JPH0622141B2 - Composite electrode substrate having different rib heights and method for manufacturing the same - Google Patents

Composite electrode substrate having different rib heights and method for manufacturing the same

Info

Publication number
JPH0622141B2
JPH0622141B2 JP61190959A JP19095986A JPH0622141B2 JP H0622141 B2 JPH0622141 B2 JP H0622141B2 JP 61190959 A JP61190959 A JP 61190959A JP 19095986 A JP19095986 A JP 19095986A JP H0622141 B2 JPH0622141 B2 JP H0622141B2
Authority
JP
Japan
Prior art keywords
electrode
separator
reaction gas
carbon material
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61190959A
Other languages
Japanese (ja)
Other versions
JPS6348766A (en
Inventor
弘之 福田
征行 船橋
真澄 鷺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP61190959A priority Critical patent/JPH0622141B2/en
Priority to DE19873727282 priority patent/DE3727282A1/en
Priority to FR8711539A priority patent/FR2602915A1/en
Priority to GB8719148A priority patent/GB2193838B/en
Publication of JPS6348766A publication Critical patent/JPS6348766A/en
Publication of JPH0622141B2 publication Critical patent/JPH0622141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、リン酸型燃料電池用複合電極基板及びその製
造方法に関する。
TECHNICAL FIELD The present invention relates to a composite electrode substrate for a phosphoric acid fuel cell and a method for manufacturing the same.

[従来の技術] 近年、クリーンなエネルギーの発生装置として、あるい
は火力または水力発電等の運転の平準化またはエネルギ
ー効率の向上等により、省資源に貢献し得る開閉自在な
発電装置としての燃料電池及びその周辺システムの開発
利用についての要望には高いものがある。
[Prior Art] In recent years, a fuel cell as a power generator that can be opened / closed and can contribute to resource saving as a clean energy generator, or by leveling operation of thermal power or hydroelectric power generation or improving energy efficiency There is a high demand for the development and use of the peripheral system.

従来燃料電池としては、不透過性の黒鉛製薄板をリブ加
工して得られるバイポーラセパレーターと多孔質炭素材
平板を組み合わせて用いるバイポーラセパレーター型燃
料電池が公知であったが、これに対して一方の面にリブ
を設け他方の面は平坦な構造を有する多孔性電極基板、
触媒層、電解質を含浸させたマトリックス及びセパレー
ターシートを積層して構成するモノポーラ型燃料電池セ
ルが開発されている。このモノポーラ型燃電池は電極基
板に設けられたリブによって形成される反応ガス孔道か
ら反応ガス(酸素又は水素)が平坦な電極面に拡散して
くるものである。
As a conventional fuel cell, a bipolar separator-type fuel cell using a bipolar separator obtained by rib-processing an impermeable graphite thin plate and a porous carbon material flat plate in combination has been known. The surface is provided with ribs and the other surface is a porous electrode substrate having a flat structure,
A monopolar fuel cell having a catalyst layer, a matrix impregnated with an electrolyte, and a separator sheet that are laminated has been developed. In this monopolar fuel cell, a reaction gas (oxygen or hydrogen) diffuses from a reaction gas passage formed by a rib provided on an electrode substrate to a flat electrode surface.

このような燃料電池においては、セパレーターを挟んで
両側に形成される2種類の反応ガス孔道、即ち燃料極側
反応ガス孔道と空気極側反応ガス孔道は通常同一断面積
で形成されていた。
In such a fuel cell, the two kinds of reaction gas passages formed on both sides of the separator, that is, the reaction gas passages on the fuel electrode side and the reaction gas passages on the air electrode side are usually formed to have the same cross-sectional area.

リン酸型燃料電池の電極反応はH+ 1/2O→H
であるから、理想的な燃料(水素)酸素の量論比は2:
1であり、同等のガス拡散を得るために両ガスを同圧で
用いるとすると上記のような両ガス孔道の断面積が等し
い燃料電池では理論的には純粋水素ガス量に対して50%
量の純粋酸素ガスを使用すればよいことになる。
Electrode reaction of phosphoric acid fuel cell is H 2 + 1 / 2O 2 → H 2 O
Therefore, the ideal fuel (hydrogen) oxygen stoichiometric ratio is 2:
1, and if both gases are used at the same pressure in order to obtain the same gas diffusion, theoretically 50% of the pure hydrogen gas amount in a fuel cell with the same cross-sectional area of both gas passages as described above.
It would be sufficient to use a quantity of pure oxygen gas.

しかしながら実際の燃料電池の作動においては酸素の供
給は空気によって行なわれるものであり、水素の供給は
LNG、LPG等を前処理したものでH含量が65〜80
%程度のガスにより行なわれること、さらには燃料及び
空気の利用率等を勘案すると、上記のような燃料極側反
応ガス孔道と空気極側反応ガス孔道の断面積が同じであ
る燃料電池は、燃料極側反応ガス孔道断面積が過剰であ
ったものである。
However, in the actual operation of the fuel cell, oxygen is supplied by air, and hydrogen is supplied by pretreatment of LNG, LPG, etc., and the H 2 content is 65-80.
%, And in consideration of the utilization rate of fuel and air, etc., a fuel cell in which the cross-sectional area of the fuel electrode side reaction gas passage and the air electrode side reaction gas passage is the same as above, The cross-sectional area of the reaction gas passage on the fuel electrode side was excessive.

燃料極側反応ガス孔道の過剰な大きさは、それに見合う
だけの空気流量を増加することによって補償され得るも
のの、前記した通り相手極に対するガスの移動を考慮す
ると両ガスを同圧で用いることが好ましいことは明らか
である。
Although the excessive size of the reaction gas passage on the fuel electrode side can be compensated by increasing the air flow rate corresponding to it, it is preferable to use both gases at the same pressure in consideration of the movement of the gas relative to the opposite electrode as described above. The preference is clear.

またこのような燃料電池におけるその他の問題点として
は、各部材間の接合が従来はリン酸によって酸化され易
いカーボンセメントを用いて行なわれていたため、部材
間の剥離を生じたり、接合部を通して反応ガスが漏れた
りする可能性があったこと、電極基板が薄板状に製造さ
れるため、特に基板面積が大きいような場合には取り扱
い時に割れたりするといった機械的強度における問題が
あったこと等が挙げられる。
Another problem with such a fuel cell is that the joining between the members was conventionally performed using carbon cement, which is easily oxidized by phosphoric acid. There is a possibility that gas may leak, and because the electrode substrate is manufactured in a thin plate shape, there was a problem in mechanical strength such as cracking during handling, especially when the substrate area is large. Can be mentioned.

[発明の課題] 本発明は、セパレーター、多孔性炭素質電極部及び端部
シール部からなり、実際に使用される燃料の条件に適合
した燃料極側と空気極側の反応ガス孔道面積比を有する
燃料電池用複合電極基板を提供することを目的とする。
[Problems of the Invention] The present invention comprises a separator, a porous carbonaceous electrode part, and an end seal part, and determines the reaction gas passage area ratio of the fuel electrode side and the air electrode side that is suitable for the conditions of the fuel actually used. An object of the present invention is to provide a composite electrode substrate for a fuel cell having the same.

また本発明は、多孔性炭素質電極部の端部が四フッ化エ
チレン樹脂層でシールされており、反応ガスの電池側面
への漏出を防ぐための周辺シール処理を行う必要のない
燃料電池用複合電極基板を提供することを目的とする。
Further, the present invention is for a fuel cell in which the end of the porous carbonaceous electrode part is sealed with a tetrafluoroethylene resin layer, and it is not necessary to perform a peripheral sealing process for preventing the reaction gas from leaking to the side surface of the cell. An object is to provide a composite electrode substrate.

本発明のさらに別の目的は耐リン酸性に優れたリン酸型
燃料電池用複合電極基板を提供することである。
Yet another object of the present invention is to provide a composite electrode substrate for a phosphoric acid fuel cell, which is excellent in phosphoric acid resistance.

本発明のさらに他の目的および利点は以下の記載から当
業者には明らかであろう。
Still other objects and advantages of the present invention will be apparent to those skilled in the art from the following description.

[問題を解決するための手段] 上記した通り、リン酸型燃料電池における燃料(水素)
と酸素の量論比は2:1である。実際の燃料電池の作動
においては酸素は空気により供給されるので、供給ガス
中の酸素含量は約20%である。また水素の供給ガスは前
述の通り改質したLG、LPG等であってCO、水蒸
気等が混入しており、水素含量は65〜80%程度である。
[Means for Solving the Problem] As described above, the fuel (hydrogen) in the phosphoric acid fuel cell
And the stoichiometric ratio of oxygen is 2: 1. Since oxygen is supplied by air in actual fuel cell operation, the oxygen content in the supply gas is about 20%. Further, the hydrogen supply gas is LG, LPG, etc., which has been reformed as described above, and is mixed with CO 2 , steam, etc., and the hydrogen content is about 65 to 80%.

一方、反応ガス供給量に対する反応ガス使用量の比で表
わされる反応ガス利用率に関して、該利用率が一定値を
超えると電池端子電圧が低下し始めるので該利用率は制
限される。実際には、水素利用率は75%以下、酸素利用
率は50%以下である必要がある。
On the other hand, regarding the reaction gas utilization rate represented by the ratio of the reaction gas supply rate to the reaction gas supply rate, when the utilization rate exceeds a certain value, the battery terminal voltage starts to decrease, so the utilization rate is limited. In reality, the hydrogen utilization rate should be 75% or less and the oxygen utilization rate should be 50% or less.

2つの反応ガスを同圧で用いるものとして上記の数値か
ら計算すると、燃料極側反応ガス孔道断面積と空気極側
反応ガス孔道断面積の比は約0.325: 1〜0.410:1とな
り、水素供給ガスの処理条件によっては水素含量が多少
低くなら得ることを考慮すると、前記比は約1:3〜
2:3であれば実際の供給ガスの条件に合致し得るもの
である。
Calculating from the above values assuming that two reaction gases are used at the same pressure, the ratio of the cross-sectional area of the reaction gas passage on the fuel electrode side to the reaction gas passage on the air electrode side is about 0.325: 1 to 0.410: 1. Considering that the hydrogen content may be slightly lower depending on the gas processing conditions, the above ratio may be about 1: 3.
If it is 2: 3, it can meet the conditions of the actual supply gas.

また、電極部材とセパレーター材との接合は炭化可能な
接着剤で接着して焼成してカーボンとして一体化するこ
とによって行なえば充分な電気特性(導電性)、耐リン
酸性が得られ、緻密炭素材の端部シール部材を四フッ化
エチレン樹脂シートによりセパレーター材に接合すれ
ば、充分な耐ガスリーク性、耐リン酸性及び全体的強度
が得られる。
Also, if the electrode member and the separator material are joined by adhering them with a carbonizable adhesive and firing them to integrate them into carbon, sufficient electrical characteristics (electrical conductivity) and phosphoric acid resistance can be obtained. When the end seal member of the material is joined to the separator material with a tetrafluoroethylene resin sheet, sufficient gas leak resistance, phosphoric acid resistance and overall strength can be obtained.

[発明の構成] 本発明は、緻密炭素材からなるセパレーター、該セパレ
ーターと接合されて反応ガス孔道を形成する複数の溝を
片面に備え他の一面は平板状である2つの多孔性炭素質
電極部及び緻密炭素材からなる端部シール部から成り、
前記電極部が反応ガス孔道が直交して相対するように前
記セパレーターの両面に該セパレーターと前記電極部と
の接合面にのみ可撓性炭素材シートを介在させて接合さ
れかつ焼成されてカーボンとして一体化されており、前
記端部シール部が前記電極部の溝に平行な電極部周縁端
部に隣接して該電極部周縁より外方に伸廷しているセパ
レーターの伸廷部に四フッ化エチレン樹脂層を介して接
合されている構造の燃料電池用電極基板であって、セパ
レーターと多孔性炭素質電極部の溝によって形成される
反応ガス孔道の燃料極側反応ガス孔道断面積と空気極側
反応ガス孔道断面積の比が1:3〜2:3であることを
特徴とする燃料電池用複合電極基板である。
[Structure of the Invention] The present invention relates to a separator made of a dense carbon material, and two porous carbonaceous electrodes having a plurality of grooves joined to the separator to form a reaction gas passage on one surface and the other surface having a flat plate shape. Part and end seal part made of dense carbon material,
The electrode parts are joined to both surfaces of the separator so that the reaction gas passages are orthogonal to each other and only the joining faces of the separator and the electrode parts are joined with a flexible carbon material sheet interposed therebetween, and the carbon parts are fired. It is integrated, and the end seal part is adjacent to the end part of the electrode part parallel to the groove of the electrode part, and is attached to the end part of the separator extending outward from the peripheral part of the electrode part. An electrode substrate for a fuel cell having a structure bonded through a chlorinated ethylene resin layer, wherein a cross-sectional area of a reaction gas passage of a reaction gas passage formed by a groove of a separator and a porous carbonaceous electrode portion The composite electrode substrate for a fuel cell is characterized in that the ratio of the cross-sectional area of the reaction gas passages on the electrode side is 1: 3 to 2: 3.

本発明の燃料電池用複合電極基板において、多孔性炭素
質電極部とセパレーターとは、焼成時の各部材の熱膨張
及び収縮を吸収する緩衝層として可撓性炭素材シートを
部材間に介在させ、炭化可能な接着剤で接着した後、焼
成し、カーボンとして一体化されていることが必要であ
る。
In the composite electrode substrate for a fuel cell of the present invention, the porous carbonaceous electrode portion and the separator have a flexible carbon material sheet interposed between the members as a buffer layer that absorbs thermal expansion and contraction of each member during firing. It is necessary that they are integrated with each other as carbon by firing after bonding with a carbonizable adhesive.

従って本発明はまた、2枚の溝未加工の所定寸法の平板
状多孔性炭素質電極部材の片面に可撓性炭素材シートを
それぞれ接着剤により接着し、反応ガス孔道を形成する
所望寸法の溝を燃料極側反応ガス孔道断面積と空気極側
反応ガス孔道断面積の比が1:3〜2:3となるように
それぞれ前記電極部材の可撓性炭素剤シートを接着した
方の面に切削加工した後、切削加工面上に残存する可撓
性炭素材シート面をセパレーターの両面につき合わせて
接着剤により接着し、さらに 800℃以上の焼成した後、
前記溝に平行な電極部材周縁端部に隣接して該電極部周
縁より外方に伸廷しているセパレーターの伸廷部分に四
フッ化エチレン樹脂シートを介してガス不透過性の緻密
炭素材からなる端部シール部材を接合することからなる
上記の燃料電池用複合電極基板の製造方法を提供するも
のである。
Therefore, the present invention also provides a flexible carbon material sheet adhered to one surface of each of two flat plate-like porous carbonaceous electrode members, each of which has a groove and is not machined, with an adhesive to form a reaction gas passage. The surface on which the flexible carbon agent sheet of the electrode member is bonded so that the groove has a ratio of the cross-sectional area of the reaction gas passages on the fuel electrode side to the reaction gas passage on the air electrode side of 1: 3 to 2: 3. After cutting into, the surfaces of the flexible carbon material sheet remaining on the cut surface are put together on both sides of the separator and bonded with an adhesive, and after firing at 800 ° C or higher,
A gas impermeable dense carbon material is provided on the extending portion of the separator, which is adjacent to the peripheral edge portion of the electrode member parallel to the groove and extends outward from the peripheral edge portion of the electrode portion, through the tetrafluoroethylene resin sheet. The present invention provides a method for manufacturing the above composite electrode substrate for a fuel cell, which comprises joining an end seal member made of.

[詳細な説明] 以下、添付の図面を参照して本発明の複合電極基板をさ
らに詳しく説明する。尚、図は誇張して描いたものであ
り実寸を表わすものではない。各部材の大きさ、特に厚
みに関する適当な大きさは当業者には明らかであろう。
Detailed Description Hereinafter, the composite electrode substrate of the present invention will be described in more detail with reference to the accompanying drawings. It should be noted that the drawings are exaggerated and do not represent the actual size. Those of ordinary skill in the art will appreciate the size of each member, and particularly the appropriate size with respect to thickness.

第1図は本発明の複合電極基板の斜視図である。FIG. 1 is a perspective view of the composite electrode substrate of the present invention.

本発明の複合電極基板は、セパレーター1 と、該セパレ
ーターと共に反応ガス孔道5,6 を形成する溝を有し該セ
パレーターの両側に位置する2つの電極部2 と、該電極
部の反応ガス孔道5,6 に平行方向の端部をシールする端
部シール部3 とからなる構造を有している。
The composite electrode substrate of the present invention includes a separator 1, two electrode portions 2 having grooves that form reaction gas passages 5 and 6 together with the separator and located on both sides of the separator, and a reaction gas passage 5 of the electrode portion. , 6 has an end seal portion 3 for sealing the end portion in the parallel direction.

セパレーター1 は電極部2 より大きく、図に示したよう
に電極部の反応ガス孔道5,6 に平行な縁部に沿ってこの
電極部周縁より外方に伸廷しており、この伸廷部に端部
シール部3 が接合されている(前記のセパレーターの伸
廷部の外端は端部シール部接合後の端部シール部の外端
に一致している)。外方に伸廷しているセパレーターの
伸廷部と端部シール部3 は四フッ化エチレン樹脂層4 を
介して接合されている。セパレーター1 と電極部2 とは
電極部2 の溝を形成する突起部とセパレーターの接合面
にのみ可撓性炭素材シートを介在させて接合され且つ焼
成されてカーボンとして一体化されている。反応ガス孔
道 5、6 は電極部の溝、可撓性炭素材シート層及びセパ
レーターにより規定される。
The separator 1 is larger than the electrode part 2 and extends outward from the periphery of this electrode part along the edge parallel to the reaction gas passages 5 and 6 of the electrode part as shown in the figure. The end seal portion 3 is joined to the end seal portion 3 (the outer end of the extending portion of the separator coincides with the outer end of the end seal portion after the end seal portion is joined). The extending part of the separator extending outward and the end seal part 3 are joined via a tetrafluoroethylene resin layer 4. The separator 1 and the electrode portion 2 are joined and baked together with the flexible carbon material sheet interposed only on the joint surface between the protrusion forming the groove of the electrode portion 2 and the separator, and integrated as carbon. The reaction gas holes 5 and 6 are defined by the groove of the electrode part, the flexible carbon material sheet layer and the separator.

本発明の複合電極基板においては、燃料極側反応ガス孔
道5 の断面積と空気極側反応ガス孔道6 の断面積の比が
1:3〜2:3となっている。前記の断面積比を満す反
応ガス孔道の断面形状は任意のものとし得るが、複合電
極基板自体の厚さを薄くし得るという効果や、電池自体
の性能及び機械的強度等の点から、通常長方形形状で形
成される反応ガズ孔道において、燃料極側と空気極側で
幅は同一とし、高さが異なる(電極部の溝の深さと可撓
性炭素材層の厚さの和が異なる)ことによって断面積が
異なっているものとするのが好ましい。
In the composite electrode substrate of the present invention, the ratio of the cross-sectional area of the fuel electrode side reaction gas passage 5 to the air electrode side reaction gas passage 6 is 1: 3 to 2: 3. Although the cross-sectional shape of the reaction gas passage satisfying the above-mentioned cross-sectional area ratio can be arbitrary, from the viewpoint of the effect that the thickness of the composite electrode substrate itself can be made thin, the performance and mechanical strength of the battery itself, and the like, Normally, in the reaction gas passage formed in a rectangular shape, the fuel electrode side and the air electrode side have the same width and different heights (the sum of the groove depth of the electrode portion and the thickness of the flexible carbon material layer is different). Therefore, it is preferable that the cross-sectional areas are different.

反応ガス孔道に関し、図に示したものは断面形状が長方
形であり、一端から他端へ平行に直線的に伸びているも
のであるが、多孔性炭素質電極部に拡散する反応ガスを
充分に供給し得るものであれば任意の形状とし得る。例
えば、電極部の溝を形成するリブを断面が矩形となるよ
うな形状としたり、溝を非直線的なものにすれば複合電
極基板の受ける応力の分散を図ることができ、特に製造
時等に有利である。
Regarding the reaction gas passage, the one shown in the figure has a rectangular cross-sectional shape and extends linearly in parallel from one end to the other end, but the reaction gas diffusing into the porous carbonaceous electrode part is sufficiently Any shape can be used as long as it can be supplied. For example, if the ribs forming the grooves of the electrode portion are shaped so as to have a rectangular cross section, or if the grooves are made non-linear, it is possible to disperse the stress received by the composite electrode substrate, especially during manufacturing. Is advantageous to.

本発明の複合電極基板においては、電極部は、多孔性炭
素質であり、平均嵩密度 0.3〜0.9 g/cc、ガス透過率 2
00ml/cm・hr・mmAq 以上、及び電気抵抗200mΩ・cm
以下の特性を有することが好ましい。
In the composite electrode substrate of the present invention, the electrode portion is a porous carbonaceous material, the average bulk density 0.3 ~ 0.9 g / cc, gas permeability 2
00ml / cm 2 · hr · mmAq or more, and electrical resistance 200mΩ · cm
It is preferable to have the following characteristics.

セパレーターは平均嵩密度 1.4g/cc以上、ガス透過率10
-6ml/cm・hr・mmAq 以下、電気抵抗10 mΩ・cm以下
で厚さ2mm 以下の緻密炭素材が好ましく、2000℃以上で
焼成されたものがより好ましい。
Separator has an average bulk density of 1.4g / cc or more, gas permeability of 10
-6 ml / cm 2 · hr · mmAq or less, an electric resistance of 10 mΩ · cm or less and a thickness of 2 mm or less are preferable, and a dense carbon material is more preferably fired at 2000 ° C or more.

端部シール部は平均嵩密度が 1.4g/cc以上で、ガス透過
率が10-4ml/cm・hr・mmAq 以下の緻密炭素材である
ことが好ましい。
The end seal portion is preferably a dense carbon material having an average bulk density of 1.4 g / cc or more and a gas permeability of 10 −4 ml / cm 2 · hr · mmAq or less.

上記の通り、本発明の燃料電池用複合電極基板において
は電極部の反応ガス孔道に平行な端部は、緻密炭素材か
らなる端部シール部をセパレーターに四フッ化エチレン
樹脂層を介して接合することによってシールされている
が、接合部も含めて端部のシール部を通して外部に漏れ
るリーク量は、拡散が支配的で圧力にはあまり影響され
ないが、本発明では 500mmAq の差圧下で接合部周辺長
あたりの単位時間内のリークガス量として[リークガス
量/(辺長)・(差圧)]なる関係で表わすものとする
と10-2ml/cm・hr・mmAq 以下が好ましい。
As described above, in the composite electrode substrate for a fuel cell of the present invention, the end portion parallel to the reaction gas passage of the electrode portion is joined to the separator by the end seal portion made of the dense carbon material through the tetrafluoroethylene resin layer. Although it is sealed by the above, the leak amount that leaks to the outside through the seal part at the end including the joint is diffusion-dominant and is not affected by the pressure so much, but in the present invention, the joint is subjected to a differential pressure of 500 mmAq. When the leak gas amount per unit length per unit time is expressed by the relationship of [leak gas amount / (side length) · (differential pressure)], 10 −2 ml / cm 2 · hr · mmAq or less is preferable.

本発明の複合電極基板においては、端部シール部はセパ
レーターの伸延部分に四フッ化エチレン樹脂(略称PT
FE,融点 327℃,熱変形温度121℃)層を介して接合
されているが、四フッ化エチレン樹脂層は厚さが50μm
程度である。
In the composite electrode substrate of the present invention, the end seal portion is formed of tetrafluoroethylene resin (abbreviated as PT) on the extended portion of the separator.
FE, melting point 327 ° C, heat distortion temperature 121 ° C), but the tetrafluoroethylene resin layer has a thickness of 50 μm.
It is a degree.

以下に本発明の複合電極基板を製造するために使用する
材料と製造方法について記載する。
The materials and manufacturing method used for manufacturing the composite electrode substrate of the present invention are described below.

電極部材としては次のものが用いられる。The following are used as the electrode members.

短炭素繊維、バインダー及び有機粒状物質の混合物
を加熱加圧成形したもの(例えば特開昭59-68170号参
照)。特に長さ 2mm以下の短炭素繊維20〜60重量%、フ
ェノール樹脂20〜50重量%および有機粒状物質(細孔調
節材)20〜50重量%からなる混合物を成形温度 100〜18
0 ℃、成形圧力 297〜9901 kPa(2〜100 kgf/cm
G)、圧力保持時間 1〜60分の状けで成形したもの。
A mixture of short carbon fibers, a binder and an organic particulate material which is heat-pressed (see, for example, JP-A-59-68170). Particularly, a mixture consisting of 20 to 60% by weight of short carbon fibers having a length of 2 mm or less, 20 to 50% by weight of phenolic resin and 20 to 50% by weight of organic particulate matter (pore control material) is used at a molding temperature of 100 to 18%.
0 ℃, molding pressure 297-9901 kPa (2-100 kgf / cm
2 G), those formed with only Jo pressure holding time 1-60 minutes.

上記の成形部材を 800℃以上で焼成したもの。 A product obtained by firing the above molded parts at 800 ° C or higher.

セパレーター材としては、2000℃で焼成したときの焼成
収縮率が 0.2%以上の緻密炭素板が好ましい。
As the separator material, a dense carbon plate having a firing shrinkage of 0.2% or more when fired at 2000 ° C. is preferable.

可撓性炭素材シートとしては、粒径5mm 以下の黒鉛素子
を酸処理し更に加熱して得た膨張黒鉛粒子を圧縮して作
った可撓性黒鉛シートであって、厚さが1mm以下で、嵩
密度 1.0〜1.5 g/cc、圧縮歪率(すなわち、圧縮荷重1
kgf/cmに対する歪率)が0.35×10-2cm/kgf如何であ
り、曲率半径が20mmまで曲げても折れないという可撓性
を有するものが好ましく、市販のものではUCC製グラ
フォイル が好適な例である。
As a flexible carbon sheet, a graphite element with a particle size of 5 mm or less
Acid-treated and further heated to obtain expanded graphite particles
Flexible graphite sheet with a thickness of 1 mm or less
Density 1.0 to 1.5 g / cc, compressive strain rate (ie compressive load 1
kgf / cmTwoDistortion ratio) is 0.35 × 10-2cmTwohow / kgf
Flexibility that does not break even if the radius of curvature is bent to 20 mm
It is preferable to have U.C.
Foil Is a suitable example.

また可撓性炭素材シートして、平均長さ1mm 以上の炭素
繊維と炭化率が10%以上である結合材から成り、両者を
混合したり炭素繊維マトリックス中に結合材を注入した
りすることによって調製した複合材を加熱加圧成形し、
その後 850℃以上で焼成して製造したものであって、結
合材由来の炭素塊が炭素繊維マトリックス中に分散して
複数本の炭素繊維を拘束しており、かつ前記炭素塊と炭
素繊維とが摺動自在に結合している厚さが 1mm以下で嵩
密度が 0.2〜1.3 g/cc、圧縮歪率が 2.0×10-1cm
kgf 以下である可撓性炭素材シートも使用できる。この
炭素材シートは、曲率半径が10mmまで曲げても折れない
という可撓性を有するものである。
A flexible carbon sheet made of carbon fibers with an average length of 1 mm or more and a binder with a carbonization rate of 10% or more. Mixing both and injecting the binder into the carbon fiber matrix. Heat and pressure molding the composite material prepared by
Then produced by firing at 850 ° C. or higher, the carbon lump derived from the binder is dispersed in the carbon fiber matrix to bind a plurality of carbon fibers, and the carbon lump and the carbon fiber are Slidably connected with a thickness of 1 mm or less, a bulk density of 0.2 to 1.3 g / cc, and a compression strain rate of 2.0 × 10 -1 cm 2 /
A flexible carbon material sheet having a weight of kgf or less can also be used. This carbon material sheet has flexibility such that it will not be bent even if the radius of curvature is bent to 10 mm.

本発明の複合電極基板は上記の材料を用いて以下のよう
にして製造する。
The composite electrode substrate of the present invention is manufactured using the above materials as follows.

まず、2枚の平板状の電極部材のそれぞれの片面に可撓
性炭素材シートを接着剤により接着する。使用する接着
剤としては、通常炭素材の接着に用いられる接着剤でよ
いが、特に、フェノール樹脂、エポキシ樹脂、及びフラ
ン樹脂等から選択された熱硬化性樹脂であることが好ま
しい。接着剤層の厚みは特に限定されるものではない
が、一般に0.5mm 以下で均一に塗布するのが好ましい。
また、前記接着剤による接着は、温度 100℃〜180 ℃、
プレス圧力 199〜5001 kPa(1〜50kgf/cmG)、プレス時
間 1〜120 分の範囲で行なうことができる。
First, a flexible carbon material sheet is bonded to one surface of each of the two flat plate-shaped electrode members with an adhesive. The adhesive used may be an adhesive usually used for bonding carbon materials, but a thermosetting resin selected from phenol resin, epoxy resin, furan resin and the like is particularly preferable. The thickness of the adhesive layer is not particularly limited, but generally 0.5 mm or less is preferably applied uniformly.
In addition, the adhesion with the adhesive, the temperature 100 ℃ ~ 180 ℃,
It can be performed at a pressing pressure of 199 to 5001 kPa (1 to 50 kgf / cm 2 G) and a pressing time of 1 to 120 minutes.

上記のような接着剤及び接着条件を用いて可撓性炭素材
シートを接着した2枚の電極部材に、燃料極側反応ガス
孔道断面積と空気極側反応ガス孔道断面積の比が1:3
〜2:3となるように反応ガス孔道を形成するための溝
を所望の寸法で可撓性炭素材シート貼付面に切削加工す
る。切削加工は任意の手段により行なうことができ、例
えばダイヤモンドブレードにより切削する。
The ratio of the cross-sectional area of the reaction gas passage on the fuel electrode side to the cross-sectional area of the reaction gas passage on the air electrode side is 1: to the two electrode members to which the flexible carbon material sheet is adhered using the adhesive and the adhering conditions as described above. Three
A groove for forming a reaction gas passage is cut into a desired size of about 2: 3 on the surface of the flexible carbon material sheet to which the flexible carbon material sheet is attached. Cutting can be performed by any means, for example, cutting with a diamond blade.

2枚の切削加工を終えた電極部材の残存可撓性炭素材シ
ート面をセパレーター材の両面にそれぞれつき合わせて
上記の電極部材と可撓性炭素材シートとの接着と同様に
接着した後、約 800℃以上の温度で焼成する。尚、電極
部材と可撓性炭素材シートの接着後、切削加工の前に同
様の焼成を行ない、合計2回の焼成を行うことにより炭
化を確実にすることもできる。
After the remaining flexible carbon material sheet surfaces of the two electrode members that have been subjected to the cutting process are respectively abutted on both surfaces of the separator material and bonded in the same manner as the above-described bonding between the electrode member and the flexible carbon material sheet, Bake at a temperature above 800 ° C. It should be noted that carbonization can be ensured by performing the same firing after the electrode member and the flexible carbon material sheet are bonded and before the cutting work, and firing is performed twice in total.

その後、電極部材の反応ガス孔道に平行な電極部材周縁
端部に隣接して該電極部周縁より外方に伸延しているセ
パレーター材の伸延部分に、ガス不透過性の緻密炭素材
からなる端部シール部材を、四フッ化エチレン樹脂シー
トを介して、199kPa(1kgf/cmG)以上の圧力で四フッ化
エチレン樹脂の融点より50℃低い温度以上の温度で融着
接合する。
Then, an end portion made of a gas-impermeable dense carbon material is attached to the extended portion of the separator material which is adjacent to the end portion of the electrode member parallel to the reaction gas passage of the electrode member and extends outward from the peripheral edge of the electrode member. The partial seal member is fusion-bonded through the tetrafluoroethylene resin sheet at a pressure of 199 kPa (1 kgf / cm 2 G) or more at a temperature of 50 ° C. or more lower than the melting point of the tetrafluoroethylene resin.

本発明の複合電極基板の構造を得るために、例えば電極
部材に溝を切削加工した後に形成された突起部上面に可
撓性炭素材シートを接合する等、種々の変法を取り得る
が、前記したように未切削の平板状の電極部材に可撓性
炭素材シートを接合した後に切削加工を行なうのが最も
実際的である。
In order to obtain the structure of the composite electrode substrate of the present invention, for example, various modified methods such as joining a flexible carbon material sheet to the upper surface of the protrusion formed after cutting the groove in the electrode member can be adopted, As described above, it is most practical to perform the cutting process after joining the flexible carbon material sheet to the uncut plate-shaped electrode member.

製造上の都合により可撓性炭素材シートが電極部と同一
の大きさを有し、セパレーターの全面に接合されている
複合電極基板に比べ可撓性炭素材シートが電極部とセパ
レーターの接合面にのみ存在する本発明の複合電極基板
は、同一の反応ガス孔道断面積を確保しながら可撓性炭
素材シートの厚さの分だけ複合電極基板の厚さを薄くし
得るので好ましい構造である。
Due to the manufacturing convenience, the flexible carbon material sheet has the same size as the electrode part, and the flexible carbon material sheet has a bonding surface between the electrode part and the separator as compared with the composite electrode substrate bonded on the entire surface of the separator. The composite electrode substrate of the present invention, which is present only in, is a preferable structure because the composite electrode substrate can be thinned by the thickness of the flexible carbon material sheet while ensuring the same reaction gas passage cross-sectional area. .

[発明の効果] 以上のようにして得られる本発明の燃料電池用複合電極
基板は、実際に供給される反応ガスの条件に合致させた
反応ガス孔道断面積を有しているので、燃料極側と空気
極側で同一の反応ガス孔道断面積を有する電極基板と比
較して、燃料電池として作動させたときに同一の性能を
保持しながら、燃料極側の反応ガス孔道断面積を小さく
し得、即ち反応ガス孔道の高さを低くし得るので、ひい
ては複合電極基板自体の厚さを薄くし得る。
[Advantages of the Invention] The composite electrode substrate for a fuel cell of the present invention obtained as described above has a reaction gas passage cross-sectional area that matches the conditions of the reaction gas actually supplied. Side and air electrode side have the same reaction gas passage cross-sectional area, the reaction gas passage cross-sectional area on the fuel electrode side is reduced while maintaining the same performance when operated as a fuel cell. That is, since the height of the reaction gas passage can be reduced, the thickness of the composite electrode substrate itself can be reduced.

例えば、通常の厚さ 3.8〜4.0mm の複合電極基板におい
ては、反応ガス孔道は 1.0〜1.4mm の高さで形成される
ので、最大約 0.6〜0.9mm 厚さを薄くし得、複合電極基
板全体として、約15〜24%厚さを薄くし得ることにな
る。これは単に燃料電池のコンパクト化に寄与するばか
りではなく、厚さの低減により電気抵抗及び熱抵抗を同
様に約15〜24%減少させ得るので、より高い燃料効率を
期待できるものである。
For example, in a normal composite electrode substrate with a thickness of 3.8 to 4.0 mm, the reaction gas passages are formed with a height of 1.0 to 1.4 mm, so the maximum thickness can be reduced to about 0.6 to 0.9 mm. Overall, it would be possible to reduce the thickness by about 15-24%. This not only contributes to the downsizing of the fuel cell, but also can reduce electric thickness and thermal resistance by about 15 to 24% due to the reduction in thickness, so that higher fuel efficiency can be expected.

また本発明の燃料電池用複合電極基板は電極部の端部に
端部シールがセパレーターに四フッ化エチレン樹脂層を
介して一体的に接合成形されているため、耐ガスリーク
性に優れ、通常の燃料電池で必要とされる反応ガスの電
池側面への漏出を防ぐための周辺シール処理を行う必要
はない。
Further, in the composite electrode substrate for a fuel cell of the present invention, since the end seal is integrally formed on the end of the electrode part on the separator through the tetrafluoroethylene resin layer, it is excellent in gas leak resistance, It is not necessary to perform a peripheral sealing process for preventing the reaction gas required in the fuel cell from leaking to the side surface of the cell.

更には、電極部とセパレーターが接合面に可撓性炭素材
シートを介在させ接着剤により接着した後焼成によりカ
ーボンとして一体化されており、端部シール部とセパレ
ーターが四フッ化エチレン樹脂層を介して接合一体化さ
れているため耐リン酸性に優れ、リン酸型燃料電池用電
極基板として特に有用である。
Furthermore, the electrode part and the separator are integrated as carbon by adhering the flexible carbon material sheet to the joint surface with an adhesive and then firing, and the end seal part and the separator are made of a tetrafluoroethylene resin layer. It is excellent in phosphoric acid resistance because it is joined and integrated through it, and is particularly useful as an electrode substrate for phosphoric acid fuel cells.

また、薄板状の電極部の周縁部に端部シール部がセパレ
ーターを挟んで両面に交錯して均等に配置接合されてい
るためこれによる補強効果があり、その結果燃料電池製
造時などのハンドリング性に優れている。
In addition, since the end seals are evenly arranged and joined to both sides of the thin plate-shaped electrode part with the separator in-between, there is a reinforcing effect due to this, and as a result, handling properties during fuel cell manufacturing etc. Is excellent.

[実施例] 以下、本発明を実施例により詳述するが、本発明は以下
の実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

複合電極基板は以下の材料を使用して製造した。The composite electrode substrate was manufactured using the following materials.

電極部材 予め 800℃以上で焼成された多孔性炭素質平板材料(呉
羽化学工業(株)製、商品名KES−400 、 690mm(タ
テ)×690mm (ヨコ)で、厚さが1.47mmと0.97mmのもの
を1 枚ずつ使用した。
Electrode member Porous carbonaceous flat plate material pre-fired at 800 ° C or higher (Kureha Chemical Industry Co., Ltd., trade name KES-400, 690 mm (vertical) x 690 mm (horizontal), thickness 1.47 mm and 0.97 mm I used each one.

セパレーター材 昭和電工(株)製緻密炭素板(SG−2 、厚さ0.6mm )
をタテ、ヨコそれぞれ 690mmに裁断してセパレーター材
とした。
Separator material Showa Denko KK dense carbon plate (SG-2, thickness 0.6mm)
Was cut into vertical and horizontal pieces of 690 mm each to form a separator material.

四フッ化エチレン樹脂シート ニチアス(株)製の厚さ0.10mmのものを端部シール部材
の寸法に合わせて裁断したものを 4枚使用した。
Four sheets of tetrafluoroethylene resin sheet made by Nichias Co., Ltd., with a thickness of 0.10 mm, cut into pieces according to the dimensions of the end seal members were used.

可撓性炭素材シート グラフォイル (UCC製、嵩密度1.10g/cc、厚さ0.13
mm)を接合面寸法に合わせてタテ 690mm、ヨコ 650mmに
裁断したものを2枚使用した。
 Flexible carbon sheet Grafoil (UCC product, bulk density 1.10 g / cc, thickness 0.13
mm) according to the size of the joint surface, length 690 mm, width 650 mm
Two cut pieces were used.

端部シール部材 東海カーボン(株)製(嵩密度1.85g/cc)の緻密炭素板
タテ 690mm、ヨコ 200mm、厚さ1.5 mmと1.0mm に加工し
たものをそれぞれ2 枚使用した。
End seal member Two sheets each of a dense carbon plate manufactured by Tokai Carbon Co., Ltd. (bulk density: 1.85 g / cc) length 690 mm, width 200 mm, and thicknesses of 1.5 mm and 1.0 mm were used.

上記2枚の電極部材の各々の片面と可撓性炭素材シート
の片面にフェノール樹脂系接着剤を塗布した後、乾燥し
た。その後 140℃、1081 kPa(10kgf/cmG)、圧力保
持時間20分の条件で電極部材の両側端部20mm巾の部分を
除いた部分に可撓性炭素材シートをぞれぞれ接着した。
A phenol resin adhesive was applied to one surface of each of the two electrode members and one surface of the flexible carbon material sheet, and then dried. After that, the flexible carbon material sheets were adhered to the electrode members except for the 20 mm wide end portions under the conditions of 140 ° C., 1081 kPa (10 kgf / cm 2 G) and pressure holding time of 20 minutes. .

次いで厚さが1.47mmの電極部材を使用したものについて
は、可撓性炭素材シート貼付面に、深さ1.0mm 、巾 2mm
の長方形断面の複数の平行な溝を4mm 間隔で、可撓性炭
素材シートのタテ方向にダイヤモンドブレードにより切
削加工した。厚さが0.97mmの電極部材を使用したものに
ついては、可撓性炭素材シート貼付面に、深さ0.5mm 、
巾 2mmの長方形断面の複数の平行な溝を 4mm間隔で、可
撓性炭素材シートのタテ方向にダイヤモンドブレードに
より切削加工した。
Next, regarding the one using an electrode member with a thickness of 1.47 mm, a depth of 1.0 mm and a width of 2 mm was applied to the flexible carbon sheet attachment surface.
A plurality of parallel grooves each having a rectangular cross section at 4 mm intervals were cut by a diamond blade in the vertical direction of the flexible carbon material sheet. For those using an electrode member with a thickness of 0.97 mm, a depth of 0.5 mm,
A plurality of parallel grooves having a rectangular cross section with a width of 2 mm were cut at 4 mm intervals in the vertical direction of the flexible carbon material sheet with a diamond blade.

その後上記のようにして加工された電極部材に残存する
可撓性炭素材シート面及びセパレーター材の両面に上記
接着剤を塗布して乾燥した。
Thereafter, the adhesive was applied to both the surface of the flexible carbon material sheet remaining on the electrode member processed as described above and both surfaces of the separator material, and dried.

その後2 枚の電極部材のそれぞれの接着剤塗布面を、そ
れぞれの電極部材の複数の平行な溝が直交して相対する
ようにセパレーター材の両面に、140℃、1081 kPa(10k
gf/cmG)、圧力保持時間20分の条件で接着し、さら
に2000℃で焼成した。
After that, the adhesive-coated surface of each of the two electrode members shall be placed at 140 ° C, 1081 kPa (10 kPa) on both sides of the separator material so that the parallel grooves of each electrode member face each other at right angles.
Gf / cm 2 G) and pressure holding time of 20 minutes were adhered to each other, and further baked at 2000 ° C.

焼成後、電極部材のセパレーター材と接合されていない
側端部を除去してセパレーター材面を露出し、セパレー
ター材の露出部分に端部シール部材を四フッ化エチレン
樹脂シートを間に挟んで350 ℃、2061 kPa(20kgf/cm
G)、圧力保持時間20分で融着接合した。
After firing, the side end of the electrode member that is not joined to the separator material is removed to expose the separator material surface, and an end seal member is sandwiched between the exposed parts of the separator material with a tetrafluoroethylene resin sheet and 350 ℃, 2061 kPa (20kgf / cm 2
G), fusion bonding was performed with a pressure holding time of 20 minutes.

上記により厚さ 3.3mmの燃焼電池用複合電極基板が得ら
れた。
From the above, a composite electrode substrate for a combustion cell having a thickness of 3.3 mm was obtained.

比較として、従来技術に従い厚さ1.47mmの多孔性炭素質
平板を電極部材として2 枚使用し、電極部材に深さ1.0m
m 、巾2mm の長方形断面の複数の溝を4mm 間隔で切削加
工した以外は前記と同様にして厚さ3.8mm の燃料電池用
複合電極基板を製造した。
For comparison, according to the conventional technique, two 1.47 mm thick porous carbonaceous flat plates were used as electrode members, and the electrode members had a depth of 1.0 m.
A composite electrode substrate for a fuel cell having a thickness of 3.8 mm was produced in the same manner as described above except that a plurality of grooves having a rectangular cross section of m 2 and a width of 2 mm were cut at intervals of 4 mm.

両者の電池抵抗及び熱抵抗を測定した。結果を下表に示
す。
Both battery resistance and thermal resistance were measured. The results are shown in the table below.

上記から明らかな通り、本発明の燃料電地用複合電極基
板は、厚さを薄くしたことにより、電気抵抗及び熱抵抗
を約15〜16% 低減し得るのものである。
As is apparent from the above, the composite electrode substrate for a fuel cell according to the present invention can reduce the electric resistance and the thermal resistance by about 15 to 16% by reducing the thickness.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の複合電極基板の斜視図である。 1……セパレーター、 2……多孔性炭素質電極部、 3……端部シール部、 4……四フッ化エチレン樹脂層、 5……燃料極側反応ガス孔道、 6……空気極側反応ガス孔道、 7……可撓性炭素材シート。 FIG. 1 is a perspective view of the composite electrode substrate of the present invention. 1 ... Separator, 2 ... Porous carbonaceous electrode part, 3 ... End seal part, 4 ... Tetrafluoroethylene resin layer, 5 ... Fuel electrode side reaction gas passageway, 6 ... Air electrode side reaction Gas channel, 7 ... Flexible carbon material sheet.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】緻密炭素材からなるセパレーター、該セパ
レーターと接合されて反応ガス孔道を形成する複数の溝
を片面に備え他の一面は平板状である2つの多孔性炭素
質電極部及び緻密炭素材からなる端部シール部から成
り、前記電極部が反応ガス孔道が直交して相対するよう
に前記セパレーターの両面に該セパレーターと前記電極
部との接合面にのみ可撓性炭素材シートを介在させて接
合されかつ焼成されてカーボンとして一体化されてお
り、前記端部シール部が前記電極部の溝に平行な電極部
周縁端部に隣接して該電極部周縁より外方に伸廷してい
るセパレーターの伸廷部に四フッ化エチレン樹脂層を介
して接合されている構造の燃料電池用電極基板であっ
て、セパレーターと多孔性炭素質電極部の溝によって形
成される反応ガス孔道の燃料極側反応ガス孔道断面積と
空気極側反応ガス孔道断面積の比が1:3〜2:3であ
ることを特徴とする燃料電池用複合電極基板。
1. A separator made of a dense carbon material, two porous carbonaceous electrode parts having a plurality of grooves joined to the separator to form a reaction gas passage on one surface, and the other surface being a flat plate, and a dense carbon. It is composed of an end seal part made of a raw material, and a flexible carbon material sheet is provided only on the joint surface between the separator and the electrode part on both surfaces of the separator so that the reaction gas passages of the electrode part face each other at right angles. Are joined together and fired to be integrated as carbon, and the end seal portion is adjacent to the end portion of the electrode portion peripheral edge parallel to the groove of the electrode portion and extends outward from the electrode portion peripheral edge. An electrode substrate for a fuel cell having a structure in which it is joined to the extending part of the separator via a tetrafluoroethylene resin layer, and the reaction gas pores formed by the grooves of the separator and the porous carbonaceous electrode part Composite electrode substrate for a fuel cell, which is a 3: ratio of charge-pole side reaction gas holes tract area and the air electrode side reaction gas holes tract area is 1: 3 to 2.
【請求項2】多孔性炭素質電極部が、0.3〜0.9g
/ccの嵩密度、200ml/cm・hr・mmAq
以上のガス透過率、および200mΩ・cm以下の電気
抵抗を有することを特徴とする特許請求の範囲第1項に
記載の燃料電池用複合電極基板。
2. The porous carbonaceous electrode portion is 0.3 to 0.9 g.
/ Cc bulk density, 200 ml / cm 2 · hr · mmAq
The composite electrode substrate for a fuel cell according to claim 1, having the above gas permeability and an electric resistance of 200 mΩ · cm or less.
【請求項3】セパレーターが1.4g/cc以上の嵩密
度、10-6ml/cm・hr・mmAq以下のガス透
過率、10mΩ・cm以下の電気抵抗、および2mm以
下の厚さを有する緻密炭素材であることを特徴とする特
許請求の範囲第1項又は第2項に記載の燃料電池用複合
電極基板。
3. The separator has a bulk density of 1.4 g / cc or more, a gas permeability of 10 −6 ml / cm 2 · hr · mmAq or less, an electric resistance of 10 mΩ · cm or less, and a thickness of 2 mm or less. A composite electrode substrate for a fuel cell according to claim 1 or 2, which is a dense carbon material.
【請求項4】端部シール部が1.4g/cc以上の嵩密
度および10-4ml/cm・hr・mmAq以下のガ
ス透過率を有する緻密炭素材であることを特徴とする特
許請求の範囲第1項〜第3項のいずれかに記載の燃料電
池用複合電極基板。
4. The end seal portion is a dense carbon material having a bulk density of 1.4 g / cc or more and a gas permeability of 10 −4 ml / cm 2 · hr · mmAq or less. The composite electrode substrate for a fuel cell according to any one of items 1 to 3.
【請求項5】2枚の溝末加工の所定寸法の平板状多孔性
炭素質電極部材の片面に可撓性炭素材シートをそれぞれ
接着剤により接着し、反応ガス孔道を形成する所望寸法
の溝を燃料極側反応ガス孔道断面積と空気極側反応ガス
孔道断面積の比が1:3〜2:3となるようにそれぞれ
前記接着面側に切削加工した後、切削加工面上に残存す
る可撓性炭素材シート面をセパレーターの両面につき合
わせて接着剤により接着し、さらに800℃以上で焼成
した後、前記溝に平行な電極部材周縁端部に隣接して該
電極部周縁より外方に伸廷しているセパレーターの伸廷
部分に四フッ化エチレン樹脂シートを介してガス不透過
性の緻密炭素材からなる端部シール部材を接合すること
からなる、緻密炭素材からなるセパレーター、該セパレ
ーターと接合されて反応ガス孔道を形成する複数の溝を
片面に備え他の一面は平板状である2つの多孔性炭素質
電極部及び緻密炭素材からなる端部シール部から成り、
前記電極部が反応ガス孔道が直交して相対するように前
記セパレーターの両面に該セパレーターと前記電極部と
の接合面にのみ可撓性炭素材シートを介して接合されか
つ焼成されてカーボンとして一体化されており、前記端
部シール部が前記電極部の溝に平行な電極部周縁部に隣
接して該電極部周縁より外方に伸廷しているセパレータ
ーの伸廷部に四フッ化エチレン樹脂層を介して接合され
ている構造の燃料電池用電極基板であって、セパレータ
ーと多孔性炭素質電極部の溝によって形成される反応ガ
ス孔道の燃料極側反応ガス孔道断面積と空気極側反応ガ
ス孔道断面積の比が1:3〜2:3である燃料電池用複
合電極基板の製造方法。
5. A groove having a desired size for forming a reaction gas passage by adhering a flexible carbon material sheet to one surface of a flat plate-like porous carbonaceous electrode member having a predetermined size, which is a groove-finished product, by an adhesive agent. Is cut on the adhesive surface side so that the ratio of the cross-sectional area of the reaction gas passage of the fuel electrode side to the reaction gas passage of the air electrode side is 1: 3 to 2: 3, and then remains on the cut surface. The surfaces of the flexible carbon material sheets are aligned with each other on both sides of the separator and adhered with an adhesive agent, and further baked at 800 ° C. or higher, and then adjacent to the peripheral edge portion of the electrode member parallel to the groove and outside the peripheral edge of the electrode portion. A separator made of a dense carbon material, which comprises joining an end seal member made of a dense carbon material impermeable to gas through a tetrafluoroethylene resin sheet to the extended portion of the separator stretched in Joined with a separator Reaction other one surface provided with a plurality of grooves on one surface to form the gas holes canal consists end seal portion consisting of two porous carbon electrode part and dense carbon material tabular,
The electrode parts are bonded to both surfaces of the separator only through the bonding surface of the separator and the electrode part through a flexible carbon material sheet so that the reaction gas passages are opposed to each other at right angles, and are baked to be integrated as carbon. And the end seal portion is adjacent to a peripheral edge portion of the electrode portion parallel to the groove of the electrode portion and is extended outward from the peripheral edge portion of the electrode portion. A fuel cell electrode substrate having a structure in which it is joined via a resin layer, wherein a fuel electrode side of a reaction gas passage formed by a groove of a separator and a porous carbonaceous electrode portion A method for producing a composite electrode substrate for a fuel cell, wherein the ratio of reaction gas passage cross-sectional areas is 1: 3 to 2: 3.
【請求項6】多孔性炭素質電極部材を、短炭素繊維、バ
インダーおよび有機粒状物質の混合物を一体的に加熱加
圧成形した成形部材を焼成して製造することを特徴とす
る特許請求の範囲第5項に記載の製造方法。
6. A porous carbonaceous electrode member is produced by firing a molded member obtained by integrally heat-press-molding a mixture of short carbon fibers, a binder and an organic particulate material. The manufacturing method according to item 5.
JP61190959A 1986-08-14 1986-08-14 Composite electrode substrate having different rib heights and method for manufacturing the same Expired - Lifetime JPH0622141B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61190959A JPH0622141B2 (en) 1986-08-14 1986-08-14 Composite electrode substrate having different rib heights and method for manufacturing the same
DE19873727282 DE3727282A1 (en) 1986-08-14 1987-08-12 COMPOSED SUBSTRATE FOR FUEL CELLS AND METHOD FOR PRODUCING THE SAME
FR8711539A FR2602915A1 (en) 1986-08-14 1987-08-13 COMPOSITE SUBSTRATE FOR FUEL CELLS AND MANUFACTURING METHOD THEREOF
GB8719148A GB2193838B (en) 1986-08-14 1987-08-13 Composite substrate for fuel cells and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61190959A JPH0622141B2 (en) 1986-08-14 1986-08-14 Composite electrode substrate having different rib heights and method for manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5238367A Division JPH081802B2 (en) 1993-09-24 1993-09-24 Composite electrode substrate having different rib heights and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6348766A JPS6348766A (en) 1988-03-01
JPH0622141B2 true JPH0622141B2 (en) 1994-03-23

Family

ID=16266521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61190959A Expired - Lifetime JPH0622141B2 (en) 1986-08-14 1986-08-14 Composite electrode substrate having different rib heights and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JPH0622141B2 (en)
DE (1) DE3727282A1 (en)
FR (1) FR2602915A1 (en)
GB (1) GB2193838B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330124A3 (en) * 1988-02-24 1991-06-12 Toray Industries, Inc. Electroconductive integrated substrate and process for producing the same
JP3540491B2 (en) * 1996-03-07 2004-07-07 政廣 渡辺 Fuel cell, electrolytic cell and cooling / dehumidifying method thereof
KR100599775B1 (en) * 2004-05-25 2006-07-13 삼성에스디아이 주식회사 Fuel cell system and the same of stack
KR100599777B1 (en) 2004-05-25 2006-07-13 삼성에스디아이 주식회사 Fuel cell system and the same of stack
US20060024558A1 (en) * 2004-07-29 2006-02-02 Proton Energy Systems, Inc. Low profile electrochemical cell
JP2006156099A (en) 2004-11-29 2006-06-15 Mitsubishi Electric Corp Humidifier and its manufacturing method
JP2007188642A (en) * 2006-01-11 2007-07-26 Hitachi Ltd Solid polymer fuel cell
CN104428899B (en) * 2012-06-06 2017-10-03 日本麦可罗尼克斯股份有限公司 The electrode structure of solid-state version secondary cell

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175165A (en) * 1977-07-20 1979-11-20 Engelhard Minerals & Chemicals Corporation Fuel cell system utilizing ion exchange membranes and bipolar plates
US4233369A (en) * 1979-10-29 1980-11-11 United Technologies Corporation Fuel cell cooler assembly and edge seal means therefor
US4245009A (en) * 1979-10-29 1981-01-13 United Technologies Corporation Porous coolant tube holder for fuel cell stack
JPS58150271A (en) * 1982-03-03 1983-09-06 Hitachi Ltd Fuel cell
US4522895A (en) * 1982-10-05 1985-06-11 Kureha Kagaku Kogyo Kabushiki Kaisha Multilayer fuel cell electrode substrate having elongated holes for feeding reactant gases
US4505992A (en) * 1983-04-11 1985-03-19 Engelhard Corporation Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
JPS6020471A (en) * 1983-07-13 1985-02-01 Mitsubishi Pencil Co Ltd Manufacture of members for fuel cell
JPS6059671A (en) * 1983-09-12 1985-04-06 Hitachi Ltd Separator for fuel cell and its manufacture
JPS60236460A (en) * 1984-04-09 1985-11-25 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell and its manufacture
CA1259101A (en) * 1984-04-09 1989-09-05 Hiroyuki Fukuda Carbonaceous fuel cell electrode substrate incorporating three-layer separator, and process for preparation thereof
JPH0622137B2 (en) * 1984-07-05 1994-03-23 呉羽化学工業株式会社 Fuel cell electrode substrate and manufacturing method thereof
JPS60230366A (en) * 1984-04-28 1985-11-15 Fuji Electric Corp Res & Dev Ltd Stacked unit of fuel cell and its manufacture
JPS61155260A (en) * 1984-12-27 1986-07-14 呉羽化学工業株式会社 Carbon product bonded with carbon materials each other and manufacture
JPS6343268A (en) * 1986-08-06 1988-02-24 Kureha Chem Ind Co Ltd Composite electrode plate for external manifold type fuel cell and manufacture thereof
JPH0622140B2 (en) * 1986-07-18 1994-03-23 呉羽化学工業株式会社 Composite electrode substrate for fuel cell and manufacturing method thereof
US4818640A (en) * 1985-09-25 1989-04-04 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous composite product produced by joining carbonaceous materials together by tetrafluoroethylene resin, and process for producing the same
JPS6282663A (en) * 1985-10-04 1987-04-16 Kureha Chem Ind Co Ltd Electrode substrate for manifold mounted fuel cell and its manufacture
JPS62110262A (en) * 1985-10-25 1987-05-21 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell with end sealing member and its manufacture
JPS62123662A (en) * 1985-11-25 1987-06-04 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell

Also Published As

Publication number Publication date
DE3727282C2 (en) 1991-06-20
FR2602915A1 (en) 1988-02-19
JPS6348766A (en) 1988-03-01
GB2193838A (en) 1988-02-17
DE3727282A1 (en) 1988-02-18
GB8719148D0 (en) 1987-09-23
GB2193838B (en) 1989-12-20

Similar Documents

Publication Publication Date Title
US4818640A (en) Carbonaceous composite product produced by joining carbonaceous materials together by tetrafluoroethylene resin, and process for producing the same
US4579789A (en) Carbonaceous fuel cell electrode substrate incorporating three-layer separator, and process for preparation thereof
US6413663B1 (en) Fluid permeable flexible graphite fuel cell electrode
JPS62123662A (en) Electrode substrate for fuel cell
US6413671B1 (en) Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
WO2008017251A1 (en) Sealing structure of fuel cell and methode for manufacturing the same
USH16H (en) Fuel cell electrode and method of preparation
JPH0622141B2 (en) Composite electrode substrate having different rib heights and method for manufacturing the same
JPS62110262A (en) Electrode substrate for fuel cell with end sealing member and its manufacture
JPH0349184B2 (en)
JP2995604B2 (en) Gas seal material for solid electrolyte fuel cells
GB2128395A (en) Fuel cell electrode substrate having elongated holes for feeding reactant gases
JPH06101341B2 (en) Manufacturing method of ribbed separator for fuel cell
JP2002170581A (en) Polymer electrolyte type fuel battery
JPH03138865A (en) Separator for fuel cell
JPH0622140B2 (en) Composite electrode substrate for fuel cell and manufacturing method thereof
JPH081802B2 (en) Composite electrode substrate having different rib heights and method for manufacturing the same
JPH0582714B2 (en)
JP3838403B2 (en) Phosphoric acid fuel cell
JPS6343268A (en) Composite electrode plate for external manifold type fuel cell and manufacture thereof
JPS6093759A (en) Gas diffusion electrode substrate of fuel cell
JPS59132572A (en) Fuel cell
JPS6119069A (en) Electrode substrate for fuel cell and its manufacture
JPH0473268B2 (en)
JPS62241263A (en) Fuel cell