JPH06222085A - Optical current transformer - Google Patents

Optical current transformer

Info

Publication number
JPH06222085A
JPH06222085A JP5025957A JP2595793A JPH06222085A JP H06222085 A JPH06222085 A JP H06222085A JP 5025957 A JP5025957 A JP 5025957A JP 2595793 A JP2595793 A JP 2595793A JP H06222085 A JPH06222085 A JP H06222085A
Authority
JP
Japan
Prior art keywords
conductor
pipe
light
wave
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5025957A
Other languages
Japanese (ja)
Inventor
Eiji Itakura
英治 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP5025957A priority Critical patent/JPH06222085A/en
Publication of JPH06222085A publication Critical patent/JPH06222085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To prevent the effect of fluctuation of an insulating medium due to heating of a conductor while eliminating the adjustment of optical path by providing a grounded pipe concentrically with the conductor to be applied with voltage and disposing a Faraday effect element thereabout. CONSTITUTION:A grounded pipe 1 is arranged concentrically with a conductor 11 and a Faraday effect element 2 having a light emitting/receiving part 3 and a collimator 4 is disposed around the grounded pipe 1. A transmitting optical fiber 6, S wave and P wave receiving optical fibers 7a, 7b are used for optical transmission between the collimator 4 and an airtight connector 5 mounted on a pipe 12. An element 2 is secured to a shield case 9 for preventing the effect of external magnetic field by means of a support 10 and the case 9 is secured to the pipe 12 through a supporting tower 8. The light emitting/receiving part 3 selects light entering the interior of the pipe 12 from a predetermined direction. The selected light advances around the conductor 11 and polarized by the magnetic field. The polarized light is split into S wave and P wave which are condensed through the collimator 4 and introduced into the pipe 12 through the connector 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ファラデー効果を利用
して導体に流れる電流を測定する周回積分型光変流器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circular integration type optical current transformer for measuring a current flowing through a conductor by using the Faraday effect.

【0002】[0002]

【従来の技術】図2に従来の光変流器の構成を示す。2. Description of the Related Art FIG. 2 shows the configuration of a conventional optical current transformer.

【0003】SF6 ガスなどの絶縁媒体を充填した密閉
容器内に設置された高圧導体の電流を計測するための光
変流器は、密閉容器を構成する管体12の内側に位置す
る導体11を周回するように設置された、高圧側コリメ
ータ14および受送光部3を有したファラデー効果素子
2と、外部磁界の影響を防止するシールドケース9と、
そのシールドケース9とファラデー効果素子2をつなぐ
支持体10と、シールドケース9を管体12に支持する
絶縁塔15と、管体12に設置され、密閉容器の外部と
内部との光の授受をおこなう気密コネクタ5と、管体1
2の外部から気密コネクタ5に接続された送光用光ファ
イバ6および受光用光ファイバ7a、7bと、気密コネ
クタ5に管体12内部に向かって取り付けられた接地側
コリメータ13により構成されている。
An optical current transformer for measuring the current of a high-voltage conductor installed in a hermetically sealed container filled with an insulating medium such as SF 6 gas is a conductor 11 located inside a tubular body 12 constituting the hermetically sealed container. A Faraday effect element 2 having a high-voltage side collimator 14 and a light receiving / transmitting unit 3, which are installed so as to circulate around, and a shield case 9 for preventing the influence of an external magnetic field,
A support body 10 that connects the shield case 9 and the Faraday effect element 2, an insulating tower 15 that supports the shield case 9 to the tube body 12, and a transmission / reception of light between the outside and the inside of the closed container installed in the tube body 12. Airtight connector 5 and tube body 1
2, the light-transmitting optical fiber 6 and the light-receiving optical fibers 7a and 7b are connected to the airtight connector 5 from the outside, and the ground-side collimator 13 attached to the airtight connector 5 toward the inside of the tube 12. .

【0004】なお、受送光部3は、検光子および偏光子
から構成される。
The light transmitting / receiving section 3 is composed of an analyzer and a polarizer.

【0005】送光用光ファイバ6により気密コネクタ5
を介して管体12内部に入射した光は、接地側コリメー
タ13により平行光線にされ、ファラデー効果素子2の
高圧側コリメータ14に入射する。このとき光は、接地
側コリメータ13と高圧側コリメータ14との間を空間
伝送する。
An airtight connector 5 using an optical fiber 6 for transmitting light.
The light that has entered the inside of the tube body 12 via is collimated by the grounding side collimator 13 and enters the high voltage side collimator 14 of the Faraday effect element 2. At this time, the light is spatially transmitted between the ground side collimator 13 and the high voltage side collimator 14.

【0006】ファラデー効果素子2に到達した光は、高
圧側コリメータ14で再び平行光線にされ、受送光部3
で一定方向の光が選別されファラデー効果素子2内部に
入り、その形状に従い導体11を周回し、導体11の電
流によって生じる磁界により偏光される。
The light that has reached the Faraday effect element 2 is collimated again by the high voltage side collimator 14, and the light receiving and transmitting section 3
Light in a certain direction is selected by, enters the inside of the Faraday effect element 2, circulates around the conductor 11 according to its shape, and is polarized by the magnetic field generated by the current of the conductor 11.

【0007】次に偏光された光は受送光部3でS波とP
波に分けられ、高圧側コリメータ14から接地側コリメ
ータ13に向かって出光する。接地側コリメータ13に
到達した光は集光され、気密コネクタ5を介してS波受
光用光ファイバ7a、P波受光用光ファイバ7bにより
管体12外部に導かれる。
Next, the polarized light is transmitted by the light transmitting / receiving section 3 to the S wave and P wave.
The light is divided into waves and emitted from the high voltage side collimator 14 toward the ground side collimator 13. The light that has reached the ground side collimator 13 is condensed and guided to the outside of the tube body 12 through the airtight connector 5 by the S-wave receiving optical fiber 7a and the P-wave receiving optical fiber 7b.

【0008】導体11の電流値は、S波受光用光ファイ
バ7aおよびP波受光用光ファイバ7bにより得られる
光強度を光電変換器により電圧信号に変換した後、演算
回路で処理することにより算出される。
The current value of the conductor 11 is calculated by converting the light intensity obtained by the S-wave receiving optical fiber 7a and the P-wave receiving optical fiber 7b into a voltage signal by a photoelectric converter and then processing it by an arithmetic circuit. To be done.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上述した
従来の光変流器は、ファラデー効果素子2を高電圧部に
設置する構造であるため、接地側にある管体12とファ
ラデー効果素子2との間の絶縁を確保するために空間伝
送部を設ける必要があるが、空間伝送部を持つ光変流器
は、機器への設置時の際、接地側コリメータ13と高圧
側コリメータ14との間の光路の調整に繁雑な操作を必
要とする。また、導体11の発熱により生じるSF6
スなどの絶縁媒体の揺らぎは、空間伝送中の光を揺らが
せることにより、算出する導体11の電流値に誤差を生
じさせる。
However, since the above-mentioned conventional optical current transformer has a structure in which the Faraday effect element 2 is installed in the high voltage portion, the tube body 12 and the Faraday effect element 2 on the ground side are connected to each other. Although it is necessary to provide a space transmission section in order to ensure insulation between them, the optical current transformer having the space transmission section has a space between the ground side collimator 13 and the high voltage side collimator 14 when it is installed in the device. It requires complicated operations to adjust the optical path. Fluctuations in the insulating medium such as SF 6 gas caused by heat generation of the conductor 11 also cause fluctuations in light during spatial transmission, causing an error in the calculated current value of the conductor 11.

【0010】そこで本発明は、空間伝送を無くすことに
より、光路の調整を不要にするとともに、導体の発熱に
より生じるSF6 ガスなどの絶縁媒体の揺らぎの影響を
防止することができるようにしたものである。
In view of the above, the present invention eliminates the need for adjustment of the optical path by eliminating the spatial transmission, and can prevent the influence of the fluctuation of the insulating medium such as SF 6 gas caused by the heat generation of the conductor. Is.

【0011】[0011]

【課題を解決するための手段】本発明では、密閉容器内
に設置された、課電される導体と、この導体を周回して
設置されたファラデー効果素子との間に、この導体と同
心的に接地管体を設け、上記ファラデー効果素子と上記
密閉容器の内壁との間の光伝送に光ファイバを用いる。
According to the present invention, a conductor to be charged, which is installed in a closed container, and a Faraday effect element that is installed around the conductor, are concentric with the conductor. A ground tube is provided in the optical fiber, and an optical fiber is used for optical transmission between the Faraday effect element and the inner wall of the closed container.

【0012】[0012]

【作用】上記の構造による本発明の光変流器において
は、課電される導体と同心的に接地管体を設け、該接地
管体を周回するようにファラデー効果素子を設置するた
め、密閉容器を構成する管体とファラデー効果素子の間
を絶縁する必要がない。また、ファラデー効果素子と密
閉容器の内壁との間の光伝送に光ファイバを用いるた
め、設置時における光路の調整が不要である。
In the optical current transformer of the present invention having the above-mentioned structure, the grounding tube is provided concentrically with the conductor to be charged, and the Faraday effect element is installed so as to surround the grounding tube. There is no need to insulate between the tubular body forming the container and the Faraday effect element. Further, since the optical fiber is used for the optical transmission between the Faraday effect element and the inner wall of the closed container, it is not necessary to adjust the optical path at the time of installation.

【0013】[0013]

【実施例】図1は本発明の光変流器の一例を示す。FIG. 1 shows an example of the optical current transformer of the present invention.

【0014】導体11と同心的に接地管体1を設け、受
送光部3とコリメータ4を有するファラデー効果素子2
を接地管体1を周回するように設置する。また、コリメ
ータ4と管体12に設置した気密コネクタ5の間の光伝
送は送光用光ファイバ6、S波受光用光ファイバ7aお
よびP波受光用光ファイバ7bを用いる。
A Faraday effect element 2 having a ground tube 1 concentrically with the conductor 11 and having a light receiving / transmitting section 3 and a collimator 4.
Is installed so as to circulate the grounding tube 1. Optical transmission between the collimator 4 and the airtight connector 5 installed in the tube body 12 uses the optical fiber 6 for transmitting light, the optical fiber 7a for receiving S wave, and the optical fiber 7b for receiving P wave.

【0015】ファラデー効果素子2は支持体10により
外部磁界の影響を防止するシールドケース9に固定す
る。また、シールドケース9は支持塔8により管体12
に固定する。
The Faraday effect element 2 is fixed to a shield case 9 which prevents the influence of an external magnetic field by a support body 10. In addition, the shield case 9 is supported by the support tower 8 to form a tube body 12
Fixed to.

【0016】送光用光ファイバ6により気密コネクタ5
を介して管体12内部に入射した光は、送光用光ファイ
バ6を通りコリメータ4で平行光線にされ、受送光部3
で一定方向の光のみ選別され、ファラデー効果素子2内
部に入り、その形状に従い導体11を周回し、導体11
の電流によって生じる磁界により偏光される。
An airtight connector 5 is provided by an optical fiber 6 for transmitting light.
The light that has entered the inside of the tube 12 through the collimator 4 passes through the optical fiber 6 for light transmission to be a parallel light beam, and the light receiving and transmitting unit 3
Only the light in a certain direction is selected by, enters the Faraday effect element 2, and circulates around the conductor 11 according to its shape.
Is polarized by the magnetic field produced by the electric current in the.

【0017】次に偏光された光は受送光部3でS波とP
波に分けられた後、コリメータ4で集光され、S波受光
用光ファイバ7aおよびP波受光用光ファイバ7bを通
り、気密コネクタ5を介して管体12外部に導かれる。
Next, the polarized light is transmitted by the light transmitting / receiving section 3 to the S wave and P wave.
After being divided into waves, the light is condensed by the collimator 4, passes through the S-wave receiving optical fiber 7a and the P-wave receiving optical fiber 7b, and is guided to the outside of the tube body 12 via the airtight connector 5.

【0018】導体11の電流算出方法は従来法と同様で
ある。
The method of calculating the current of the conductor 11 is the same as the conventional method.

【0019】[0019]

【発明の効果】上述した本発明によれば、接地側にファ
ラデー効果素子を設置し、該ファラデー効果素子と密閉
容器を構成する管体の内壁との間の光伝送に光ファイバ
を用いることにより、光路の調整を不要にするととも
に、導体の発熱により生じるSF6 ガスなどの絶縁媒体
の揺らぎの影響を防止することができる。
According to the present invention described above, the Faraday effect element is installed on the ground side, and the optical fiber is used for the optical transmission between the Faraday effect element and the inner wall of the tubular body forming the closed container. Therefore, it is possible to eliminate the need for adjusting the optical path and prevent the influence of fluctuations of the insulating medium such as SF 6 gas caused by heat generation of the conductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光変流器の一例を示す図である。FIG. 1 is a diagram showing an example of an optical current transformer of the present invention.

【図2】従来の光変流器の一例を示す図である。FIG. 2 is a diagram showing an example of a conventional optical current transformer.

【符号の説明】[Explanation of symbols]

1 接地管体 2 ファラデー効果素子 3 受送光部 4 コリメータ 5 気密コネクタ 6 送光用光ファイバ 7a S波受光用光ファイバ 7b P波受光用光ファイバ 11 導体 12 管体 1 Grounding Tube 2 Faraday Effect Element 3 Receiving and Transmitting Section 4 Collimator 5 Airtight Connector 6 Optical Fiber for Transmitting 7a Optical Fiber for S Wave Receiving 7b Optical Fiber for P Wave Receiving 11 Conductor 12 Tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】密閉容器内に設置された、課電される導体
と、この導体を周回して設置されたファラデー効果素子
との間に、この導体と同心的に接地管体を設け、上記フ
ァラデー効果素子と上記密閉容器の内壁との間の光伝送
に光ファイバを用いた光変流器。
1. A grounding tube is provided concentrically with the conductor between a conductor to be charged and a Faraday effect element installed around the conductor, the conductor being installed in a closed container. An optical current transformer using an optical fiber for optical transmission between the Faraday effect element and the inner wall of the closed container.
JP5025957A 1993-01-22 1993-01-22 Optical current transformer Pending JPH06222085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5025957A JPH06222085A (en) 1993-01-22 1993-01-22 Optical current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5025957A JPH06222085A (en) 1993-01-22 1993-01-22 Optical current transformer

Publications (1)

Publication Number Publication Date
JPH06222085A true JPH06222085A (en) 1994-08-12

Family

ID=12180234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5025957A Pending JPH06222085A (en) 1993-01-22 1993-01-22 Optical current transformer

Country Status (1)

Country Link
JP (1) JPH06222085A (en)

Similar Documents

Publication Publication Date Title
Logachev et al. LIU-2 linear induction accelerator
CN105300372B (en) A kind of fibre optic gyroscope of photodetachment
ATE183330T1 (en) COAXIAL HIGH FREQUENCY CABLE
JPS5977348A (en) Nuclear magnetic resonance tomography device
Kurth Detailed observations of the source of terrestrial narrowband electromagnetic radiation
EP0849600A1 (en) Optical current transformer
US6608481B1 (en) Pole of a circuit breaker with an integrated optical current sensor
JP5328598B2 (en) Radiation monitor
JPH06222085A (en) Optical current transformer
Fisher Instrumentation and Diagnostics for PEP-II
KR940016215A (en) Recording and playback device with wireless reception function
US3686567A (en) Circuit breaker having current transformer with incorporated optical link
JP2536362B2 (en) High voltage part measuring device
RU2030049C1 (en) Air-tight lead-in for shielded cables
JP3347449B2 (en) Optical current measuring device
JP2766924B2 (en) Optical current transformer for gas insulated switchgear
JPS58142265A (en) Power transmission line fault point locating apparatus for gas insulated switch gear
JPS6326606B2 (en)
Katsura et al. Beam diagnostic instrumentation in the Photon Factory storage ring
JP2003232815A (en) Optical current measuring device
JPH0719509B2 (en) Gas disconnector
JP3302155B2 (en) Optical current measuring device
Marrelli et al. Development and tests of a simple multifoil spectrometer for highly time-resolved line intensity measurements in the RFX experiment
JP3202059B2 (en) Dead-zone optically excited Mz magnetometer
JPS59136661A (en) Internal electric discharge detector of gas insulated hermetic electrical apparatus