is a block diagram and operation explanatory diagram of a DC correction circuit 2.

【図6】量子化帰還回路6のブロック図および動作説明
FIG. 6 is a block diagram and operation explanatory diagram of a quantization feedback circuit 6.

【図7】本発明の第2の実施例を示す信号再生回路のブ
ロック図
FIG. 7 is a block diagram of a signal reproducing circuit showing a second embodiment of the present invention.

【図8】本発明による光ディスク装置の概略ブロック図FIG. 8 is a schematic block diagram of an optical disk device according to the present invention.

【図9】欠陥検出回路10のブロック図FIG. 9 is a block diagram of the defect detection circuit 10.

【図10】欠陥検出回路10のブロック図FIG. 10 is a block diagram of the defect detection circuit 10.

【符号の説明】[Explanation of symbols]

2 DC補正回路 3 信号補間回路 4 利得制御アンプ 5 HPF 6 量子化帰還回路 7 スライスレベル制御回路 8 波形整形回路 10 欠陥検出回路 11 欠陥検出回路 2 DC correction circuit 3 Signal interpolation circuit 4 Gain control amplifier 5 HPF 6 Quantization feedback circuit 7 Slice level control circuit 8 Waveform shaping circuit 10 Defect detection circuit 11 Defect detection circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 政則 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立画像情報システム内 (72)発明者 賀来 敏光 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masanori Matsuzaki Inventor Masanori Matsuzaki, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Within Hitachi Imaging Information Systems Co., Ltd. Factory Storage Systems Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マーク長記録によりエッジ位置に情報を
持つ記録信号を記録した記録媒体から得られる再生信号
を、該記録信号の再生を行う期間以外は該記録媒体の特
定パターン部から検出される電位が平均電位となるよう
に設定された信号に置き換えることにより補間し、該補
間した再生信号を該記録媒体の特定パターン部から検出
される電位により自動設定されるスライスレベルで二値
化することを特徴とする記録媒体の信号再生方法。
1. A reproduction signal obtained from a recording medium in which a recording signal having information at an edge position is recorded by mark length recording is detected from a specific pattern portion of the recording medium except during a period in which the recording signal is reproduced. Interpolating by replacing the potential with a signal set to be an average potential, and binarizing the interpolated reproduction signal at a slice level automatically set by the potential detected from a specific pattern portion of the recording medium. And a method for reproducing a signal from a recording medium.
【請求項2】 請求項1において、上記置き換える信号
は、デューティ50%で、その周波数が再生信号の周波
数と同等であることを特徴とする記録媒体の信号再生方
法。
2. The signal reproducing method for a recording medium according to claim 1, wherein the replacement signal has a duty of 50% and its frequency is equal to the frequency of the reproduction signal.
JP1227793A 1992-03-13 1993-01-28 Recording medium signal reproduction method Expired - Fee Related JP2865966B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1227793A JP2865966B2 (en) 1993-01-28 1993-01-28 Recording medium signal reproduction method
US08/155,228 US5497361A (en) 1992-03-13 1993-11-22 Information reproducing apparatus with a DC level correcting capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227793A JP2865966B2 (en) 1993-01-28 1993-01-28 Recording medium signal reproduction method

Publications (2)

Publication Number Publication Date
JPH06223508A true JPH06223508A (en) 1994-08-12
JP2865966B2 JP2865966B2 (en) 1999-03-08

Family

ID=11800875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227793A Expired - Fee Related JP2865966B2 (en) 1992-03-13 1993-01-28 Recording medium signal reproduction method

Country Status (1)

Country Link
JP (1) JP2865966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488636B1 (en) * 1995-09-21 2005-09-30 소니 가부시끼 가이샤 Playback device
JP2009295253A (en) * 2008-06-06 2009-12-17 Sony Corp Offset correcting circuit, offset correcting method, and recording and reproducing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488636B1 (en) * 1995-09-21 2005-09-30 소니 가부시끼 가이샤 Playback device
JP2009295253A (en) * 2008-06-06 2009-12-17 Sony Corp Offset correcting circuit, offset correcting method, and recording and reproducing device

Also Published As

Publication number Publication date
JP2865966B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US5497361A (en) Information reproducing apparatus with a DC level correcting capability
JPH0991886A (en) Data reproduction processor for disk recording and reproducing device
JPS59165212A (en) Information signal reproducing device
JP3107263B2 (en) Information playback device
JP2810270B2 (en) Signal playback method
JP2865966B2 (en) Recording medium signal reproduction method
JP2999982B2 (en) Disc reproducing apparatus and reproducing circuit
JP3291047B2 (en) Magneto-optical disk playback device
JPH1166746A (en) Information recording and reproducing device and method
JPH0540978A (en) Optical information recording and reproducing device
JPH07320270A (en) Optical information recording and reproducing device
JP2776406B2 (en) AD converter for playback digital data
JP3300807B2 (en) Optical information recording device and optical information recording method
JP3253588B2 (en) Optical recording medium reproducing apparatus, recording apparatus, and recording / reproducing apparatus
JPH05144194A (en) System for reproducing magneto-optical disk
JPH05274810A (en) Binary circuit and information reproducing device using this circuit
JPH01159835A (en) Optical information recording and reproducing device
JPH06243589A (en) Clock generation circuit and optical disk device
JPH11149715A (en) Regenerative-signal processor
JPH05334754A (en) Magneto-optical disk reproducing device
JPH06223507A (en) Signal reproducing system
JPH09115139A (en) Disk reproducing device
JPH07320402A (en) Optical disk reproducing device
JPH10188291A (en) Signal reader for optical disk
JPH0982030A (en) Recorded medium reproducing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121218

LAPS Cancellation because of no payment of annual fees