JPH06221883A - Outflow-analysis support apparatus - Google Patents

Outflow-analysis support apparatus

Info

Publication number
JPH06221883A
JPH06221883A JP5011614A JP1161493A JPH06221883A JP H06221883 A JPH06221883 A JP H06221883A JP 5011614 A JP5011614 A JP 5011614A JP 1161493 A JP1161493 A JP 1161493A JP H06221883 A JPH06221883 A JP H06221883A
Authority
JP
Japan
Prior art keywords
pipe
transfer
curve
outflow
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5011614A
Other languages
Japanese (ja)
Inventor
Kanemi Nakajima
かねみ 中島
Mitsuo Oku
満男 奥
Shuichiro Kobayashi
主一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5011614A priority Critical patent/JPH06221883A/en
Publication of JPH06221883A publication Critical patent/JPH06221883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To quickly make an equal-arrival-time curve with reference to various condition changes by installing a means wherein the transfer point of a pipe waterway is computed on the basis of the flow velocity of rainwater flowing inside the pipe waterway. CONSTITUTION:The intensity of a rainfall is received by a radar transmitter- receiver 13 via an antenna 11, and it is transmitted by a data transmission device 14 as precipitation data 15. On the other hand, data from a ground rain gauge 12 is transmitted by a telemeter 16. The data 15 is sent to a precipitation operation device 17, and a precipitation is estimated and sent out to an outflow- analysis operation device 18. The operation device 18 automatically makes an equal-arrival-time curve by using an outflow-analysis support apparatus 20. That is to say, the flow velocity of each pipe waterway is found on the basis of characteristic data on the pipe waterway by a pipe-waterway transfer- point computation means, the transfer time is found on the basis of the flow velocity and the length of the pipe waterway, and a transfer point is computed. After that, a transfer curve is computed on the basis of a prescribed geometrical equation from a most downstream point up to an upstream point, and an equal- arrival-time curve is made on the basis of the transfer curve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、降雨時の雨水排水,浸
水災害防除を目的とする下水道ポンプ場または下水処理
場のポンプ施設などのポンプ運転制御に利用される流出
解析支援装置に係わり、特に流出解析の手法の一つであ
るRRL法(Road Research Laborat-ory )を用いて流
出量を求めるときに使用する対象流域から流出する雨水
の移動状態を表す等到達時間曲線を作成する技術を設け
た流出解析支援装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a runoff analysis support device used for pump operation control of a sewer pump station or a pump facility of a sewage treatment plant for the purpose of controlling rainwater drainage and inundation disasters during rainfall, In particular, a technique for creating an iso-arrival time curve that represents the movement state of rainwater flowing out from the target basin used when determining runoff using the RRL method (Road Research Laborat-ory), which is one of the runoff analysis methods, is used. The outflow analysis support device is provided.

【0002】[0002]

【従来の技術】近年、急激な都市化の進行や下水道施設
の整備に伴い、降雨の大半がポンプ施設に流入すること
から、特に集中豪雨,台風などのごとき急激な降雨時に
は対象流域から流出する雨水の排水を適切に行う必要が
ある。そのためには、降雨時にポンプ施設のポンプを適
切に運用することが必要であり、かつ、対象流域からの
雨水の流出量を適確に把握することが重要である。
2. Description of the Related Art In recent years, with the rapid progress of urbanization and the construction of sewerage facilities, most of the rainfall flows into pump facilities, so that it flows out from the target basin especially during sudden rainfall such as heavy rainfall and typhoons. It is necessary to properly drain rainwater. For that purpose, it is necessary to properly operate the pumps of the pump facility at the time of rainfall, and it is important to accurately grasp the outflow amount of rainwater from the target basin.

【0003】そこで、従来、かかる流出解析の手法の一
つとしてRRL法が用いられているが、このRRL法
は、イギリスで開発されたものであって、対象流域に降
った降雨がポンプ場に流入する過程においてどれくらい
の流量が流出したかを算出する方法である。
Therefore, the RRL method has heretofore been used as one of the methods of such runoff analysis. This RRL method was developed in the United Kingdom, and the rainfall that has fallen in the target basin is applied to the pumping station. This is a method of calculating how much flow rate has flowed out during the inflow process.

【0004】さらに、この方法における具体的な流出量
の算出方法を述べれば、降雨強度を入力とし、管渠から
ポンプ場までの雨水の流入移送の様子、流出雨水の等到
達時間域の曲線などを人手作業により作成し、浸透域や
不浸透域などを考慮した損失分を想定しながら有効降雨
を算出している。次に、流入流量の時間的変化を表すハ
イドログラフを算出し、S{対象流域内の降雨量(雨水
貯留量)}−Q(対象流域内の時々刻々変化する流出
量)曲線からポンプ場に到達する対象流域からの流出量
を演算している。
Further, to describe a concrete method of calculating the outflow amount in this method, the rainfall intensity is input, the state of the inflow and transfer of rainwater from the pipe to the pump station, the curve of the outflow rainwater arrival time region, etc. Is calculated manually and the effective rainfall is calculated while assuming the loss amount considering the permeation area and impermeability area. Next, a hydrograph showing the temporal change of the inflow rate is calculated, and from the S {rainfall (rainwater storage amount)}-Q (outgoing outflow in the target basin) curve to the pump station The outflow amount from the target watershed that arrives is calculated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、流出解
析においては、RRL法で用いられる等到達時間域の曲
線が人手作業によって作成しているので、その曲線の作
成作業に相当な時間がかかること。また、折角、人手作
業によって等到達時間域の曲線を作成しても、その後、
対象流域が変更したり、管渠の老朽化に伴って管渠を新
しく設置するとか勾配や管の大きさ,長さ,形を変更し
たり、さらには管渠の容量を変えるために勾配や管の大
きさ,長さ,形を変更したりする場合があるが、このと
き再度等到達時間域の曲線を作成し直す必要があり、同
様に人手作業にたよることから時間が非常に長くかか
り、かつ、等到達時間曲線の作成作業に困難をきわめる
問題がある。
However, in the outflow analysis, since the curve of the equal arrival time range used in the RRL method is manually created, it takes a considerable time to create the curve. In addition, even if you create a curve in the equal arrival time range by manual operation, after that,
The target basin is changed, the pipe is newly installed due to the deterioration of the pipe, the slope, the size, the length and the shape of the pipe are changed, and further the slope and the pipe to change the capacity of the pipe. The size, length, and shape of the pipe may be changed, but at this time, it is necessary to recreate the curve of the equal arrival time range again, and since it is also manually performed, the time is extremely long. In addition, there is a problem that it is difficult to create the iso-arrival time curve.

【0006】本発明は上記実情に鑑みてなされたもの
で、流出解析の手法の一つであるRRL法を用いて流出
量を求めるときに必要な対象流域からの雨水の等到達時
間曲線を自動的に設定し、種々の条件変更に対しても迅
速に等到達時間曲線を作成できる流出解析支援装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and automatically determines the equal arrival time curve of rainwater from the target basin required when the outflow amount is obtained using the RRL method, which is one of the methods of runoff analysis. It is an object of the present invention to provide an outflow analysis support device that can be set dynamically and can quickly create equal arrival time curves even when various conditions are changed.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、流出流量の手法の一つ
であるRRL法を用いて対象流域から管渠,枝管などを
通って流れ出る流出量を解析するときに用いる雨水の等
到達時間曲線を作成する流出解析支援装置において、
In order to solve the above-mentioned problems, the invention corresponding to claim 1 uses a RRL method, which is one of the methods of the outflow rate, to remove a conduit, a branch pipe, etc. from a target basin. In the runoff analysis support device that creates the equal arrival time curve of rainwater used when analyzing the outflow amount flowing through,

【0008】予め前記管渠およびこの管渠に接続される
前記枝管の断面形,長さ,勾配,粗度係数などの特徴デ
ータを記憶する記憶手段と、この記憶手段に記憶された
前記管渠の特徴データを用いて当該管渠内を流れる雨水
の流速を求めた後、この流速および所要とする単位時間
から前記管渠の移送点を設定する管渠移送点算出手段
と、前記記憶手段に記憶された前記枝管の特徴データを
用いて当該枝管内を流れる雨水の流速を求めた後、この
流速および所要とする単位時間から前記枝管の移送点を
設定する枝管移送点算出手段と、所定の幾何学的な方程
式に基づいて前記各管渠上の移送点および前記各枝管上
の移送点とを結ぶ移送曲線を算出する移送曲線算出手段
とを設け、この移送曲線算出手段で求めた移送曲線を用
いて前記雨水の等到達時間曲線を作成する流出解析支援
装置である。
Storage means for storing characteristic data such as a sectional shape, a length, a gradient, and a roughness coefficient of the pipe and the branch pipe connected to the pipe in advance, and the pipe stored in the storage means. After calculating the flow velocity of rainwater flowing through the pipe using the feature data of the pipe, a pipe transfer point calculating means for setting a transfer point of the pipe from the flow velocity and the required unit time, and the storage means. Branch pipe transfer point calculation means for setting a transfer point of the branch pipe from the flow velocity and required unit time after obtaining the flow velocity of rainwater flowing through the branch pipe using the feature data of the branch pipe stored in And a transfer curve calculation means for calculating a transfer curve connecting the transfer point on each pipe and the transfer point on each branch pipe based on a predetermined geometrical equation. Using the transfer curve obtained in A runoff analysis support apparatus for creating a time curve.

【0009】[0009]

【作用】従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、管渠移送点算出手段にて管
渠の特徴データから各管渠の流速を求めた後、その流速
と管渠の長さとから各管渠毎に移送時間を求める。さら
に、得られた移送時間と単位時間とから順次各管渠の移
送点を算出する。枝管移送点算出手段においても同様に
各枝管の移送点を算出する。
Therefore, in the invention corresponding to claim 1, by taking the above-mentioned means, after the flow velocity of each pipe is obtained from the feature data of the pipe by the pipe transfer point calculation means, the flow velocity is obtained. Then, the transfer time is calculated for each pipe from the pipe length. Furthermore, the transfer point of each pipe is calculated in sequence from the obtained transfer time and unit time. Similarly, the branch pipe transfer point calculation means calculates the transfer point of each branch pipe.

【0010】しかる後、各管渠および各枝管の移送点を
算出したならば、各管渠および各枝管からなる幹線につ
いて最下流点から上流に向かって所定の幾何学的方程式
に基づいて移送点に対する移送曲線を算出するととも
に、この移送曲線から等到達時間曲線を作成するので、
対象流域から流出する雨水の等到達時間曲線を自動的に
作成でき、種々の条件変更に対しても特徴データを書き
替えて迅速に等到達時間曲線を作成できる。
After that, if the transfer points of each pipe and each branch pipe are calculated, the main line consisting of each pipe and each branch pipe is calculated from the most downstream point to the upstream side based on a predetermined geometrical equation. Since the transfer curve for the transfer point is calculated and the equal arrival time curve is created from this transfer curve,
The equal arrival time curve of rainwater flowing out from the target basin can be automatically created, and the characteristic data can be rewritten to quickly create the equal arrival time curve even when various conditions are changed.

【0011】[0011]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明に係わる流出解析支援装置を
用いた降雨の流出解析装置の一実施例を示すブロック図
である。この流出解析装置は、所要とする場所にレーダ
空中線11および地上雨量計12の何れか一方または両
方が設置され、そのうちレーダ空中線側の系統では、当
該レーダ空中線11から対象流域の雨域に向けて電波を
発射し、当該対象流域の雨滴からの反射電波,つまり降
雨形状を含む降雨強度をレーダ空中線11を介してレー
ダ送受信装置13で受信して電気的な受信電力に変換し
た後、データ伝送装置14にて降雨量データ15として
伝送する。一方、地上雨量計側の系統では、地上に実際
に降った降雨量を地上雨量計12で計量し、テレメータ
装置16を用いて同様に降雨量データ15として伝送す
る。
FIG. 1 is a block diagram showing an embodiment of a rainfall runoff analysis apparatus using the runoff analysis support apparatus according to the present invention. In this runoff analysis device, either or both of the radar antenna 11 and the ground rain gauge 12 are installed at a required place. Among them, in the system on the radar antenna side, from the radar antenna 11 to the rain area of the target basin. After transmitting radio waves, the radio waves reflected from the raindrops in the target watershed, that is, the rainfall intensity including the rainfall shape is received by the radar transmitter / receiver 13 via the radar antenna 11 and converted into electrical reception power, and then the data transmission device. 14 transmits as rainfall amount data 15. On the other hand, in the system on the side of the ground rain gauge, the amount of rainfall actually falling on the ground is measured by the ground rain gauge 12 and similarly transmitted as the rainfall data 15 by using the telemeter device 16.

【0013】以上のようにしてレーダ空中線11および
地上雨量計12の何れか一方または両方によって得られ
た降雨量データ15は降雨量演算装置17に送られ、こ
こで対象流域の降雨量を予測し,流出解析演算装置18
に送出する。
The rainfall amount data 15 obtained by either or both of the radar antenna 11 and the ground rain gauge 12 as described above is sent to the rainfall amount calculation device 17, where the rainfall amount in the target basin is predicted. , Runoff analysis operation device 18
Send to.

【0014】この流出解析演算装置18は、降雨量(降
雨強度),管渠等の内部の雨水の移動状況を表す等到達
時間曲線その他の特性を考慮しながら流出解析の一手法
であるRRL法を用いて対象流域に降った雨水が地表
面,管渠などを通して流れ出る流出量19を演算する。
The runoff analysis operation device 18 is a method of runoff analysis, which is one method of runoff analysis, taking into consideration the amount of rainfall (rainfall intensity), the equal arrival time curve representing the movement of rainwater inside the pipe, and other characteristics. Is used to calculate the outflow amount 19 of rainwater that has flowed through the ground surface, pipe, etc.

【0015】従って、この流出解析演算装置18は、降
雨の流出流量19を求めるために等到達時間曲線を必要
とするが、この等到達時間曲線を人手による作業ではな
く、本発明に係わる流出解析支援装置20を用いて自動
的に作成することにある。しかも、この流出解析支援装
置20では、流出解析演算装置18にて流出流量19を
算出するに際し、予め事前準備として対象流域上の管渠
内の雨水の移動を示す等到達時間曲線を作成することに
ある。次に、かかる流出解析支援装置20の構成につい
て、図2に示すごとく処理手順に従って具体的に説明す
る。
Therefore, the runoff analysis calculation device 18 needs an equal arrival time curve in order to obtain the runoff flow rate 19 of the rainfall, but this equal arrival time curve is not a manual operation, but the runoff analysis according to the present invention. It is to automatically create using the support device 20. In addition, in the outflow analysis support device 20, when the outflow analysis calculation device 18 calculates the outflow rate 19, as an advance preparation, an equal arrival time curve showing the movement of rainwater in the drainage pipe over the target basin is created. It is in. Next, the configuration of the outflow analysis support device 20 will be specifically described according to the processing procedure as shown in FIG.

【0016】この装置は、管渠データファイル21、枝
管データファイル22、管接続データファイル23およ
び結果データファイル24などが設けられ、さらにプロ
グラムデータおよび中間処理データを格納する中間デー
タ記憶手段25、このプログラムデータに基づいて等到
達時間曲線を作成するCPUなどの演算処理部26が設
けられている。
This apparatus is provided with a conduit data file 21, a branch pipe data file 22, a pipe connection data file 23, a result data file 24, etc., and an intermediate data storage means 25 for storing program data and intermediate processing data, An arithmetic processing unit 26 such as a CPU is provided which creates an equal arrival time curve based on this program data.

【0017】これら管渠データファイル21および枝管
データファイル22は対象流域の幹線上の配管として用
いられる管渠iとこの管渠に接続される枝管jとの特徴
データを格納するものであり、そのうち、管渠データフ
ァイル21には、例えば管渠の管長Li[m] 、後記する
図4で具体的に示す管渠の断面形Bi[m] ,Hi[m],
Ri[m] 、勾配Ii[0/00]、粗度係数niなどの管渠情
報21aが格納されている。一方、枝管データファイル
22には、例えば枝管の管長Lj[m] 、同じく図4で示
す枝管の断面形Bj[m] ,Hj[m] ,Rj[m] 、勾配I
j[0/00]、粗度係数njなどの枝管情報22aが格納さ
れている。
The conduit data file 21 and the branch data file 22 store characteristic data of a conduit i used as a pipe on the main line of the target basin and a branch pipe j connected to this conduit. Among them, in the conduit data file 21, for example, the conduit length Li [m] of the conduit, the sectional shapes Bi [m], Hi [m] of the conduit specifically shown in FIG. 4 described later,
Ribbon information 21a such as Ri [m], gradient Ii [0/00], and roughness coefficient ni is stored. On the other hand, in the branch pipe data file 22, for example, the pipe length Lj [m] of the branch pipe, the cross-sectional shapes Bj [m], Hj [m], Rj [m] of the branch pipe shown in FIG.
Branch information 22a such as j [0/00] and roughness coefficient nj is stored.

【0018】また、管接続データファイル23には、管
渠i,枝管jの接続状態を表すべく前の管i-1, j-1、
後ろの管i+1, j+1、入孔、堰およびオリフィスなどの
接続情報23aが格納され、また中間データ記憶手段2
5には前述したようにプログラムデータの他、演算処理
部26で等到達時間曲線を求める過程で得られる中間情
報が格納される。
Further, in the pipe connection data file 23, the previous pipes i-1, j-1, to represent the connection state of the pipes i and the branch pipes j,
Connection information 23a such as the rear pipes i + 1, j + 1, inlets, weirs, and orifices is stored, and the intermediate data storage means 2 is also stored.
As described above, the intermediate data obtained in the process of obtaining the equal arrival time curve by the arithmetic processing unit 26 is stored in 5 as well as the program data.

【0019】なお、これらデータファイル21〜24お
よび記憶手段25は主記憶装置または外部記憶装置の何
れでもよく、また1つの主記憶装置または外部記憶装置
のエリアを区分して各情報を格納してもよい。
The data files 21 to 24 and the storage means 25 may be either a main storage device or an external storage device, and each main storage device or external storage device is divided into areas to store respective information. Good.

【0020】この演算処理部26は、プログラムデータ
に従いながら前記データファイル21〜23の各情報2
1a〜23aおよび記憶手段25の中間情報を用いて例
えば図2に示すような処理手順に従って演算処理を実行
し等到達時間曲線を作成するものである。以下、処理手
順に従って等到達時間曲線を求めるための演算処理動作
を説明する。
The arithmetic processing section 26 is arranged to follow the information 2 of the data files 21 to 23 according to the program data.
Using the intermediate information of 1a to 23a and the storage means 25, arithmetic processing is executed in accordance with the processing procedure as shown in FIG. 2, for example, and an equal arrival time curve is created. The arithmetic processing operation for obtaining the equal arrival time curve will be described below according to the processing procedure.

【0021】(イ) 先ず、演算処理部26は、管渠デ
ータファイル21から図3に示す管渠iの特徴情報であ
る例えば管長Li[m] 、断面形Bi[m] ,Hi[m] ,R
i[m]、勾配Ii[0/00]、粗度係数niなどの管渠情報
21aを、また枝管データファイル22から同じく図3
に示す枝管jの特徴情報である例えば管長Lj[m] 、断
面形Bj[m] ,Hj[m] ,Rj[m] 、勾配Ij[0/00]、
粗度係数njなどの枝管情報22aを読み込んで一時的
に中間データ記憶手段25に記憶した後(S1)、引き
続き、管接続データファイル23から前の管i-1, j-
1、後ろの管i+1,j+1、入孔、堰およびオリフィスなど
の接続情報23aを読み込んで中間データ記憶手段25
に記憶する(S2)。
(A) First, the arithmetic processing unit 26 uses the conduit data file 21 to show the characteristic information of the conduit i shown in FIG. 3, for example, the pipe length Li [m], the sectional shapes Bi [m], and Hi [m]. , R
The pipe information 21a such as i [m], gradient Ii [0/00], and roughness coefficient ni is also shown in FIG.
Which is the characteristic information of the branch pipe j shown in, for example, pipe length Lj [m], cross-sectional shapes Bj [m], Hj [m], Rj [m], gradient Ij [0/00],
After the branch pipe information 22a such as the roughness coefficient nj is read and temporarily stored in the intermediate data storage means 25 (S1), the pipe connection data file 23 is followed by the previous pipes i-1, j-.
1, the connection information 23a of the rear pipes i + 1, j + 1, the inlet hole, the weir, the orifice, etc. are read and the intermediate data storage means 25 is read.
(S2).

【0022】(ロ) 次に、演算処理部26は、対象流
域の全ての管渠iに図3に示すごとく番号づけを行う
(S3)。この番号づけは、管渠iに等間隔または予め
把握し得る適宜な間隔でもよい。枝管jについても同様
に番号づけを行ってもよい。
(B) Next, the arithmetic processing section 26 numbers all the pipes i in the target basin as shown in FIG. 3 (S3). This numbering may be at equal intervals in the conduit i or at appropriate intervals that can be grasped in advance. The branch pipe j may be similarly numbered.

【0023】(ハ) 以上のようにして番号づけを行っ
た後、対象流域に使用されている全管渠について、マニ
ングの式を用いて各番号ごとに管渠の流速Vi[m/s] を
算出する(S4)。但し、管の断面形に応じて異なる式
を用いて算出する。以下、マニングの式と断面形の異な
る2種類の管の流速の演算式とを説明する。先ず、マニ
ング(Manning)の式の基本式は、 V=(1/n)・I1/2 ・R2/3 …… (1) 但し、上式においてV:流速[m/s] 、n:粗度係数、
I:勾配[0/00]、R:後記する(2)式で示す径深[m]
である。ここで、マニングの式を用いて管渠内を流れる
雨水の流速を算出する場合、管渠の断面形によって異な
る。ちなみに、図4(a)の矩形断面の時、次のような
関係式が得られる。 A=BH 、p=B+2H 、R=A/p …… (2)
(C) After the numbering is performed as described above, the flow velocity Vi [m / s] of all the pipes used in the target basin is calculated for each number using Manning's equation. Is calculated (S4). However, it is calculated using a different formula depending on the cross-sectional shape of the pipe. The Manning equation and the equations for calculating the flow velocities of two types of pipes having different sectional shapes will be described below. First, the basic formula of Manning's formula is V = (1 / n) · I 1/2 ・ R 2/3 (1) However, in the above equation, V: flow velocity [m / s], n: roughness coefficient,
I: Gradient [0/00], R: Diameter depth [m] shown in equation (2) described later
Is. Here, when calculating the flow velocity of rainwater flowing in the pipe using Manning's equation, it varies depending on the cross-sectional shape of the pipe. Incidentally, in the case of the rectangular cross section of FIG. 4A, the following relational expression is obtained. A = BH, p = B + 2H, R = A / p (2)

【0024】但し、A:開水路の流水断面積[m] 、B:
矩形の水面巾[m] 、H:水路の水深[m] 、p:潤辺[m]
である。従って、以上のような関係式を用いて前記
(1)式のマニングの式から流速Vは、 V=(1/n)・I1/2 ・R2/3 =(1/n)・I1/2 ・{(BH)/(B+2H)}2/3 …(3) が得られる。一方、図4(b)の円形断面の時、次のよ
うな関係式が得られる。 y=rcos θ、θ=cos -1(y/r)、H=r+y=r(1+cos θ)、A= r2 /2(φ−sin φ)、p=r・φ、R=(r/2φ)・(φ−sin φ) …(4) この場合についても前記(1)式のマニングの式から流
速Vは、 V=(1/n)・I1/2 ・R2/3 =(1/n)・I1/2 ・{r(φ−sin φ)/2φ}2/3 …(5)
However, A: running water cross-sectional area [m] of open channel, B:
Rectangle water surface width [m], H: Water depth of channel [m], p: Wet edge [m]
Is. Therefore, from the Manning's equation (1) using the above relational equation, the flow velocity V is V = (1 / n) · I 1/2 ・ R 2/3 = (1 / n) ・ I 1/2 ・ {(BH) / (B + 2H)} 2/3 (3) is obtained. On the other hand, in the case of the circular cross section of FIG. 4B, the following relational expression is obtained. y = rcos θ, θ = cos −1 (y / r), H = r + y = r (1 + cos θ), A = r 2 / 2 (φ-sin φ), p = r · φ, R = (r / 2φ) · (φ-sin φ) (4) Also in this case, the flow velocity V is calculated from the Manning's equation of the equation (1). , V = (1 / n) ・ I 1/2 ・ R 2/3 = (1 / n) ・ I 1/2 ・ {R (φ-sin φ) / 2φ} 2/3 … (5)

【0025】(ニ) 以上のようにして各管渠の流速V
i[m/s] を求めたならば、雨水が各管渠内をどの位の時
間で移動できるかを示す移送時間[秒]を算出する(S
5)。今、ある管渠iの流速をVi[m/s] 、管渠iの長
さをLi[m] としたとき、当該管渠iの移送時間Ti
は、 Ti=Li/Vi …… (6) で表される。この移送時間Tiは、各管渠ごとに求め
る。
(D) As described above, the flow velocity V of each pipe
Once i [m / s] is obtained, the transfer time [seconds] indicating how long rainwater can move in each pipe is calculated (S).
5). Now, assuming that the flow velocity of a certain pipe i is Vi [m / s] and the length of the pipe i is Li [m], the transfer time Ti of the pipe i is
Is represented by Ti = Li / Vi (6). The transfer time Ti is obtained for each pipe.

【0026】(ホ) しかる後、各管渠内の雨水がX
[秒]でどの位移動するかを表す等到達時間曲線の単位
時間例えば[x秒]毎の移送点k(図3,図5参照)を
算出する(S6)。つまり、前記(ニ)で求めた移送時
間Ti[秒]から各管渠iには移送点kが幾つあるか、
さらに正確な移送点kの位置を求める。 * 具体的には、最下流点k0 を基準とし、下記式に基
づいて管渠i上の移送点の数を算出する。 移送点kの数=管渠iの移送時間Ti/単位時間X …… (7) 今、移送点kの数がBとなって余りDi[秒]のとき、
管渠iにおける移送点の数はB個存在する。 * ここで、管渠i上の移送点km(1≦m≦B)の位
置は、 単位時間X秒・m・管渠iの流速をVi[m/s] …… (8) から算出できる。 * 引き続き、管渠iの移送点算出時に得られる余り時
間Di[秒]を用いて次の管渠i+1について下記式に
よって移送点の数を算出する。 {(管渠i+1の移送時間Ti+1)−余り時間Di} /単位時間X …… (9) ここで、答えがCで余りDi+1[秒]のとき、管渠i
+1の移送点の数はC個存在する。
(E) After that, the rainwater in each pipe is X
The transfer point k (see FIGS. 3 and 5) for each unit time of the equal arrival time curve, for example, [x seconds], which indicates how much to move in [seconds], is calculated (S6). That is, from the transfer time Ti [seconds] obtained in (d) above, how many transfer points k are in each pipe i,
A more accurate position of the transfer point k is obtained. * Specifically, the number of transfer points on the pipe i is calculated based on the following equation using the most downstream point k0 as a reference. Number of transfer points k = transfer time Ti of pipe i / unit time X (7) When the number of transfer points k is B and the remainder is Di [second],
There are B transfer points in the pipe i. * Here, the position of the transfer point km (1 ≤ m ≤ B) on the pipe i can be calculated from the unit time X seconds · m · the flow velocity of the pipe i from Vi [m / s] (8) . * Subsequently, the number of transfer points for the next pipe i + 1 is calculated by the following formula using the surplus time Di [seconds] obtained when calculating the transfer point of the pipe i. {(Transport time Ti + 1 of the pipe i + 1) -remaining time Di} / unit time X (9) Here, when the answer is C and the remainder Di + 1 [second], the pipe i
There are C +1 transfer points.

【0027】* さらに、余り時間Di+1[秒]を用
い、下記の式に基づいて次の管渠i+1上の移送点kB+
m (1≦m≦C)の位置を算出する。管渠i+1の始点
を基準とする。 {(単位時間X[秒]・(1+m)−(余り時間Di[秒])} ・(管渠i+1の流速Vi+1[m/s]) …… (10)
* Furthermore, using the remaining time Di + 1 [seconds], the transfer point kB + on the next conduit i + 1 is calculated based on the following equation.
The position of m (1 ≦ m ≦ C) is calculated. The starting point of the pipe i + 1 is used as a reference. {(Unit time X [seconds]-(1 + m)-(remaining time Di [seconds])}-(Flow velocity Vi + 1 of pipe i + 1 [m / s]) ... (10)

【0028】以上のように答えと余りをもとに単位時間
X秒毎の移送点kを最下流点k0 から管渠を上流に向か
って管渠がなくなるまで、前記(9)式および(10)
式を用いて繰り返し演算を実行し、移送点kを算出する
(図5参照)。
As described above, based on the answer and the remainder, the transfer point k per unit time X seconds is moved from the most downstream point k0 to the upstream of the pipe until the pipe disappears, and the above equations (9) and (10) are used. )
The transfer point k is calculated by repeatedly executing the calculation using the formula (see FIG. 5).

【0029】(ヘ) 次に、対象流域内で各管渠iに接
続されている全枝管についても、断面形の種類に応じて
前記(1)式のマニングの式を用いて流速Vj [m/s ]
を算出する。さらに、管渠と同様に移送時間,単位時間
の移送点を算出する(S7)。
(F) Next, for all the branch pipes connected to each pipe i in the target basin, the flow velocity Vj [ m / s]
To calculate. Further, the transfer time and the transfer point per unit time are calculated in the same manner as the pipe (S7).

【0030】(ト) さらに、最下流点k0 から上流に
向かって順次管渠および枝管の移送点に対する移送曲線
を算出し(S8〜S10)、さらに移送点間を結ぶ移送
曲線を算出する(S11,S12)。なお、Xmax は幹
線毎の移送点の最大値を示すものである。
(G) Further, the transfer curves for the transfer points of the pipe and the branch pipe are sequentially calculated from the most downstream point k0 to the upstream (S8 to S10), and the transfer curve connecting the transfer points is calculated (S8). S11, S12). It should be noted that Xmax indicates the maximum value of the transfer points for each trunk line.

【0031】この移送曲線を求める例について図6およ
び図7を参照して説明する。今、最下流点k0 の座標
(原点)を(0,0)とする。この最下流点k0 から上
流側に向って順番に幹線上の移送点k1 (Xk1 ,Yk
1 )、移送点(Xk2 ,Yk2)、…、移送点kn (X
kn ,Ykn )および管渠に接続されている枝管の中か
ら一番早い流速をVkn [m/s ]としたとき、各移送点
を中心として下記する(11)式による半径rkn [m
]の円311 ,312 ,…を描く。 rkn =Vkn [m/s ]・単位時間X[秒] …… (11)
An example of obtaining this transfer curve will be described with reference to FIGS. 6 and 7. Now, let the coordinates (origin) of the most downstream point k0 be (0,0). Transfer points k1 (Xk1, Yk) on the trunk line in order from the most downstream point k0 to the upstream side.
1), transfer point (Xk2, Yk2), ..., transfer point kn (X
kn, Ykn) and a branch pipe connected to the conduit, where Vkn [m / s] is the fastest flow velocity, the radius rkn [m according to the following equation (11) is centered around each transfer point.
] Circles 31 1 , 31 2 , ... are drawn. rkn = Vkn [m / s] / unit time X [seconds] (11)

【0032】そして、この(11)式によって得られる
半径rkn [m ]を用いた円311,312 ,…の方程
式(下記(12)式)と、移送点kn+1 (Xkn+1 ,Y
kn+1 )と、例えば移送点kn+1 から円例えば311
対する接線32の方程式(下記(13)式)と円311
の中心を通って(13)式に直角に交わる直線33の式
((14)式)とを用いて移送曲線を算出する。 (X−Xkn )2 +(Y−Ykn )2 =rkn 2 …… (12) Y−Ykn+1 =a(X−Xkn+1 ) …… (13) Y−Ykn =−1/n(X−Xkn ) …… (14) なお、移送点kn+1 (Xkn+1 ,Ykn+1 )が管渠iに
あるとき、Y軸を管渠にとり、移送点kn (Xkn ,Y
kn )を原点(0,0)にとると、 Ykn+1 =単位時間X[秒]・(管渠iの流速Vi[m/s ])…(15) であるので、移送点kn+1 の座標を(0,X,Vi)と
おくと、交点Akn の座標は、 {±(XVkn /Vi)・(Vkn 2 −Vi2 1/2
XVkn 2 /Vi} となる。
Then, the equations (formula (12) below) of the circles 31 1 , 31 2 , ... Using the radius rkn [m] obtained by the formula (11) and the transfer point kn + 1 (Xkn + 1, Y
kn + 1) and, for example, the equation of the tangent line 32 from the transfer point kn + 1 to the circle, for example, 31 1 (equation (13) below) and the circle 31 1
The transfer curve is calculated using the equation (equation (14)) of the straight line 33 that intersects the equation (13) at a right angle through the center of (X-Xkn) 2 + (Y-Ykn) 2 = Rkn 2 (12) Y-Ykn + 1 = a (X-Xkn + 1) (13) Y-Ykn = -1 / n (X-Xkn) (14) In addition, the transfer point kn + 1 ( When Xkn + 1, Ykn + 1) is in the conduit i, the Y axis is taken in the conduit and the transfer point kn (Xkn, Y
kn) at the origin (0, 0), Ykn + 1 = unit time X [seconds]. (Flow velocity Vi [m / s] of pipe i) (15), so transfer point kn + 1 Let (0, X, Vi) be the coordinates of the intersection Akn, then the coordinates are: {± (XVkn /Vi).(Vkn 2 -Vi 2 ) 1/2 ,
XVkn 2 / Vi}.

【0033】移送点kn+1 を中心とした半径rkn の円
の交点Akn (+XA、YA)と交点Akn (−XA、
YA)を結んだ弧である曲線が移送曲線341 になる。
移送点kn+1 と交点Akn {±(XA,YA)]を結ん
だ直線が移送曲線341 ′となる。
An intersection Akn (+ XA, YA) and an intersection Akn (-XA, of a circle having a radius rkn centered on the transfer point kn + 1).
The curve that is the arc connecting YA) becomes the transfer curve 34 1 .
A straight line connecting the transfer point kn + 1 and the intersection point Akn {± (XA, YA)] becomes the transfer curve 34 1 ′.

【0034】この移送曲線の演算は、移送単位時間X毎
に繰り返し、幹線毎の移送点の最大値TMAX になるまで
移送曲線(341 ,341 ′)、(342 ,3
2 ′)、…を求める。但し、TMAX は(7)式〜
(9)式で求めた移送点の数BやCを加算した数とす
る。
This calculation of the transfer curve is repeated every transfer unit time X, and the transfer curves (34 1 , 34 1 ′), (34 2 , 3) are reached until the maximum value TMAX of the transfer points for each main line is reached.
4 2 ′), ... However, TMAX is expressed by equation (7)
The number of transfer points B and C obtained by the equation (9) is added.

【0035】つまり、時間Xについては図7(a)から
同図(b)の移送曲線341 ,341 ′を求めることに
よりX部分の等到達時間曲線が得られ、時間2Xについ
ては同図(c)に示すような移送曲線342 ,342 ′
を求めることができる。これら移送曲線(341 ,34
1 ′)、(342 ,342 ′)、…から等到達時間曲線
を作成する。すなわち、時間Xの等到達時間曲線は、最
下流点をk0 を中心とする半径rk0 の円Fk0 と移送
点kk1との接線で囲まれた面積の外周曲線が求めたい時
間Xにおける等到達時間曲線である。さらに、時間2X
の等到達時間曲線は、移送点kk+1 を中心とする半径r
k+1 の円i+1 と移送点kk+2 との接線で囲まれた面積
と、移送点kk を中心とする半径2rkの円2Fkと移
送点kk+1を中心とする半径rk+1 の円Fk+1 との接線
で囲まれた面積との外周曲線が求めたい時間2Xにおけ
る等到達時間曲線である。
That is, for the time X, the equi-arrival time curve of the X portion is obtained by obtaining the transfer curves 34 1 , 34 1 ′ of FIG. 7B from FIG. 7A, and for the time 2X. Transfer curves 342, 342 'as shown in (c).
Can be asked. These transfer curves (34 1 , 34
1 '), (34 2, 34 2'), creating a ... arrival time curve like color. That is, the equal arrival time curve at the time X is the equal arrival time curve at the time X at which the outer peripheral curve of the area surrounded by the tangent line of the transfer point kk1 and the circle Fk0 having a radius rk0 centered at the most downstream point is k0. Is. Furthermore, time 2X
Is an equal arrival time curve of the radius r centered at the transfer point kk + 1
The area surrounded by the tangent line of the circle i + 1 of k + 1 and the transfer point kk + 2, the circle 2Fk of radius 2rk centered on the transfer point kk and the radius rk + 1 centered on the transfer point kk + 1. The outer circumference curve with the area surrounded by the tangent to the circle Fk + 1 is the equi-arrival time curve at the desired time 2X.

【0036】なお、管渠が途中で曲がっている時の曲線
の引き方は、図7(d)に示すように管渠が曲がらない
と仮定し、曲がり部分の内接円を(16)式に基づいて
求める。曲がった先の部分の考え方は今までと同様であ
る。 (X−X)2 +(Y−Y)2 =r2 …… (16)
When the pipe is bent in the middle, the curve is drawn on the assumption that the pipe is not bent as shown in FIG. 7 (d), and the inscribed circle of the bent portion is expressed by equation (16). Based on. The idea of the bent part is the same as before. (XX) 2 + (Y-Y) 2 = R 2 …… (16)

【0037】(チ) そして、以上のようにして求めた
計算単位時間X秒毎の移送曲線データを結果データとし
て結果データファイル24に格納し(S13)、流出解
析演算装置18にて流出流量を求めるときに利用され
る。
(H) Then, the transfer curve data for each calculation unit time X seconds obtained as described above is stored as result data in the result data file 24 (S13), and the outflow rate is calculated by the outflow analysis operation device 18. Used when asking.

【0038】従って、以上のような実施例の構成によれ
ば、従来、人手の作業により雨水の等到達時間曲線を作
成した後、この等到達時間曲線のデータを用いて流出流
量を求めていたので、流出流量を求めるのに時間がかか
り、しかも対象流域の変更,管渠の老朽化および管渠の
取替え等により一部の管渠に変更があったときには流速
の計算から降雨曲線を引くまで全て最初からやり直さな
ければならなかったが、本発明装置においては、予めデ
ータファイル21〜23に必要な情報を格納し、定式化
に従って順次管渠および枝管内を流れる流速および移送
点を算出し、これら移送点および移送点間の移送曲線デ
ータを求めるようにしたので、自動的に等到達時間曲線
を作成でき、これにより作業時間の大幅な短縮化を実現
でき、対象流域の変更や一部の管渠の変更に迅速に対処
できる。また、以上のように管渠毎のデータがデータフ
ァイルに格納されていることから、対象流域の変更,管
渠の老朽化によるおよび管渠に変更や管渠の拡張による
管渠の変更の際、ファイルのデータ内容を書き替えるだ
けで等到達時間曲線を作成できる。
Therefore, according to the configuration of the above embodiment, conventionally, after the rainwater equal arrival time curve is created manually, the outflow rate is obtained using the data of this equal arrival time curve. Therefore, it takes time to calculate the outflow rate, and when some of the culverts are changed due to changes in the target basin, deterioration of the culvert, replacement of the culvert, etc. Although all had to be redone from the beginning, in the device of the present invention, necessary information is stored in advance in the data files 21 to 23, and the flow velocity and the transfer point flowing in the conduit and the branch pipe are sequentially calculated according to the formulation, Since the transfer curve data between these transfer points and the transfer points are obtained, it is possible to automatically create iso-arrival time curves, which can significantly reduce the work time and reduce the target basin area. You can quickly deal with further or change the part of the pipe culvert. In addition, since the data for each pipe is stored in the data file as described above, when the target basin is changed, the pipe is deteriorated, or when the pipe is changed by changing the pipe or expanding the pipe. , It is possible to create an equal arrival time curve simply by rewriting the data contents of the file.

【0039】なお、上記実施例では、降雨時の流出解析
を行うために用いたが、例えば対象流域の流出流量算出
後、流出流量からポンプ場または各処理場への流入流量
を算出し、雨水ポンプの運転台数を決定するための運転
支援にも使用することができる。その他、本発明はその
要旨を逸脱しない範囲で種々変形して実施できる。
In the above-mentioned embodiment, although it was used to perform the runoff analysis at the time of rainfall, for example, after calculating the runoff flow rate of the target basin, the outflow flow rate is used to calculate the inflow flow rate to the pump station or each treatment site, and the rainwater It can also be used for driving assistance to determine the number of pumps to operate. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、対
象流域からの雨水の等到達時間曲線を自動的に設定し、
種々の条件変更に対しても迅速に等到達時間曲線を作成
する流出解析支援装置を提供できる。
As described above, according to the present invention, the equal arrival time curve of rainwater from the target basin is automatically set,
It is possible to provide an outflow analysis support device that quickly creates equal arrival time curves even when various conditions are changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる流出解析支援装置を用いた降雨
の流出解析装置の一実施例を示すブロック図。
FIG. 1 is a block diagram showing an embodiment of a rainfall runoff analysis apparatus using a runoff analysis support apparatus according to the present invention.

【図2】流出解析支援装置の構成を処理手順に従って具
体的に示す図。
FIG. 2 is a diagram specifically showing a configuration of an outflow analysis support device according to a processing procedure.

【図3】管渠の番号づけおよび移送点を説明する図。FIG. 3 is a diagram illustrating numbering of pipes and transfer points.

【図4】マニングの式を用いて管渠の断面形に応じて管
渠内を流れる流速を求めるための説明図。
FIG. 4 is an explanatory diagram for obtaining a flow velocity flowing in a pipe according to a sectional shape of the pipe using Manning's equation.

【図5】移送時間と移送点との関係を説明する図。FIG. 5 is a diagram illustrating a relationship between a transfer time and a transfer point.

【図6】移送曲線を求めるための幾何学的な説明図。FIG. 6 is a geometrical explanatory diagram for obtaining a transfer curve.

【図7】時間に対する移送曲線を示す図。FIG. 7 is a diagram showing a transfer curve with respect to time.

【符号の説明】[Explanation of symbols]

11…レーダ空中線、12…地上雨量計、17…降雨量
演算装置、18…流出解析演算装置、20…流出解析支
援装置、21…管渠データファイル、22…枝管データ
ファイル、23…管接続データファイル、24…結果デ
ータファイル、25…記憶手段、26…演算処理部。
11 ... Radar antenna, 12 ... Ground rain gauge, 17 ... Rainfall calculation device, 18 ... Runoff analysis calculation device, 20 ... Runoff analysis support device, 21 ... Pipe conduit data file, 22 ... Branch pipe data file, 23 ... Pipe connection Data file, 24 ... Result data file, 25 ... Storage means, 26 ... Arithmetic processing section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流出流量の手法の一つであるRRL法を
用いて対象流域から管渠,枝管などを通って流れ出る流
出量を解析するときに用いる雨水の等到達時間曲線を作
成する流出解析支援装置において、 予め前記管渠およびこの管渠に接続される前記枝管の断
面形,長さ,勾配,粗度係数などの特徴データを記憶す
る記憶手段と、 この記憶手段に記憶された前記管渠の特徴データを用い
て当該管渠内を流れる雨水の流速を求めた後、この流速
および所要とする単位時間から前記管渠の移送点を設定
する管渠移送点算出手段と、 前記記憶手段に記憶された前記枝管の特徴データを用い
て当該枝管内を流れる雨水の流速を求めた後、この流速
および所要とする単位時間から前記枝管の移送点を設定
する枝管移送点算出手段と、 所定の幾何学的な計算式に基づいて前記各管渠上の移送
点および前記各枝管上の移送点とを結ぶ移送曲線を算出
する移送曲線算出手段とを備え、 この移送曲線算出手段で求めた移送曲線を用いて前記雨
水の等到達時間曲線を作成することを特徴とする流出解
析支援装置。
1. An outflow for creating an equal arrival time curve of rainwater used when analyzing an outflow from a target watershed through a conduit, a branch pipe, etc. using the RRL method, which is one of the methods of outflow. In the analysis support device, storage means for storing characteristic data such as a sectional shape, a length, a gradient, and a roughness coefficient of the pipe and the branch pipe connected to the pipe in advance, and the storage means. After determining a flow velocity of rainwater flowing through the pipe using the feature data of the pipe, a pipe transfer point calculating means for setting a transfer point of the pipe from the flow velocity and required unit time, A branch pipe transfer point for setting the transfer point of the branch pipe from the flow velocity and the required unit time after obtaining the flow velocity of rainwater flowing through the branch pipe using the feature data of the branch pipe stored in the storage means. Calculation means, and the predetermined geometric A transfer curve calculating means for calculating a transfer curve connecting the transfer point on each pipe and the transfer point on each branch pipe based on a formula, and using the transfer curve obtained by this transfer curve calculation means An outflow analysis support device, characterized in that the equal arrival time curve of rainwater is created.
JP5011614A 1993-01-27 1993-01-27 Outflow-analysis support apparatus Pending JPH06221883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5011614A JPH06221883A (en) 1993-01-27 1993-01-27 Outflow-analysis support apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5011614A JPH06221883A (en) 1993-01-27 1993-01-27 Outflow-analysis support apparatus

Publications (1)

Publication Number Publication Date
JPH06221883A true JPH06221883A (en) 1994-08-12

Family

ID=11782799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5011614A Pending JPH06221883A (en) 1993-01-27 1993-01-27 Outflow-analysis support apparatus

Country Status (1)

Country Link
JP (1) JPH06221883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011655A (en) * 2013-07-02 2015-01-19 中日本ハイウェイ・パトロール東京株式会社 Effluent diffusion prevention support device, effluent diffusion prevention support program, and storage medium
CN114743355A (en) * 2022-04-12 2022-07-12 四川水利职业技术学院 Diversion project leakage alarm method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011655A (en) * 2013-07-02 2015-01-19 中日本ハイウェイ・パトロール東京株式会社 Effluent diffusion prevention support device, effluent diffusion prevention support program, and storage medium
CN114743355A (en) * 2022-04-12 2022-07-12 四川水利职业技术学院 Diversion project leakage alarm method and system

Similar Documents

Publication Publication Date Title
US4987913A (en) Apparatus and method for controlling operation of storm sewage pump
US10113304B2 (en) System and method for agent-based control of sewer infrastructure
JPH06221883A (en) Outflow-analysis support apparatus
CN101858107B (en) Method for designing rainwater treatment and utilization facility
JP3839361B2 (en) Rainwater runoff coefficient prediction method, rainwater inflow prediction method, rainwater runoff coefficient prediction program, and rainwater inflow forecast program
CN111008357B (en) Method for determining average blocking height of sediment in sewage pipeline
JPS5919367B2 (en) rainwater drainage system
JP3379008B2 (en) Flow forecasting system
CN115618769A (en) Drainage system evaluation method and system based on hydraulic model
JPH08120752A (en) Runoff analysis support system
CN114659569A (en) Channel flow determining method
CN207959463U (en) The adjustable plastic concrete mixed structure of interception ratio intelligently cuts dirty well
JPH06264495A (en) Method for forecasting amount of flowing-in water
JPS59150841A (en) Estimation and regulation of flow amount of confluence type drainage
JPH07244651A (en) Out flow analysis assistance device
JPH01175613A (en) Pump controller
JPS63313088A (en) Forecasting device for amount of rainfall
JP3176174B2 (en) Pump station rainwater inflow prediction device
JPH05134056A (en) Estimating apparatus for inflow of rain water
JP3667944B2 (en) Rainwater inflow prediction support device
JP3437700B2 (en) Pump station inflow prediction support device
JP2004275829A (en) Water quality improvement controlling device of confluential sewerage treatment equipment
JP2000345604A (en) Device for estimating inflow sewage quantity
CN109146244A (en) A kind of method of quick judgement urban discharging pipeline deposition degree
CN113551717B (en) Monitoring method and device for intelligent monitoring of intercepting well